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Abstract: Recently, there has been an increasing interest in the development of an approach to
characterize the as-built heat loss coefficient (HLC) of buildings based on a combination of on-board
monitoring (OBM) and data-driven modeling. OBM is hereby defined as the monitoring of the energy
consumption and interior climate of in-use buildings via non-intrusive sensors. The main challenge
faced by researchers is the identification of the required input data and the appropriate data analysis
techniques to assess the HLC of specific building types, with a certain degree of accuracy and/or
within a budget constraint. A wide range of characterization techniques can be imagined, going from
simplified steady-state models applied to smart energy meter data, to advanced dynamic analysis
models identified on full OBM data sets that are further enriched with geometric info, survey results,
or on-site inspections. This paper evaluates the extent to which these techniques result in different
HLC estimates. To this end, it performs a sensitivity analysis of the characterization outcome for
a case study dwelling. Thirty-five unique input data packages are defined using a tree structure.
Subsequently, four different data analysis methods are applied on these sets: the steady-state average,
Linear Regression and Energy Signature method, and the dynamic AutoRegressive with eXogenous
input model (ARX). In addition to the sensitivity analysis, the paper compares the HLC values
determined via OBM characterization to the theoretically calculated value, and explores the factors
contributing to the observed discrepancies. The results demonstrate that deviations up to 26.9% can
occur on the characterized as-built HLC, depending on the amount of monitoring data and prior
information used to establish the interior temperature of the dwelling. The approach used to represent
the internal and solar heat gains also proves to have a significant influence on the HLC estimate.
The impact of the selected input data is higher than that of the applied data analysis method.

Keywords: characterization; physical parameter identification; heat loss coefficient; on-board
monitoring data; data analysis methods; sensitivity; uncertainty; case study analysis

1. Introduction

With a share of 25.7% in the final energy consumption in the European Union [1], the residential
sector has an important potential for the application of energy saving strategies such as increasing
the energy efficiency, using renewable energy, and exchanging energy between buildings. In order to
sensibly implement these strategies, thorough insight is required into three elements constituting the
as-built energy performance of buildings: (1) the thermal performance of the building fabric, (2) the

Energies 2019, 12, 3322; doi:10.3390/en12173322 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-1156-8553
https://orcid.org/0000-0003-4250-8200
http://www.mdpi.com/1996-1073/12/17/3322?type=check_update&version=1
http://dx.doi.org/10.3390/en12173322
http://www.mdpi.com/journal/energies


Energies 2019, 12, 3322 2 of 29

efficiency of the technical building systems, and (3) the behavior of the users. A key performance
indicator to express the performance of the building envelope is the Heat Loss Coefficient or HLC
(W/K). This metric describes the heating power (W) needed to sustain a temperature difference of 1K
over the building envelope. As such, it is a combined measure of the thermal insulation quality and
airtightness of the building fabric, as expressed in Equation (1) with Htr the heat transfer coefficient by
transmission (W/K) and Hinf the heat transfer coefficient by infiltration (W/K). The Htr, on the one hand,
embeds four separate heat transfer coefficients (Equation (2)): the heat transfer coefficient between the
conditioned zone and the exterior environment (Htr,e (W/K)), and the heat transfer coefficients to the
ground (Htr,g), to unconditioned spaces (Htr,u) and to adjacent buildings (Htr,a) [2]. All these terms
(hence subscript ‘x’ in Equation (3)) can in turn be dissociated in the heat transfer through the (1) planar
components, (2) linear thermal bridges, and (3) point thermal bridges. The building components are
described by their surface area A (m2) and thermal transmittance or U-value (W/m2

·K), the linear and
point thermal bridges by, respectively, their length L (m) and linear thermal transmittance Ψ (W/m·K),
and point thermal transmittance X (W/K). A temperature ratio bT (-) ensures that all building fabric is
evaluated over the temperature difference between the interior and exterior environment (Equation (4)).
The Hinf on the other hand, can be expressed as the product of the density ρa (kg/m3) and specific heat
capacity ca (J/(kg K)) of the air and the infiltration flow rate Qinf (m3/s) (Equation (2)).

HLCt= Htr;t + Hin f ;t) (1)

=
(
Htr,e;t + Htr,g;t + Htr,u;t + Htr,a;t

)
+

(
ρa·ca·Qin f ;t

)
(2)

Htr,x;t =


q∑

i=1

(Ai·Ui;t) +
r∑

j=1

(
L j·Ψ j;t

)
+

s∑
k=1

Xk;t

·bT,x;t (3)

bT,x;t = ((θx;t − θi;t)/(θe;t − θi;t)) (4)

In general, the HLC is theoretically calculated using Equations (1)–(4). Since the actual values of the
considered variables are typically unknown, they are based on design or default values. Furthermore,
the as-built envelope performance can be influenced by workmanship issues. As a consequence, this
bottom-up approach may lead to theoretical HLC values that substantially deviate from the actual
metric and contribute to the ‘performance gap’ [3–6]. In search for alternative approaches, several
researchers have developed on-site measurement methods that are capable of assessing the actual,
as-built envelope performance. These dedicated tests include the coheating test [7,8], the Short Term
Energy Monitoring (STEM) using Primary and Secondary Term Analysis and Renormalization (PSTAR)
technique [9,10], the Quick U-value of Building (QUB) test [11,12], and the In Situ Assessment of the
Building EnveLope pErformances (ISABELE) method [13–15]. Both the experimental design of these
tests and the data analysis methods applied afterwards take the single-zone heat balance (Equation 5)
as a starting point. When written in its original dynamic form, this balance states that the interior
temperature θi (◦C) of a zone with effective heat capacity Ci (J/K) is influenced by the net heating
power supplied by the heating system Φh (W), the internal heat gains Φint, the solar gains through the
transparent parts of the building envelope Φsol, and the heat transfer through intended ventilation Φv,
envelope air infiltration Φinf and transmission Φtr. Based on Equations (1) and (2), and ignoring the
difference between air and equivalent temperatures [16], the latter two can be combined and written as
the HLC times the difference between the reference interior and exterior temperature (Equation (6)).

Ci·dθi/dt = Φh;t + Φint;t + Φsol;t + Φv;t + Φin f ;t + Φtr;t (5)

= Φh;t + Φint;t + Φsol;t + Φv;t + HLCt·(θe;t − θi;t) (6)

Φh;t = Φh,sys;t·ηh,sys;t (7)
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Φint;t = Φint,Occ;t + Φint,Ap&Li;t + Φint,Wa;t + Φint,HVAC;t (8)

Φsol;t =
n∑

i=1

Φsol;i;t =
n∑

i=1

(
gi;t·Ai;t·Isol; i;t

)
(9)

Φv;t = Hv;t·(θair,e;t − θair,i;t) = ρa·ca·
∑r

p=1

(
QV;p;t·bv;p;t

)
·(θair,e;t − θair,i;t) (10)

The net heating power Φh (Equation (7)) equals the energy use of the heating system Φh,sys

times the overall system efficiency ηh,sys (-), which accounts for unrecoverable generation, storage,
distribution, and emission losses. The internal heat flow rate Φint (Equation (8)) encompasses the heat
flow rate from occupants (Φint,Occ) and appliances and lighting (Φint,Ap&Li), the heat dissipated from or
absorbed by hot and mains water and sewage (Φint,Wa), and the recoverable losses to or from heating,
cooling, and ventilation systems Φint,HVAC. The total solar gain of the zone, Φsol (Equation (9)), can be
expressed as the sum of the solar gains through each of the n transparent elements of its envelope.
The size of these gains is determined by (1) the g-value of the element’s glass panes (-); (2) the element’s
effective area A (m2), which is the total surface area corrected by a frame area fraction and shading
reduction factor; and (3) the combined direct and diffuse solar irradiance Isol (W/m2) for a given
orientation and inclination. Finally, the heat losses through intended ventilation Φv (Equation (10)) can
be detailed as the product of the heat transfer coefficient Hv and the interior-exterior air temperature
difference. The former accounts for the density and specific heat capacity of the air and the ventilation
flow rates Qv (m3/s). A ratio bv (-) furthermore adjusts the temperature difference whenever the
external air flow is thermally treated before entering the zone, e.g., by a heat exchanger.

The above-mentioned on-site tests all excite the building in a certain way, while collecting
measurement data on the temperatures and heat flow rates comprised in the heat balance equations.
By applying statistical data analysis methods, they infer an estimate of the HLC, a procedure known as
parameter or system identification [17,18]. Although these on-site characterization techniques yield
promising results [19,20], there are some practical constraints related to the dedicated experiments that
prevent a large-scale rollout. For example, the building cannot be accessed during the measurements,
which take about 2 to 3 days to complete for the QUB and PSTAR test. For the coheating test, they
can even take up to several weeks [15,20]. In addition, technical knowledge is required to set up the
experiments, and the measurement equipment can be categorized as intrusive and costly [8].

By 2020 the European Commission expects 72% of all European consumers to have a smart meter
for electricity, while about 40% will have a smart meter for gas [21]. Hence, current research [22–28]
investigates whether these smart meters, optionally combined with sensors from building automation
systems, could open the way for a more practical and cost-effective approach for as-built HLC
characterization. However, an assessment based on monitoring data of the energy consumption
and indoor climate of in-use buildings, which will further be referred to as ‘on-board monitoring’
(OBM) data, faces major challenges. Firstly, the presence of users makes the internal heat load (Φint

in Equation (5)) more variable, higher, and harder to trace than during the dedicated experiments.
In addition, the interior temperature throughout the different rooms of the building cannot be assumed
homogenous, as opposed to the controlled temperature setup during the dedicated experiments.
This hampers the applicability of the single-zone heat balance equation. Furthermore, the comfort
requirements of the users limit the extent to which the building can be thermally excited through
varying Φh and θi. Moreover, the fact that the buildings are tested in occupied state, using the available
heating devices, makes it harder to disentangle the characteristics of the building fabric, the technical
building systems and user induced performance aspects.

To date, a systematic understanding of the OBM setup and data analysis needed to tackle these
issues is lacking. This paper sets a first step in filling this knowledge gap by performing a thorough
sensitivity analysis on a case study OBM data set. The first aspect covered in the sensitivity analysis is
the influence of the type and extent of the collected (OBM) data on the HLC estimate. From a practical
perspective, an HLC estimate solely derived from easily accessible data such as smart meter and
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meteorological data can be preferred over monitoring multiple additional data sources. It is verified to
what extent disregarding the other variables in the heat balance, or using default values to represent
them, results in deviations of the HLC estimate. Likewise, the paper examines whether the use of
additional data obtained through on-site inspections or surveys causes significant changes in the HLC
outcome. The second aspect that is evaluated is the impact of the applied data analysis method. It is
tested whether using a more advanced technique, such as a dynamic method, results in a significantly
different or more precise outcome. Similarly, the paper investigates whether using simplified models
on a limited data set necessarily results in a significant change of the HLC estimate.

The actual HLC of the case study building is unknown. Hence it is not possible to state the
accuracy of the inferred HLC estimates. Nevertheless, the information incorporated in the analysis
models will be compared to the heat balance equations and the HLC outcomes will be contrasted with
each other and the theoretical HLC value obtained from Equations (1) and (2).

The following section introduces the case study building and the conducted OBM campaign.
Next, Section 3 explains the adopted methodology. This section is organized in three parts; with first
an overview of the applied data analysis methods, secondly an outline of the developed data packages,
and thirdly more details on the model fitting and validation procedure. Thereafter, Section 4 presents
the results of the sensitivity analysis performed on the OBM characterization, and compares these
estimates with the theoretically calculated HLC. Finally, Section 5 draws the main conclusions.

2. Description of Case Study

The following two sections subsequently describe the case study building, and the monitoring
campaign to which it was subjected.

2.1. The Building

The case study building is a detached single family house in Ghent, Belgium. The dwelling has
a gross floor area (measured externally, excluding the floor area of the attic and cellar) of 222.6 m2,
with 11 rooms spread over two floors. The ground floor includes a living room, a study, an entrance
hall with a cloakroom and toilet, a kitchen, a utility room and a former garage that is used as an extra
storage space. The first floor consists of a landing, three bedrooms, and a bathroom. In addition, the
house has an attic space and a cellar underneath the entrance hall, cloakroom, and toilet. Elevations,
floor plans of the ground and first floor, as well as cross sections can be found in Figures 1–3.
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Figure 2. Floor plans of the case study building, with (1) entrance hall with cloakroom and toilet, (2) 
study, (3) living room, (4) kitchen, (5) utility room, (6) former garage used as storage space, (7) landing, 
(8)–(10) bedrooms, and (11) bathroom. The X marks indicate the locations of the interior temperature 
sensors (see Section 2.2). The building fabric of which the heat loss coefficient (HLC) will be assessed, 
is colored red. 

 
Figure 3. Cross sections AA’ (left) and BB’ (right). The building fabric of which the HLC will be 
assessed, is colored red. 

The house is occupied by a family of two adults and one teenager, who are mostly absent 
between 8 a.m. and 5 p.m. on working days. Space heating is provided by a hydronic central heating 
system, with a gas-fired condensing boiler and radiators as heat emitters. The condensing boiler has 
a manufacturer’s quoted nominal power of 34.8 kW and a seasonal energy efficiency for space heating 
of 94% (against upper calorific value) [29], and is installed in the cellar. The control system adjusts 
the temperature of the boiler according to the outside temperature. No secondary heating systems 
are used. The interior temperature is controlled via a room thermostat in the living room and 
thermostatic radiator valves. Natural gas is furthermore used for cooking, and as primary source of 
energy for the production of domestic hot water (DHW). The condensing boiler in the cellar is not 
used to supply DHW. Instead, an electric boiler in the kitchen provides DHW for the kitchen sink, 
and a gas-fired boiler in the bathroom serves all other tapping points. Neither controlled ventilation 
nor active cooling are foreseen. 

In a survey, the occupants indicated that only the radiators in the living room, kitchen, toilet, 
bathroom, and circulation area (entrance hall and landing) are actively used. However, it is assumed 
that the remainder of the rooms on the two floors (the bedrooms and storage rooms) are also 

Figure 2. Floor plans of the case study building, with (1) entrance hall with cloakroom and toilet,
(2) study, (3) living room, (4) kitchen, (5) utility room, (6) former garage used as storage space, (7) landing,
(8)–(10) bedrooms, and (11) bathroom. The X marks indicate the locations of the interior temperature
sensors (see Section 2.2). The building fabric of which the heat loss coefficient (HLC) will be assessed,
is colored red.
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Figure 3. Cross sections AA′ (left) and BB′ (right). The building fabric of which the HLC will be
assessed, is colored red.

The house is occupied by a family of two adults and one teenager, who are mostly absent
between 8 a.m. and 5 p.m. on working days. Space heating is provided by a hydronic central heating
system, with a gas-fired condensing boiler and radiators as heat emitters. The condensing boiler has a
manufacturer’s quoted nominal power of 34.8 kW and a seasonal energy efficiency for space heating of
94% (against upper calorific value) [29], and is installed in the cellar. The control system adjusts the
temperature of the boiler according to the outside temperature. No secondary heating systems are
used. The interior temperature is controlled via a room thermostat in the living room and thermostatic
radiator valves. Natural gas is furthermore used for cooking, and as primary source of energy for the
production of domestic hot water (DHW). The condensing boiler in the cellar is not used to supply
DHW. Instead, an electric boiler in the kitchen provides DHW for the kitchen sink, and a gas-fired
boiler in the bathroom serves all other tapping points. Neither controlled ventilation nor active cooling
are foreseen.

In a survey, the occupants indicated that only the radiators in the living room, kitchen, toilet,
bathroom, and circulation area (entrance hall and landing) are actively used. However, it is assumed
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that the remainder of the rooms on the two floors (the bedrooms and storage rooms) are also considered
as inhabited spaces and hence maintained at a reasonable temperature. This in contrast with the attic
and cellar, which have no daily use. Therefore, this paper aims to assess the thermal performance of the
building fabric separating the rooms on the ground and first floor from (1) the exterior environment,
(2) the ground, and (3) the adjacent unconditioned spaces, namely the attic space and cellar. The building
fabric of interest for the HLC characterization hence comprises the external walls, windows and doors,
the slab-on-ground floor and floor above the cellar, the parts of the pitched roof above the bedrooms,
the attic floor, and the flat roof. For clarity, these buildings components are marked in red in Figures 2
and 3.

The dwelling was built in 1959, and its current owners have no knowledge of any alteration to
the original construction of the external walls, floors, and flat roof. Hence, according to the national
typology data base [30], the dwelling’s external brick walls can be assumed to include an uninsulated
air cavity, and the slab-on-ground, and flat roof construction are most likely uninsulated. By contrast,
the dwelling owners state that mineral wool was added to the original timber roof structure above the
bedrooms, and 10 cm extruded polystyrene (XPS) was installed on top of the concrete attic floor. Based
on this knowledge, the compositions listed in Table 1 are drawn up. These suggested compositions
are consistent with the thicknesses of the building elements on the building plans, but could not be
further confirmed.

Table 1. Composition, surface area (A), U-value, and temperature ratio (bT) of the building components
the building fabric of interest is composed of.

Building Component Composition (From Inside to Outside, Layer Thicknesses
in (m)) A (m2)

U
(W/m2

·K) bT (-)

External wall

type 1 plaster finish (0.015), lightweight brick inner leaf (0.14),
unfilled cavity (0.055), brick outer leaf (0.09) 133.1 1.3 1.0

type 2 plaster finish (0.015), lightweight brick inner leaf (0.09),
unfilled cavity (0.055), brick outer leaf (0.09) 55.4 1.5 1.0

type 3 lightweight brick inner leaf (0.14), unfilled cavity (0.045),
wood cladding (0.015) 16.5 1.4 1.0

Floor slab
on ground tiles (0.01), sand bed (0.04), concrete slab (0.15) 111.8 0.9 1.0

above cellar tiles (0.01), sand bed (0.04), hollow-core concrete slab (0.15) 20.3 1.7 0.8

Attic floor
type 1 hollow-core concrete slab (0.15), XPS insulation (0.10) 38.1 0.3 0.9
type 2 hollow-core concrete slab (0.20), XPS insulation (0.10) 33.8 0.3 0.9

Roof

pitched, type 1 gypsum board (0.014), rafters (0.15), oriented strand board
(OSB) (0.02), battens and counter battens, ceramic tiles 22.8 1.6 1.0

pitched, type 2
gypsum board (0.014), mineral wool with aluminum foil
facing between rafters (0.15), oriented strand board (OSB)

(0.02), battens and counter battens, ceramic tiles
15.0 0.4 1.0

flat gypsum board (0.014), wood frame layer (0.27), oriented
strand board (OSB) (0.02), bitumen roofing 37.9 1.6 1.0

External doors uninsulated polyvinyl chloride (PVC) door leaf 3.0 4.0 1.0

Garage door uninsulated PVC door leaf 5.4 4.0 1.0

External
Window

type 1 aluminum-framed double glazing with selective coating 22.7 1.8 1.0
type 2 PVC-framed double glazing with selective coating 13.0 3.0 1.0

skylight PVC-framed double glazing with selective coating 1.5 1.6 1.0

In addition to the composition of the building components, Table 1 also summarizes their surface
area and U-value. The former was measured on the building plans, the latter was calculated based
on the default values for the thermal conductivity of material layers provided by the Flemish Energy
Regulations for Buildings (EPB) [31]. With each of the building components, a temperature ratio bT

is associated, as expressed in Equations (3) and (4). For the elements in contact with the exterior
this value equals 1. For those in contact with the unconditioned spaces, the constant default values
suggested in the national addendum to the European standard EN 12831 [32] are used. These are 0.8
for the floor slab above the cellar and 0.9 for the attic floor (with the cellar categorized as ‘Basement
with windows/external doors’ and the attic as ‘Roofspace, other non-insulated roof’). Finally, contrary



Energies 2019, 12, 3322 7 of 29

to Equation (4), the bT for the slab-on-ground is also set to 1, since its U-value is calculated to already
incorporate the effect of the ground following the procedure described in ISO 13370 [33,34].

The dwelling has a window-to-wall ratio (WWR) of 14.8%. In 2012, 63.6% of the double glazed
PVC windows (type 2, Table 1) were replaced by better performing aluminum-framed ones (type 1,
Table 1). All windows, except those of the landing, have rolling shutters. These of the bedrooms are
closed every night, these of the living room are closed at night during winter. The shutters are not
accounted for in the U-values listed in Table 1.

2.2. The Monitoring Campaign

The studied dwelling is a demonstration case of the ‘RenoseeC’ project [35], one of the 10 ‘Pilot
Projects Renovation’ of the regional agency ‘Flanders Innovation & Entrepreneurship’ (Vlaio) [36]. In
the framework of these projects dozens of dwellings across Flanders, with various typologies and
resident profiles, have been subjected to a renovation with specific attention for energy efficiency
measures. By carrying out measurements concerning the energy use and user comfort both before and
after the retrofit, the research consortia aim to analyze the efficiency of the applied measures.

This paper assesses the energy performance of the case study dwelling before any energy
saving measures were implemented in the framework of the RenoseeC project; the so-called ‘baseline
performance’. Hence, the analyses consider the OBM data that was collected in a period stretching
from November 11, 2016 to February 22, 2017. A description of the full data set is provided in Table 2.
Figure 4 illustrates the collected monitoring data for five typical days at the beginning of January 2017.

Table 2. Overview of the data collected during the on-board monitoring (OBM) campaign, as well as
specifications of the instrumentation used.

Monitored Variable Specifications of Instrumentation

Description Abbreviation type Sampling time Resolution Accuracy

Heat output of the boiler
for space heating Φh,meter

Flow: Micronics, U1000
Temperature: JUMO,

Pt500
Integrator: Zenner,

multidata

10 min 1 kW·h

3% for flow,
unspecified for

temperature
reading

Mains electricity
consumption ElecOBM Fluksometer 5 min 1 W 2–6%

Interior temperature in
the attic, cellar, and all
rooms except for the
former garage and

landing.

θi,<room> Onset, HOBO UX100-003 10 min 0.024 ◦C 0.21 ◦C

Exterior temperature
(Ghent) θe,Ghent Vaisala, HMS82 1 min 0.00001 ◦C 0.3 ◦C

Global horizontal
radiation (Ghent) GHRGhent Kipp&Zonen, SP Lite2 1 min 0.00001 W/m2 <10 W/m2

Exterior temperature
(Uccle) θe,Uccle Thermibel, Pt100 1 h 0.1 ◦C 0.2 ◦C

Global horizontal
radiation (Uccle) GHRUccle Kipp&Zonen, CNR1 1 h 0.1 W/m2 10%



Energies 2019, 12, 3322 8 of 29
Energies 2019, 12, x FOR PEER REVIEW 8 of 30 

 

 
Figure 4. Time series plots of the collected monitoring data for five typical days at the beginning of 
January 2017. The abbreviations ‘liv’ and ‘bed’ stand for, respectively, the ‘living room’ (No. 3 in 
Figure 2) and the master ‘bedroom’ (No. 9 in Figure 2). Figures display hourly values. 

The heat output of the condensing boiler for space heating was registered using a clamp-on heat 
meter. This device comprises (1) a flow meter, which was installed near the boiler outlet, (2) a pair of 
temperature sensors monitoring the inlet and outlet temperature, and (3) an integrator that calculates 
the actual heat output, which will be denoted as Φh,meter. Since the boiler and heat meter are installed 
in the cellar, some minor distribution losses could still occur outside the considered heated volume. 
Hence, Φh,meter does not fully equal Φh in Equations (5)–(7), but is presumed to closely approximate it. 
Given its cost, a heat meter is typically not available in dwellings. Alternatively, the natural gas 
consumption can be monitored using a smart meter. In that case, the gas consumption should be 
decomposed into its end uses (space heating, cooking, and DHW production) [37] and the system 
efficiency should be accounted for. 

The mains electricity consumption drawn from the national grid was monitored as well 
(‘ElecOBM’). Furthermore, the interior temperature θi was recorded in the attic space, the cellar, and all 
rooms on the ground and first floor, except for the former garage and the landing. The exact position 
of the sensors is indicated in the floor plans in Figure 2. Finally, monitoring data of the exterior air 
temperature θe and global horizontal radiation (GHR) were obtained from a local weather station in 
Ghent (geodesic distance of about 4 km to the case study dwelling). 

In addition to the monitoring campaign, a blowerdoor test was performed to evaluate the 
airtightness of the building envelope. During the test, the doors to the cellar and attic were closed, all 
other doors on the ground and first floor remained open. Following the procedure described in NBN 
EN ISO 9972 [38], an n50 value of 7.4/h was obtained. 

For the sake of comparison, the OBM data set was supplemented with meteorological data 
(exterior temperature and global horizontal radiation) collected at a weather station of the Royal 
Meteorological Institute in Uccle (geodesic distance of about 51 km to the case study dwelling). In 
addition, historical annual data on the mains electricity and gas consumption was requested from the 
energy supplier. 

Figure 4. Time series plots of the collected monitoring data for five typical days at the beginning of
January 2017. The abbreviations ‘liv’ and ‘bed’ stand for, respectively, the ‘living room’ (No. 3 in
Figure 2) and the master ‘bedroom’ (No. 9 in Figure 2). Figures display hourly values.

The heat output of the condensing boiler for space heating was registered using a clamp-on heat
meter. This device comprises (1) a flow meter, which was installed near the boiler outlet, (2) a pair of
temperature sensors monitoring the inlet and outlet temperature, and (3) an integrator that calculates
the actual heat output, which will be denoted as Φh,meter. Since the boiler and heat meter are installed
in the cellar, some minor distribution losses could still occur outside the considered heated volume.
Hence, Φh,meter does not fully equal Φh in Equations (5)–(7), but is presumed to closely approximate
it. Given its cost, a heat meter is typically not available in dwellings. Alternatively, the natural gas
consumption can be monitored using a smart meter. In that case, the gas consumption should be
decomposed into its end uses (space heating, cooking, and DHW production) [37] and the system
efficiency should be accounted for.

The mains electricity consumption drawn from the national grid was monitored as well (‘ElecOBM’).
Furthermore, the interior temperature θi was recorded in the attic space, the cellar, and all rooms on the
ground and first floor, except for the former garage and the landing. The exact position of the sensors
is indicated in the floor plans in Figure 2. Finally, monitoring data of the exterior air temperature θe

and global horizontal radiation (GHR) were obtained from a local weather station in Ghent (geodesic
distance of about 4 km to the case study dwelling).

In addition to the monitoring campaign, a blowerdoor test was performed to evaluate the
airtightness of the building envelope. During the test, the doors to the cellar and attic were closed, all
other doors on the ground and first floor remained open. Following the procedure described in NBN
EN ISO 9972 [38], an n50 value of 7.4/h was obtained.

For the sake of comparison, the OBM data set was supplemented with meteorological data (exterior
temperature and global horizontal radiation) collected at a weather station of the Royal Meteorological
Institute in Uccle (geodesic distance of about 51 km to the case study dwelling). In addition, historical
annual data on the mains electricity and gas consumption was requested from the energy supplier.
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3. Research Methodology

This paper aims to enhance the understanding of the impact of (1) the data analysis method
and (2) the input data on the characterization outcome. The general principles of the evaluated data
analysis methods are outlined in Section 3.1. Next, Section 3.2 delineates the different input data
packages that are fed into the models. Finally, Section 3.3 gives more information on the approach that
was adopted to fit and validate the models, and to determine the HLC estimate.

3.1. Data Analysis Methods

Four different data analysis methods will be applied to determine the HLC of the case study
dwelling. The characterization capabilities of these methods have previously been compared based
on synthetic monitoring data [39]. The methods considered are the Average method (‘Avg’), Linear
Regression Analysis (‘LR’), the energy signature method (‘ES’), and ARX modeling (ARX stands for
‘AutoRegressive with eXogenous input’). The first three methods take the single-zone steady-state heat
balance, which neglects the building’s actual dynamic behavior (Equation (12)), as a starting point.
The ARX method, on the other hand, considers the building as a—still single-zone—dynamic system
with energy that is being charged and discharged by the building’s effective thermal mass (Equations
(5) and (6)). Table 3 gives an overview of the model equations evaluated by the four methods.

Ci·dθi/dt = 0 (11)

⇓

Φh;t + Φint;t + Φsol;t + Φv;t = −
(
Φinf;t + Φtr;t

)
= HLCt·

(
θi;t − θe;t

)
(12)

Table 3. Overview of the model equations evaluated by the four data analysis methods. The Linear
Regression Analysis (LR), energy signature method (ES), and AutoRegressive with eXogenous input
(ARX) models consider vectors, as indicated by the notation in bold.

Method Model Equation

Avg HLC =
n∑

j=1

(
Φh;t j + Φint;t j + Φsol;t j + Φv;t j

)
/

n∑
j=1

(
θi;t j − θe;t j

)
(13)

LR
Φh;t + Φint;t + Φsol;t + Φv;t = HLC·

(
θi;t − θe;t

)
+ εt (14)

Φh;t + Φint;t + Φv;t = HLC·
(
θi;t − θe;t

)
+ (−gAl)·Isol;k;t + εt (15)

ES
Φint;t + Φsol;t + Φv;t = HLC·

(
θi;t − θb

)
+ εt (16)

Φh;t =

{
HLC·(θb − θe;t) + εt i f θe;t < θb

0 + εt i f θe;t ≥ θb

(17)
(18)

ARX
ϕ(B)·

(
Φh;t + Φint;t + Φsol;t + Φv;t

)
= ωi(B)·θi;t +ωe(B)·θe;t + εt (19)

ϕ(B)·θi;t = ωh(B)·
(
Φh;t + Φint;t + Φsol;t + Φv;t

)
+ωe(B)·θe;t + εt (20)

ϕ(B)·θi;t = ωh(B)·
(
Φh;t + Φint;t + Φv;t

)
+ωe(B)·θe;t +ωsol(B)·Isol;k;t + εt (21)

The Average method, described in Equation (13), is a translation of the method proposed in ISO
9869-1 [40] to estimate the U-value of building components from on-site heat flux elements, to the
building level. For each time step tj at which an observation of the heat flow rates and temperatures
is made, it determines (1) a total heat flow rate, which is the sum of the net heat input, internal and
solar gains, and ventilation heat flow rate and (2) the difference between the interior and exterior
temperature. It then divides the sum of the total heat flow rates for the n available observations
by the summed temperature difference. This ratio is assumed to converge to the average HLC, if
measurements are taken over a sufficiently long time.

The linear regression model expressed in Equation (14) uses the steady-state heat balance in
Equation (12) as a simple linear regression equation of the form y = a · x + ε, with the temperature
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difference between the interior and exterior environment as sole independent variable (x) explaining
the variance of the sum of the heat flow rates (y), and ε the prediction error. By fitting this model to the
collected time series data, an HLC estimate is obtained as the coefficient of the independent variable,
hence the slope of the regression line. Furthermore, Bauwens and Roels [41] and Senave et al. [39]
demonstrated how, based on the definition of Φsol in Equation (9), a multiple linear regression equation
can be drawn up (Equation (15)). This model can be used when monitoring data of the incident solar
radiation under a certain projection (Isol;k) is available instead of the solar gains. In addition to an HLC
estimate, this model provides an estimate for a solar aperture coefficient or lumped gA-value (‘gAl’).
However, the authors [39] warn that the simplified representation of the solar gains in Equation (15),
using a single projection of the solar radiation and a constant lumped gA-value, can lead to maximal
deviations between the HLC estimate and actual HLC of more than 15%.

The Energy Signature method [42,43] is a special case of LR, which, beside the HLC, assesses
a base temperature θb. This is the exterior temperature for which the building at temperature θi

is in thermal balance with its environment and does not require space heating (Φh = 0) (Equations
(16)–(18)). Notably, the equation from which the HLC can be derived, Equation (17), does not explicitly
incorporate the interior temperature.

The ARX models [17,18,44] presented in Equations (19)–(21) are transfer function models aiming
to describe the dwelling’s dynamic behavior. To this end, past observations (so-called ‘lags’) of the heat
flow rates and temperatures are taken into account. Practically, this is done using output and input
polynomials in the backshift operator B; respectively ϕ(B) (Equation (22)) andωx(B) (Equation (23)).
The backshift operator hereby works as explained in Equation (24), with Zt the observation of variable
Z at time t. The numbers nϕ and nωx indicate the order of the polynomials. Two model variants will
be applied, with the sum of the heat flow rates either as output (Equation (19)) or input (Equation (20)).
Similar as for the LR model, a variant with Isol as input variable will be considered, as demonstrated
by Equation (21).

ϕ(B) = 1·B0 + ϕ1·B1 + ϕ2·B2 + · · ·+ ϕnϕ ·B
nϕ (22)

ωx(B) = ωx,0·B0 +ωx,1·B1 + · · ·+ωx,nωx ·B
nωx (23)

Bk
·Zt = Zt−k (24)

3.2. Input Data Packages

Table 3 shows that the analysis methods need input data for six variables: the heat flow rates
Φh, Φsol, Φv, and Φint and the temperatures θi and θe. Acquiring all these data through on-board
monitoring is, however, not always practically feasible and economically desirable. By following the
procedure outlined in Figure 5 and Table 4 it will therefore be analyzed what the impact is of neglecting
these variables or using several alternative data sources to represent them.
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Table 4. Composition of the data packages, and the applied data analysis methods. The abbreviations
‘liv’, ‘bed’, ‘V’, and ‘MHG’ stand for, respectively, ‘living room’, ‘bedroom’, ‘volume’, and ‘metabolic
heat gains’.

Data Package Analysis Method

Name
Content

Avg. LR ES ARX
OBM Data Additional

Knowledge Assumptions (*)

Impact of representation of exterior and interior temperature

1
1G Φh,meter, θe,Ghent / θi = 18◦C, Φint = 0, Φsol = 0 X X X X
1U Φh,meter, θe,Uccle / θi = 18◦C, Φint = 0, Φsol = 0, X X X X

2
2G Φh,meter, θe,Ghent, θi,liv / θi = θi,living, Φint = 0, Φsol = 0 X X X
2U Φh,meter, θe,Uccle, θi,liv / θi = θi,living, Φint = 0, Φsol = 0 X X X

3G
Φh,meter, θe,Ghent, θi,liv,

θi,bed
/ θi = θi,AM, Φint = 0, Φsol = 0 X X X

4

4G,AM1
Φh,meter, θe,Ghent, θi all

rooms / θi = mean(θi,AM), Φint = 0, Φsol = 0 X X X

4G,AM2
Φh,meter, θe,Ghent, θi all

rooms / θi = θi,AM, Φint = 0, Φsol = 0 X X X

4G,Vw
Φh,meter, θe,Ghent, θi all

rooms Vrooms θi = θi,Vw, Φint = 0, Φsol = 0 X X X

4G,Aw
Φh,meter, θe,Ghent, θi all

rooms Arooms θi = θi,Aw, Φint = 0, Φsol = 0 X X X

4G,UAw
Φh,meter, θe,Ghent, θi all

rooms
Arooms,

U-values θi = θi,UAw, Φint = 0, Φsol = 0 X X X

4U,UAw
Φh,meter, θe,Uccle, θi all

rooms
Arooms,

U-values θi = θi,UAw, Φint = 0, Φsol = 0 X v v

Impact of representation of internal heat gains

5

5G,liv Φh,meter, θe,Ghent, θi,liv
electricity

bill
θi = θi,living, Φint = Elecbill, Φsol = 0 X X X

5G,UAw
Φh,meter, θe,Ghent, θi all

rooms

Arooms,
U-values,
electricity

bill

θi = θi,UAw, Φint = Elecbill, Φsol = 0 X X X

6

6G,liv
Φh,meter, θe,Ghent, θi,liv,

ElecOBM
/ θi = θi,living, Φint = ElecOBM, Φsol = 0 X X X

6G,UAw
Φh,meter, θe,Ghent, θi all

rooms, ElecOBM

Arooms,
U-values θi = θi,UAw, Φint = ElecOBM, Φsol = 0 X X X

6U,liv
Φh,meter, θe,Uccle, θi,liv,

ElecOBM
/ θi = θi,living, Φnt = ElecOBM, Φsol = 0 X X X

6U,UAw
Φh,meter, θe,Uccle, θi all

rooms, ElecOBM

Arooms,
U-values θi = θi,UAw, Φint = ElecOBM, Φsol = 0 X X X

7

7G,liv
Φh,meter, θe,Ghent, θi,liv,

ElecOBM
occupancy θi = θi,living, Φint = (ElecOBM+MHG),

Φsol = 0 X X X

7G,UAw
Φh,meter, θe,Ghent, θi all

rooms, ElecOBM

Arooms,
U-values,
occupancy

θi = θi,UAw, Φint = (ElecOBM+MHG),
Φsol = 0 X X X

7U,liv
Φh,meter, θe,Uccle, θi,liv,

ElecOBM
occupancy θi = θi,living, Φint = (ElecOBM+MHG),

Φsol = 0 X X X

7U,UAw
Φh,meter, θe,Uccle, θi all

rooms, ElecOBM

Arooms,
U-values,
occupancy

θi = θi,UAw, Φint = (ElecOBM+MHG),
Φsol = 0 X X X

Impact of representation of solar heat gains

8
8G,liv

Φh,meter, θe,Ghent, θi,liv,
GHRGhent

/
θi = θi,living, Φint = 0, Φsol =

gAl·GHRGhent (**) X X

8G,UAw
Φh,meter, θe,Ghent, θi all

rooms, GHRGhent

Arooms,
U-values

θi = θi,UAw, Φint = 0, Φsol =
gAl·GHRGhent (**) X X

9

9G,liv
Φh,meter, θe,Ghent, θi,liv,

ElecOBM, GHRGhent
/

θi = θi,living, Φint = ElecOBM, Φsol =
gAl·GHRGhent (**) X X

9G,UAw
Φh,meter, θe,Ghent, θi all

rooms, ElecOBM, GHRGhent

Arooms,
U-values

θi = θi,UAw, Φint = ElecOBM, Φsol =
gAl·GHRGhent (**) X X

9U,liv
Φh,meter, θe,Uccle, θi,liv,

ElecOBM, GHRUccle
/

θi = θi,living, Φint = ElecOBM, Φsol =
gAl·GHRUccle (**) X X

9U,UAw
Φh,meter, θe,Uccle, θi all

rooms, ElecOBM, GHRUccle

Arooms,
U-values

θi = θi,UAw, Φint = ElecOBM, Φsol =
gAl·GHRUccle (**) X X
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Table 4. Cont.

Data Package Analysis Method

Name
Content

Avg. LR ES ARX
OBM Data Additional

Knowledge Assumptions (*)

10

10G,liv
Φh,meter, θe,Ghent, θi,liv,

ElecOBM, GHRGhent
occupancy θi = θi,living, Φint = (ElecOBM+MHG),

Φsol = gAl·GHRGhent (**) X X

10G,UAw
Φh,meter, θe,Ghent, θi all

rooms, ElecOBM, GHRGhent

Arooms,
U-values,
occupancy

θi = θi,UAw, Φint = (ElecOBM+MHG),
Φsol = gAl·GHRGhent (**) X X

10U,liv
Φh,meter, θe,Uccle, θi,liv,

ElecOBM, GHRUccle
occupancy θi = θi,living, Φint = (ElecOBM+MHG),

Φsol = gAl·GHRUccle (**) X X

10U,UAw
Φh,meter, θe,Uccle, θi all

rooms, ElecOBM, GHRUccle

Arooms,
U-values,
occupancy

θi = θi,UAw, Φint = (ElecOBM+MHG),
Φsol = gAl·GHRUccle (**) X X

11

11U,liv
Φh,meter, θe,Uccle, θi,liv,

ElecOBM, GHRUccle

solar
radiation
algorithm

θi = θi,living, Φint = ElecOBM, Φsol =
gAl·Isol,S,Uccle (**) X X

11U,UAw
Φh,meter, θe,Uccle, θi all

rooms, ElecOBM, GHRUccle

Arooms,
U-values,

solar
radiation
algorithm

θi = θi,UAw, Φint = ElecOBM, Φsol =
gAl·Isol,S,Uccle (**) X X

12

12U,liv
Φh,meter, θe,Uccle, θi,liv,

ElecOBM, GHRUccle

occupancy,
window

positioning,
solar

radiation
algorithm

θi = θi,living, Φint = (ElecOBM+MHG),
Φsol = Φsol,synth

X X X

12U,UAw
Φh,meter, θe,Uccle, θi all

rooms, ElecOBM, GHRUccle

Arooms,
U-values,
occupancy,
window

positioning,
solar

radiation
algorithm

θi = θi,UAw, Φint = (ElecOBM+MHG),
Φsol = Φsol,synth

X X X

(*) in addition to the basic assumptions that the measured exterior temperature and the measurements of the heat
meter (Φh,meter) can be used to represent θe and Φh, respectively. Since no intended ventilation is foreseen, Φv is
furthermore set to zero. (**) with gAl to be fitted.

The study follows the framework depicted in the tree structure of Figure 5. Each of the nodes of
this tree represents a ‘data package’. These packages draw from two different data sources: ‘OBM’
(e.g., temperatures and energy consumption data) and ‘additional knowledge’ (e.g., building plans and
occupant surveys). To ensure that an input value is available for each of the six variables mentioned
above, these two types of data sources are further supplemented with some ‘assumptions’ (e.g., default
values). Table 4 details the content of all 35 data packages. The different packages are visualized as
the nodes of a tree-diagram in Figure 5, because they are nested, in the sense they are hierarchically
extending one another with more information along the branches of the tree. The leaf nodes hence
represent the richest data packages. This is also reflected in the naming of the packages. Each data
package is denoted with a number and one or more letters. In general, the higher the package number,
the more ‘OBM data’ or ‘additional knowledge’ the package embeds. Packages with the same number
(depicted on the same level in Figure 5) aim to compare either the effect of alternative representations
of a certain variable (e.g., packages 4) or the influence of the ancestor package to which a certain
data source is added (e.g., packages 6). The letters help to distinguish between these packages of the
same generation.

The exploration of the branches is structured around three topics: ‘Interior temperature’, ‘Internal
heat gains’ and ‘Solar heat gains’. In addition, the influence of the spatial variability of the climate data
on the HLC outcome will be assessed throughout the whole analysis.
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The monitoring data collected by the heat meter, Φh,meter, is presumed to be essential for the HLC
characterization and forms the root of the tree. In subsequent steps, data is added, resulting in 35
data packages.

Packages 1: By supplementing Φh,meter with exterior temperature data, collected at a nearby
weather station in Ghent, a first data package is created; ‘1G’ (see Figure 5). This package considers
Φh,meter and θe,Ghent to respectively represent Φh and θe in the analysis methods (Table 3). In the
absence of data on the actual interior temperature, a constant profile of 18 ◦C is assumed, in accordance
with the Flemish Energy Regulations for Buildings (EPB) [45]. As a first, conservative guess, the
unknown variables Φsol and Φint are set to zero (see Table 4). A second package, 1U, starts from the
same assumptions, but uses the more remotely registered exterior temperature data (θe,Uccle instead of
θe,Ghent).

Packages 2 to 4: In a next step, the impact of adding interior temperature sensors to the OBM
setup is analyzed through packages 2, 3, and 4. These packages respectively comprise one interior
temperature sensor (in the living room), two sensors (in the living room and master bedroom, which
is room No. 9 in Figure 2), and nine sensors spread over the dwelling. When multiple interior
temperature signals are available, the question arises how they should be combined to approximate
the equivalent homogenous dwelling temperature θi. The sibling packages 4G therefore examine how
the characterization outcome differs when θi is represented by

1. the arithmetic mean of all available interior temperature signals θi,AM (packages 4G,AM1 with θi =

mean(θi,AM) and 4G,AM2 with θi = θi,AM);
2. their (gross) room volume weighted average θi,Vw (package 4G,Vw);
3. their heat loss area weighted average θi,Aw (package 4G,Aw);
4. their UA-value weighted average θi,UAw (package 4G,UAw);

In the case of the latter two the temperature ratios bT are also taken into account, as shown in
Equations (25) and (26) with j the rooms where the temperature was monitored (see Figure 2) and k
the building components separating these room interiors from the ground, cellar, attic, or exterior
environment. In reality these ratios are time dependent (see further, Section 4.2), but for the calculations
in Equations (25) and (26) the constant values listed in Table 1 are used.

θi,Aw;t =
∑

j

∑
k

(
A j,k·bT; j,k

)
·θi; j;t

/
∑

j

∑
k

(
A j,k·bT; j,k

) (25)

θi,UAw;t =
∑

j

∑
k

(
U j,k·A j,k·bT; j,k

)
·θi; j;t

/
∑

j

∑
k

(
U j,k·A j,k·bT; j,k

) (26)

These approaches assume the room air to be perfectly mixed. Moreover, since the sensors were
not installed in every room, the measurements collected in the utility room (No. 5 in Figure 2) are
considered to be representative for both this room and the former garage (No. 6), especially since the
occupants state that the connecting door is rarely closed. Similarly, the interior temperature registered
in the entrance hall (No. 1 in Figure 2) is equally used for the cloakroom, toilet, and landing (No. 7).

Packages 5 to 7: Internal heat gains are caused by the presence of occupants and the use of
appliances, lighting, hot water, and HVAC systems (Equation (8)). Setting Φint equal to zero might
therefore be a too conservative assumption. To get insight into the sensitivity of the HLC outcome
to the value used to represent Φint, packages 5 to 7 evaluate three options. First, packages 5 and 6
focus on the appliances induced internal heat gains (Φint = Φint,Ap&Li) and approximate these based on
two different data sources. Packages 5, on the one hand, include historical electricity consumption
data inquired from the energy provider. The cumulative electricity use was available for three
different periods. Since the first period (September 1, 2012 till April 23, 2013; this is 234 days) mainly
corresponds to the winter period considered here, an hourly averaged value Elecbill (W) is determined
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as (cumulative electricity use period 1 (Wh))/(234·24h). This constant value will be used to represent
Φint in packages 5G. Packages 6, on the other hand, comprise the OBM mains electricity consumption
data ElecOBM to approximate Φint. Hence, in both cases, all electricity consumed by appliances and
lighting is considered to be converted into heat and form a useful contribution to the dwelling’s
interior temperature.

Subsequently, package 7 adds an approximation of the metabolic heat gains (MHG) (Φint,Occ in
Equation (8)) to the Φint-value of package 6. This way it aims to obtain an HLC value that is less
influenced by occupant presence and behavior. Based on a survey, the occupancy profile shown in the
first two rows of Table 5 is proposed. In combination with the default metabolic heat rates prescribed
by ISO 8996 [46], and assuming a body surface area of 1.8 m2 for men and 1.6 m2 for women [46], this
leads to the MHG-profile in the third row of the table. This daily profile will be repeated throughout
the training and validation period of the analysis models.

Table 5. Proposed occupancy and metabolic heat gain (MHG) profile. M and F stand for male
and female.

Time Period 11 p.m.–7 a.m. 7 a.m.–9 a.m. 9 a.m.–5 p.m. 5 p.m.–8 p.m. 8 p.m.–11 p.m.

Number of
persons, M/F 1 M, 2 F 1 M, 2 F 0 1 M, 2 F 1 M, 2 F

Activity sleeping
standing,
medium
activity

-
standing,
medium
activity

sedentary
activity

MHG (W) 200 575 0 575 350

Packages 8 to 12: By adding GHR data, registered in a weather station in either Ghent or Uccle, to
the packages 2 (or 4), 6 and 7, the packages 8, 9, and 10 are created. This additional variable allows to
replace the zero assumption for Φsol by (gAl·GHR) and thus use model Equations (15) and (21) instead
of Equations (14) and (20) to fit the LR and ARX models. In this context, packages 11 furthermore
examine the change observed when the incident radiation on a vertical, south oriented surface (Isol,S) is
used instead of the GHR, the south orientation being selected because of its dominance in the northern
hemisphere. Isol,S is here inferred from the GHR data with the aid of the building energy simulation
tool TRNSYS 17 [47], and in particular Type 99 [48]. Finally, packages 12 presume the positioning and
geometry of the windows to be known. In combination with the GHR data, this allows to synthetically
approximate the actual solar gains (Φsol,synth). Again, this task is performed using TRNSYS 17. Due to
missing observations and small anomalies in the GHR data collected in Ghent, it was not possible to
calculate Isol,S or Φsol,synth for this climate. Hence, packages 11 and 12 were only developed for the
weather data of Uccle.

The right part of Table 4 indicates which data analysis methods are applied on the different
packages. The Average method (Equation (13)) can solely be used when an estimate for Φsol is available,
not when it is fitted based on the GHR or Isol,S data as is done in packages 8–11. Linear regression and
ARX models are identified on all packages. In the majority of cases, this concerns the expressions given
in Equation (14) and Equation (20). However, when data on the GHR or Isol,S is available, Equation (15)
and Equation (21) are applied instead. For package 1, where θi is considered to be constant, a version
of the ARX model described in Equation (19), with Φh as output and θi as a constant, also needs to be
used instead of Equation (20). The ES method is exclusively applied on the first package, since this is
the only scenario where no measurement data is available to represent θi.

3.3. Model Fitting and Validation, Determination of HLC

Data analysis was performed in R [49]. The full data set spans over 104 days, from November 10,
2016 till February 22, 2017. The first 90 days (until February 8, 2017) were used to train all models,
while the two last weeks were used as a cross-validation period for the ARX models.
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To fulfill the steady-state requirements of the Average, Energy Signature, and Linear Regression
method, the original monitoring data was resampled to a multiple of 12 h before using it as input.
The exact resampling times were determined by two model validation criteria:

(a) All model coefficients should prove to be significantly different from zero in a marginal t-test
(p-value < 0.05).

(b) The residuals of the fitted model should resemble white noise, which is a sequence of uncorrelated
zero mean random variables [18]. This property is examined in both the time and frequency
domain, by inspecting the plots of the Autocorrelation Function (‘ACF’) and the cumulated
periodogram (‘CP’), respectively. In the former plot, it is verified whether the conditions specified
in the IEA Annex 58 statistical guidelines [44] are fulfilled. These state that not more than 5–10% of
the lag correlations should be significantly different from zero (exceed above the 95% confidence
bands). Especially the correlation for the shorter lags and the 24 h lag should be insignificant.
The CP, on the other hand, should approximate a linearly increasing function, indicating that the
residuals do not have excess of a certain frequency. Its plot should thus show a quasi-straight
line, that barely (5%) exceeds the 95% confidence band.

For 23 out of the 35 data packages listed in Table 4, 24 h proved to be the lowest resampling time
(RST) for which the above criteria were met for the steady-state models. For the other 12 packages, the
steady-state models were not valid for an RST of 12 h or any multiple of 12 h up to and including 120 h,
as will be discussed in Section 4.

For the dynamic ARX models, six-hourly input data are used. The model order is determined
using a forward modeling procedure:

1. The model parametrization expressed in Equation (19), (20), or (21) is fitted to the data, allowing
one lag for the autoregressive variable and 0 lags for the input variables (nϕ = 1, nωx = 0).

2. The insignificant model coefficients are systematically removed, starting with those of the highest
order present. After each elimination, the model is refitted. This step is repeated until only
significant model coefficients remain.

3. If the model passes the white noise criterion specified in (b), it is accepted. Otherwise, another
lag is added to each variable (lag x for the input polynomials and lag (x + 1) for the output
polynomial, whereby lag x is the next lag that has not been added before: the same lag is never
added again if it was eliminated before), increasing the model order, and step 2 is repeated.

To test the ARX models for overfitting, the models are challenged to predict the interior temperature
(or Φh in case of package 1) for 2 weeks in both the training and validation period, using one-step ahead
prediction [26]. The normalized RMSE (nRMSE (%)) [26] between the predicted and measured interior
temperature is then compared for both periods to verify if they are of the same order of magnitude.
In this case, the maximum difference between the nRMSEs proves to be 32.7%, which was considered
to be acceptable.

The HLC estimate of the Avg method follows from the ratio in Equation (13), and the method
provides no confidence band [39]. To obtain the estimates for the LR and ES method, Equations (14),
(15) and (17) are identified on the data set via the R-function ‘linear model’ (‘lm’), which applies
ordinary least squares (OLS) regression [50]. This function returns both the mean estimate and standard
deviation of all fitted model coefficients. In the case of the LR models, the coefficient of the temperature
difference term represents the HLC, for the ES model, this is the coefficient of θe. Finally, for the ARX
models, the HLC estimate needs to be derived from the steady-state gains using Lagrange weighting,
as shown in Equation (27) for model Equation (19) and Equation (28) for model Equations (20) and
(21) [26,39,44,51]. The steady-state gains of the variables are their polynomials with the backshift
operator B set equal to 1 (e.g., ωe(1)). This way, they represent the model’s steady-state behavior.
The lambda in Equations (27) and (28) is the Lagrange multiplier, which ensures that the steady-state
gain ratio with the highest variance (either Hi or He) gets the lowest weight when the HLC is inferred.
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To this end, λ considers the variance (‘Var’) and covariance (‘Cov’) of both (Equation (29)). For ARX
models where θi is set to be a constant, no value is obtained for Hi and HLC is taken equal to He.
To assess the uncertainty of the HLC estimates from ARX modeling, 50,000 random realizations are
simulated of the fitted polynomials. From the resulting HLC values, a 95% confidence interval is
derived. This procedure is also known as bootstrapping [52].(

ωi(1)
ϕ(1)

= Hi

)
&

(
ωe(1)
ϕ(1)

= He

)
→ HLC = λ·Hi + (1− λ)·He (27)

(
ϕ(1)
ωh(1)

= Hi

)
&

(
ωe(1)
ωh(1)

= He

)
→ HLC = λ·Hi + (1− λ)·He (28)

λ =
Var(He) −Cov(Hi, He)

Var(Hi) + Var(He) − 2·Cov(Hi, He)
(29)

4. Results and Discussion

This fourth section presents and discusses the main research findings. First, Section 4.1 shows
the results of the HLC characterization based on OBM data and the sensitivity analysis. Thereafter,
Section 4.2 compares the outcome of the OBM characterization with the theoretical HLC value calculated
according to the governing standards.

4.1. Sensitivity Analysis

The discussion on the sensitivity of the HLC estimate will be organized around the three topics
indicated in Figure 5: the impact of the way (1) the interior temperature is represented, (2) the internal
heat gains are approximated, and (3) the solar heat gains are modeled.

Based on the steady-state heat balance (Equation (12), rewritten in Equation (30)), it is expected
that an underestimation of the dwelling’s equivalent homogenous temperature θi results in an
overestimation of the transmission and infiltration losses per degree Kelvin temperature difference,
and hence an overestimation of the HLC. Neglecting the internal or solar heat gains, and thus
underestimating the real heat flow into the zone, on the other hand, is expected to lead to an
underestimation of the HLC.

HLCt =

(
Φh;t + Φint;t + Φsol;t + Φv;t

)
(θi;t − θe;t)

=
−

(
Φin f ;t + Φtr;t

)
(θi;t − θe;t)

(30)

4.1.1. Impact of Representation of Exterior and Interior Temperature

Figure 6 gives an overview of the HLC estimates that are identified by the Average method, Linear
Regression, Energy Signature method, and ARX models on the first four groups of data packages (see
Table 4 and Figure 5). The left side of the figure investigates the sensitivity of the characterization
outcome to the number of interior sensors installed, using the exterior temperature data collected in
Ghent (θe,Ghent). The right side of the figure repeats some of the key analyses, using θe,Uccle instead
of θe,Ghent.
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Figure 6. HLC estimates obtained by applying the Average (Avg), Linear Regression (LR) and Energy
Signature (ES) method, as well as an ARX model, on the data packages investigating the influence of
the considered interior temperature. The dots indicate the mean estimates, and the whiskers represent
the 95% confidence intervals.

Using a Default Value for the Interior Temperature

For data package 1G, the Average and Linear Regression method return fairly consistent estimates
of respectively 328.7 and 320.4 W/K. The 95% confidence interval (CI) associated with the LR estimate
moreover has a range of 34.4 W/K, and thus includes the Avg estimate. The Energy Signature (ES)
method is the only method that does not require an input for θi. It can be seen that this model structure
results in a relatively low estimate of 231.4 W/K with a 95% CI that includes neither the Avg nor the LR
estimate. The ES model hereby assumes a rather high base temperature θb of 23.5 ◦C. These findings
are in line with those of the theoretical exercise in [39], where the accuracy of the ES method was
also questioned. The HLC estimate of the ARX model is also lower than those of the Avg and LR
methods. However, what is particularly striking is the estimate’s large 95% CI (range of 214.6 W/K).
Senave et al. [26] analyzed the capability of ARX models for HLC characterization, using synthetic
OBM data generated via simplified simulation models. They showed that, when transmission heat
losses to the ground are not explicitly modeled, as is the case here, setting the intercept term in the
ARX model structure equal to zero gives more precise and accurate HLC estimates. As an explanation,
the authors have suggested that forcing the model structure through zero might help to avoid that part
of the constant physical phenomena are wrongly attributed to a non-zero intercept. The assumption of
a constant indoor temperature θi equal to 18 ◦C in data package 1 in this paper causes the ARX model
to include a constant term, which might similarly lead to a more uncertain HLC estimate.

Installing One or More Interior Temperature Sensors

Comparing the results for data packages 1G and 2G in Figure 6, it seems that the living room
temperature in this case rather closely corresponds to the default value of 18 ◦C. The HLC estimates
for the second package deviate only 4.0% to 4.9% from those of package 1G, depending on the applied
analysis method. Table 6 indeed confirms this: the mean value of θi,liv over the training period is
18.7 ◦C. It can furthermore be noted that the use of a varying interior temperature signal in 2G yields
quite consistent results for the three analysis methods, with the largest deviation between the mean
estimates being 4.2% (Figure 6). The dynamic model exhibits the largest uncertainty, with the range of
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the 95% CI equaling 56.7 W/K. This is, however, significantly lower than the 95% CI associated with
the ARX estimate for case 1G.

Table 6. Mean and standard deviation (Sd) of the interior temperature signals tested in packages 2–4
over the training period. Figures are based on the six-hourly values that are used as input for the
ARX models.

Temperature
Signal θi,liv θi,AM(bed, liv) θi,AM(all) = θi,AM2 θi,Vw θi,Aw θi,UAw θe,Ghent θe,Uccle

Mean (◦C) 18.7 17.0 16.6 16.6 16.0 15.9 4.47 3.94
Sd (◦C) 1.00 0.93 1.13 1.07 1.14 1.16 3.70 4.03

However, more than one interior temperature sensor might be required to establish a reasonable
estimate for the overall dwelling temperature, as demonstrated by the HLC estimates for packages
3G and 4G. Still, the exact number of temperature sensors that is needed will largely depend on
the set-point temperature profiles that are applied in the different rooms, the thermal resistance of
the building envelope and internal partitions, and the representativeness of the places where the
temperature sensors are installed. In this specific case, the biggest change in HLC estimates is observed
when a sensor is added in the master bedroom from package 2G towards 3G. Compared to the living
room, this is a room that is not actively heated. Taking the arithmetic mean of the measurements of
both sensors hence results in a relative reduction of the input signal used for θi, and as a consequence,
the HLC estimate increases by 13.3% to 14.0%, depending on the applied data analysis method.
The combination of these two sensors on the two floors proves to already yield a quite representative
approximation for the mean dwelling temperature. The installation of seven extra sensors compared
to package 3G only alters the HLC estimate by 3.0% to 3.5%, when the arithmetic mean of the interior
temperature signals is considered (θi,AM2, package 4G,AM2). The fact whether a constant (4G,AM1) or
variable (4G,AM2) mean signal is used, does not seem to significantly affect the HLC estimate. Notably,
the ARX model is not applied on 4G,AM1, since this would return the same result as for package 1G.

For this dwelling geometry, the volume weighted interior temperature θi,Vw nearly equals the
arithmetic mean θi,AM2: their mean values for the training period both amount to 16.6 ◦C (see Table 6),
and the RMSE between the signals is 0.2 ◦C. As a result, the HLC estimates of 4G,AM2 and 4G,Vw are
almost identical. By contrast, using prior knowledge on the surface area A and temperature ratios bT of
the building components to weight the interior temperature signals leads to a raise of the HLC estimates
by 4.2–5.5%, compared to estimates based on the arithmetic mean temperature (package 4G,Aw vs.
4G,AM2). These numbers further increase to 5.6–6.8% when the U-values are used as well to weight the
different room temperatures. In total, the HLC outcome even increases with about 1/4th when using
θi,UAw instead of θi,liv for the characterization. This raise of the HLC can be linked to the use of a lower
input signal for θi. The temperature measured in the utility room, which is on average the lowest
throughout the model training period, gets the highest weight (29.6%) in θi,UAw. As a consequence,
this weighted signal is on average up to 2.8 ◦C lower than that of θi,liv (see Table 6). Physically,
combining the room temperatures based on the transmission heat transfer rates of their enclosing walls,
seems the most sensible approach. It should however be noted that the airtightness of the building
components—the other aspect of the HLC—is not taken into account in θi,UAw. Additionally, the
uncertainty on the actual UA-values propagates further in the weighted temperature.

Using a Different Exterior Temperature Signal

The six-hourly averaged exterior temperature signal measured in Uccle has as a slightly lower
mean (3.9 ◦C compared to 4.5 ◦C) and higher variance (16.2 ◦C2 compared to 13.7 ◦C2) than the one
measured in Ghent. The RMSE between θe,Uccle and θe,Ghent is 1.2 ◦C. As can be observed on the
right side of Figure 6, using θe,Uccle for the characterization yields almost the same differences among
the HLC estimates for the various representations of θi. The Avg and LR results based on the living
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room temperature (package 2U) are respectively 4.8% and 3.8% lower than when a constant interior
temperature of 18 ◦C is assumed (package 1U). The relative increase between the results for packages
2U and 4U,UAw also amounts to 23.1–24.0%, depending on the applied analysis method. However, in
absolute numbers, the estimates based on θe,Uccle are 5.3–7.2% lower than those based on θe,Ghent for
package 2. This difference between both versions increases with an additional percent for packages
4UAw. The deviations observed between the HLC estimates for both exterior temperature signals
roughly correspond to the ones observed between the temperature differences used as model input.
The differences between the interior and exterior temperature signal considered in packages 2U and
4U,UAw are on average, respectively, 4% and 5.2% higher than the temperature differences considered
in packages 2G and 4G,UAw.

4.1.2. Impact of Representation of Internal Heat Gains

Figure 7 investigates the influence of the incorporation of the internal heat gains on the HLC
estimate, and this for the data packages with θe,Ghent representing the exterior temperature and θi,liv

(left side of the figure) or θi,UAw (right side of the figure) as the interior temperature. Hence, these
packages can be found on the two left branches of the scheme in Figure 5.
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From Figure 7 it can be seen that, for a given data package, the HLC estimates obtained by using
the Avg, LR, and ARX methods closely correspond. The maximum difference observed between the
estimates inferred by the three methods is 17.6 W/K, for package 5G,UAw.

Data packages 2G and 4G,UAw neglect the internal gains. Table 7 gives more detail on the exact
input data used for Φint in packages 5–7. The time series Elecbill (included in packages 5G) and ElecOBM

(included in packages 6G) differ on average only 31.7 W (8% of the mean value of ElecOBM), but
ElecOBM exhibits a considerable variance. However, the results presented in Figure 7 show that, for
this case, the HLC estimates are not so sensitive to the source of the data used to represent the internal
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heat gains. The mean estimates of packages 6G,liv and 6G,UAw differ maximally 0.8% from those of
packages 5G,liv and 5G,UAw. Hence, even for the ARX models, which are identified on six-hourly data,
for which the assumption of packages 5 of a constant Φint is more questionable, the HLC estimates
thus closely correspond.

Table 7. Specification of the input data used to represent Φint, for the training period.

Input Data for Φint Elecbill (Included in 5G) ElecOBM
(Included in 6G)

ElecOBM +MHG
(Included in 7G)

Mean (± σ), six-hourly data (W) 387.1 (± 0.0) 418.8 (± 327.8) 649.0 (± 337.0)
Mean (± σ), daily data (W) 387.1 (± 0.0) 418.8 (± 180.3) 649.0 (± 180.3)
Total consumption (GJ) 3.0 3.3 5.0

A first assumption of the metabolic heat gains (MHG) in packages 7G learns that including these
heat gains yields an additional increase of the HLC of an order of magnitude of 4.0–4.8%, compared to
packages 6G.

The presented results highlight the importance of capturing all heat sources: the HLC estimates
of packages 2G and 4G,UAw are on average 8.5% lower than those of 6G,liv and 6G,UAw and 12.5% lower
than those of packages 7G,liv and 7G,UAw. However, in some cases using a gain utilization factor of
1—thus assuming that all electricity consumption leads to useable heat gains—might be a liberal
assumption [53] and the adopted MHG profile might not be entirely accurate.

The results for the setup with θe,Uccle are not included in Figure 7, since they show a similar
increasing pattern for package 2–7 and 4–7. However, it should be noted that some of the ARX results
exhibit a higher uncertainty, as depicted in Figure 8.
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an ARX model on the data packages investigating the influence of the incorporation and representation
of the solar gains. The dots indicate the mean estimates, and the whiskers represent the 95% confidence
intervals. The outcome of models that are considered invalid are shown dashed.
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4.1.3. Impact of Representation of Solar Heat Gains

Figure 8 examines the sensitivity of the HLC estimate to the approach used to model Φsol.
The upper half of Figure 8 considers the climate data of the weather station located nearest to the

house. It compares the results obtained when the global horizontal radiation (GHR) is monitored and
Φsol is estimated as gAl·GHR (packages 8–10), to the results obtained when Φsol is set to zero (packages
2 or 4, 6 and 7), and this for six different assumptions regarding θi and Φint. It is worth noting that
none of the LR models following Equation (15) are considered valid. The dashed box plots present the
results for an RST of 24 h, but these are considered untrustworthy, since the underlying models fail
validation criterion (a) (Section 3.3), with gAl being insignificant. Increasing the RST does not amend
this, and for a lower RST of 12 h the model residuals do not resemble white noise (model validation
criterion (b)). This issue might be caused by the coarse way in which these linear regression models try
to describe the solar gains: based on daily averaged data and ignoring the gA-value’s dependency
on the solar orientation and angle of incidence. Especially since solar radiation was identified as an
important driver of uncertainty in the HLC characterization by Stamp et al. [54]. Moreover, the studied
dwelling may be less sensitive to solar irradiance because of its relatively low window-to-wall ratio,
roof overhangs, and the vegetation in front of the house (Figure 1). By contrast, the ARX models fitted
on the six-hourly data do meet the adopted validation criteria. However, the extra model parameter
increases the uncertainty on the HLC estimates. In addition, for the cases based on θi,liv, a decrease of
the mean HLC estimate is observed, which seems to conflict with the fact that the assumed value for
Φsol is raised from zero to gAl·GHR.

The bottom half of Figure 8 shows the results when the exercise of packages 9 and 10 is repeated
based on the climate data (θe and GHR) collected in Uccle. The mean value of GHRUccle over the
training period is 2.4% lower than that of GHRGhent, and its standard deviation is nearly identical.
The RMSE between both amounts to 14.8 W/m2, and could for instance be caused by a time-shift in the
passage of clouds. For packages 9U and 10U, the LR models are invalid as well, and even the ARX
model fails the validation tests in the case the GHR is linked to θi,liv. The validation problems with the
LR model do not only occur when Isol is represented by the GHR, but also when the incident solar
radiation on a vertical, south oriented plane (Isol,S,Uccle) is used (packages 11U). The 95% CI associated
with the ARX estimates is here smaller than in the case of packages 9, but their mean estimates are
again lower than those of the packages with Φsol set zero (6U).

Knowledge of the GHR and the size and orientation of the windows allows to develop a simulation
model to calculate the solar gains. Based on estimates of the glazing’s U-value and g-value (2.4 W/m2

·K
and 0.6, respectively) and without implementing any local shading, a variable ‘Qsol,synth’ is determined
that represents the dwelling’s solar heat gains. Qsol,synth amounts to a total value of 3.8 GJ for the full
training period, which corresponds to 11.3% of the measured net heat input Qh,meter (GJ). Using the
six-hourly and daily values of Φsol,synth (W) to represent Φsol (W), packages 12 estimate the HLC to be
7.9–10.7% higher than when Φsol was neglected in packages 7. Notably, the ARX models infer HLC
values that are comparable to those assessed by the Avg and LR methods, but with wider confidence
intervals. Most likely, the fast dynamics present in the real six-hourly θi, θe, Φh, and Φint data are
harder to link to the synthetic solar gains.

4.1.4. Overall Impact of Input Data and Analysis Method

Packages 1 aim to assess the HLC with as little measurement data as possible; the heat output
of the condensing boiler and the exterior temperature. This results in a number of fairly strong
assumptions concerning for instance the interior temperature, internal gains, and solar gains. Along
the tree structure in Figure 5, these were systematically replaced by more sensible and physically
supported values. Ultimately, this changes the mean HLC estimate by 43.5% (package 1G to 10G,UAw)
to 50.2% (package 1U to 12U,UAw)(Considering the average of the results obtained by all valid models
applied on the package. For packages 1 the results of the ARX and ES models are also not taken
into account.).
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When ranking the aspects examined in the sensitivity analysis according to their impact on the
HLC estimate, the exterior temperature signal has the lowest relative impact for the case study analyzed.
Across packages 1 to 7, and only considering the valid models, a change of the mean estimate of 5.2%
to 9.0% is observed when the exterior temperature signal measured at a weather station at 51 km from
the site is used, instead of one registered at 4 km. (For packages 8–10 the observed deviation would
reflect the cumulative impact of the difference in θe and GHR signal.) The LR models are consistently
less influenced by the input signal used for θe.

Next, even for a dwelling with a WWR of 14.8%, replacing a conservative zero estimate for the
solar heat gains by a value obtained from a building energy simulation, leads to a 7.9–10.7% higher
mean HLC estimate. It should, though, be noted that the impact of adding Φsol,synth was only analyzed
for two relatively extended data packages. By contrast, using the GHR as model input to represent the
solar gains, results in a change of 2.5% to 22% (Considering the results of all valid models applied on
packages 8–10). However, in Section 4.1.3 the reliability of these models was questioned.

From the relative difference between the results for packages 2 or 4UAw and 7 it can be seen that
measuring the energy consumption of the electrical appliances and lighting, and making a rough
assumption on the MHGs, has an impact of 13.2% to 15% on the HLC estimate.

Installing temperature sensors, and combining their signals based on knowledge of the UA-values,
as was done in packages 4UAw, furthermore introduces a larger change of 18.0% to 19.6% compared
to the estimate obtained based on a default assumption of 18 ◦C (packages 1). Finally, the largest
change (23.1% to 26.9%) was observed when the UA-weighted temperature was used to represent the
equivalent homogenous dwelling temperature θi instead of the living room temperature (considering
the results of packages 4 to 7 and 12, not those of the packages where GHR was used as input).

The characterization is believed to yield more reliable estimates when the variables of the heat
balance are more sensibly incorporated, as is done for the packages with higher numbers. Given the
issues concerning the inclusion of the solar gains, the results for package 7G,UAw will be considered
as the ‘best guess’ based on the meteorological data of the nearest weather station. The arithmetic
mean of the estimates of the Avg, LR and ARX model is here 447.7 W/K, and the 95% CIs of the LR
and ARX model overlap over a range of 428.2–460.3 W/K. In addition, it should be kept in mind that
incorporating the solar gains could further increase this estimate with about 42.6 W/K, as demonstrated
by package 12U,UAw (42.6 W/K is the average increase of the estimates between packages 7U,UAw

and 12U,UAw).
For about 80% of the packages on which the Avg, LR, and ARX models were identified, the same

pattern can be observed in the outcome: the ARX estimate is the highest, followed by the estimate
of the Avg method. The LR estimate is on average respectively 3.4% and 1.9% lower than that of the
ARX and Avg method. The ES model, and the ARX model with a constant θi signal, result in more
deviant outcomes. Furthermore, the GHR and Isol,S always emerged as an insignificant coefficient for
the LR model.

Where in the theoretical exercise presented in [39], the ARX model yielded the most precise
estimates, its outcome is here associated with the widest 95% confidence intervals. This may be related
to the slightly different model fitting procedure that was applied in this study: in both cases a forward
modeling procedure was adopted, but here it was chosen to only retain the significant coefficients.
Furthermore, the ARX model could be more sensitive to the assumptions made than the other models,
due to the higher frequency of its input data.

4.2. Comparison with Theoretical Value and Assessment of Uncertainties

Based on Equation (3), and using the values listed in Table 1, a theoretical Htr value of 638.7 W/K is
calculated. Adopting the rule of thumb proposed by Kronvall [55] that nactual ≈ n50/20 and with Qinf =

(nactual·V)/3600 (V = internal dwelling volume) an Hinf value of 58.4 W/K is determined (Equation (2)).
By summing these two values, a theoretical (arguably, this is a semi-theoretical value, because Hinf is
based on an in-situ blowerdoor test) HLC value of 697.1 W/K is obtained, which is 55.7% to 51.9% higher
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than the values obtained via on-site characterization (the average of the estimates for packages 7G,UAw

and 12U,UAw, respectively). However, both approaches face considerable uncertainties. Regarding the
theoretical value, the following points can be made:

(a) The U-values of the building components were determined based on assumed constructions,
using default material properties. In reality, other materials than those specified in Table 1 could
have been used, and the thermal conductivity and thickness of the material layers could be either
higher or lower.

(b) For the temperature ratios bT (Equations (3) and (4)) of the floor slab above the cellar and the attic
floor, constant, default values of respectively 0.8 and 0.9 were used (see Table 1). However, in
reality these ratios vary over time. With the aid of the temperature signals measured in the cellar
and attic it could be established that especially the temperature ratio applied to the U-value of the
slab above the cellar is not appropriate in this case. Over the training period, the actual bT values
on average amount to 0.4 and 0.7 for respectively the floor slab to the cellar and the attic floor.
Notably, in the calculations the variable θi was respectively represented by the temperature of the
entrance hall and a ceiling area weighted average of the temperatures measured in the rooms on
the first floor. Substituting these actual bT values in the theoretical calculation results in an HLC
value of 678.6 W/K (compared to the original value of 697.1 W/K).

(c) According to ISO 13370 [33,34] the thermal resistance of dense concrete slabs and thin floor
coverings can be neglected when calculating the U-value of the slab-on-ground floor including
the effect of the ground. In this particular case, this means that the thermal resistance of the floor
slab is assumed to be zero. When this suggestion is ignored, and the thermal resistances of the
tiles, sand bed, and concrete slab (see Table 1) are taken into account, the U-value of the slab on
ground floor lowers to 0.7 W/m2

·K and the theoretical HLC to 678.5 W/K.
(d) The surface areas in Equation (3) are calculated from building plans, the accuracy of which

is unknown.
(e) Thermal bridges have not been accounted for (Ψ and X in Equation (3) are assumed to be zero).

However, these would only further increase the observed gap.

The impact of these five aspects on the theoretical value is however considered too limited to
explain the observed discrepancy. The sensitivity analysis of the characterization based on OBM, on
the other hand, also uncovered a fair number of uncertainties in this approach:

1. Inappropriate sensor placement. For example, issues were raised concerning the position of the
heat meter and the temperature sensors.

2. Measurement errors (e.g., missing observations and small anomalies in the GHR data collected
in Ghent).

3. Use of unrepresentative input variables in the model: e.g., the complex search for one
interior temperature signal θi approximating the ‘equivalent homogenous temperature’ of
a multizone building. In this context, it could for instance be noted that the above presented OBM
characterization and sensitivity analysis relied on the assumption that the temperature registered
in the utility room is also representative for the former garage, where no temperature sensor was
installed. Since this room has a heat loss area of 133.6 m2 and is not actively heated according to
the inhabitants, this assumption is questionable. To evaluate its impact on the HLC estimate, a
synthetic, alternative room temperature signal is developed for the garage based on the formula
expressed in Equation (31), where the subscripts ‘gar’, ‘ut’, and ‘kit’ stand for the garage, utility
room and kitchen, respectively. ‘gar/ut’ indicates the building elements separating the garage
from the utility room.
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θi,gar;t =

 ∑
j

(
Agar/ut, j·Ugar/ut, j

)
·θi;ut;t +

∑
k

(
Agar/kit,k·Ugar/kit,k

)
·θi;kit;t

+
(∑

l

(
Agar/e,l·Ugar/e,l

)
+

∑
m

(
Agar/g,m·Ugar/g,m

))
·θe;t

∑
n

(
Agar,n·Ugar,n

) . (31)

Weighting this new temperature signal in θi,UAw and repeating the analysis of package 7G,UAw

yields an estimate of 501.8 W/K (average for the three methods), which is 12.1% higher than the
original estimate for 7G,UAw presented in Section 4.1. The discrepancy with the theoretical value
reduces by 22%.

4. Physical phenomena that are unaccounted for in the models. For packages 7 to 12 these include,
for example, the opening of external doors and windows, radiative heat exchange with the sky,
and latent heat gains. Other phenomena, such as the dynamic thermal loading of the building
parts, internal heat gains, and solar gains, may not have been correctly incorporated.

Although these aspects might still influence the HLC estimate, it is uncertain whether these
changes would explain the observed discrepancy with the theoretical value. In the meantime, retrofit
measures were applied to the dwelling’s construction. Therefore, it is not possible to conduct additional
measurements in order to analyze the established gap more thoroughly.

It should be emphasized that the above presented results were obtained for one particular case
study dwelling and household. Moreover, the OBM data was sampled during a winter period, which is
in the northern hemisphere characterized by lower exterior temperatures and solar irradiance. Hence,
in order to verify whether the findings on the sensitivity of the HLC characterization can be generalized,
the analyses should be repeated on other dwelling types, with a different energy performance or under
other climatic conditions. Case studies on synthetic data, generated from building energy models with
a known HLC, would moreover help to identify the accuracy of the different proposed OBM packages
and give deeper insight into the causes of the observed gap with the theoretical HLC value.

5. Conclusions

This paper performs a systematic sensitivity analysis of the characterization of the as-built heat
loss coefficient (HLC) of residential buildings based on on-board monitoring (OBM). It focuses on one
specific case study dwelling and household, which were subjected to a four-month OBM campaign. By
taking 35 subsets of the OBM data set and applying four different data analysis methods, it evaluates
whether collecting actual OBM data on all variables of the heat balance equation is essential for the
HLC characterization, or if nearly the same estimate could be inferred based on sensible assumptions.

Monitoring data of the energy use for space heating is taken as a starting point. Subsequently, the
impact of adding data on the dwelling’s interior temperature, internal heat gains, and solar gains is
evaluated. Firstly, using actual measurement data on the interior dwelling temperature instead of an
estimated constant value, proves to have a major impact on the HLC estimate. It leads to deviations of
3.8–19.6% on the assessed HLC, depending on the number of sensors installed and the prior knowledge
used to combine the signals. For this case, installing a second sensor on a different floor already causes
a change of up to 14.0% compared to a single-sensor OBM setup. When monitoring the temperature
in each room and combining the signals based on the rooms’ heat loss area and wall assemblies, this
difference can even increase to 26.9%. Secondly, it is recommended to extend the input data package
used for the characterization with information on the household’s mains electricity consumption.
An up to 10.1% higher HLC estimate is obtained when the internal heat gain by appliances and
lighting is approximated based on the mains electricity consumption, instead of not accounting for
them. Historical cumulative consumption data and high frequency OBM data are hereby shown to
be equally useful. Combined with a survey-based metabolic heat gain profile, the internal heat gain
representation even yields a total increase of the HLC estimate with up to 15.0%. Thirdly, the solar heat
gains are demonstrated to be hard to incorporate in the data-driven models, with the monitored global
horizontal radiation often being an insignificant model input. Nevertheless, it is shown that a synthetic
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solar gain profile, generated via building energy simulations, can be a suitable alternative data source.
Finally, the representativeness of the location of the weather station, from which the climate data is
retrieved, is shown to be a point of attention. A deviation of up to 9.0% was observed on the HLC
assessed using exterior temperature data from a weather station 47 km further away from the site.

Compared to the input data used, the applied data analysis method appears to have a minor, but
not unimportant influence on the characterization outcome, with the HLC estimates identified through
linear regression being on average 1.9% and 3.4% lower than those assessed by the Average method
and ARX modeling, respectively.

A comparison of the outcome of the OBM characterization with the theoretically calculated HLC
furthermore shows a significant gap between both values. By challenging some of the underlying
assumptions of both approaches, such as the calculation of the U-values, use of default temperature
ratios, and spatial variability of the interior temperature, suggestions are made regarding the origin of
the gap.
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Nomenclature

Variables Symbol Unit

Temperature θ ◦C
Temperature ratio bT -

Global Horizontal Radiation GHR W/m2

Solar irradiance Isol W/m2

Net heat input Φh W
Solar gains Φsol W

Internal heat gains Φint W
Heat transfer through transmission Φtr W
Heat transfer through infiltration Φinf W

Heat transfer through intended ventilation Φv W
Flow rate Q m3/s

Parameters

Heat transfer coefficient by transmission Htr W/K
Heat transfer coefficient by infiltration Hinf W/K

Heat loss coefficient HLC W/K
Thermal transmittance or U-value U W/m2

·K
g-value g -

Surface area A m2

Subscripts

Interior i
Exterior e
Ground g

Unconditioned u
Adjacent a

Arithmetic mean AM
Volume weighted average Vw

Heat loss area weighted average Aw
UA-value weighted average UAw



Energies 2019, 12, 3322 27 of 29

References

1. Eurostat-Statistical Office of the European Union. Energy, Transport and Environment Indicators;
Eurostat-Statistical Office of the European Union: Luxembourg, 2018. [CrossRef]

2. ISO (International Organization for Standardization). ISO 52016-1: Energy Performance of Buildings: Energy
Needs for Heating and Cooling, Internal Temperatures and Sensible and Latent Heat Loads: Part 1: Calculation
Procedures; International Organization for Standardization: Geneva, Switzerland, 2017.

3. Gupta, R.; Dantsiou, D. Understanding the gap between ‘as Designed’ and ‘as Built’ performance of a new
low carbon housing development in UK. In Sustainability in Energy and Buildings; Hakansson, A., Höjer, M.,
Howlett, R.J., Jain, L.C., Eds.; Springer: Heidelberg, Germany, 2013; Volume 2, pp. 567–580.

4. Wingfield, J.; Bell, M.; Miles-Shenton, D.; Seavers, J. Elm Tree Mews Field Trial–Evaluation and Monitory of
Dwellings Performance, Final Technical Report. 2011. Available online: http://www.leedsmet.ac.uk/as/cebe/

projects/elmtree/elmtree_finalreport.pdf (accessed on 31 July 2019).
5. Wingfield, J.; Bell, M.; Miles-Shenton, D.; South, T.; Lowe, B. Evaluating the Impact of an Enhanced Energy

Performance Standard on Load-Bearing Masonry Domestic Construction: Understanding the Gap Between Designed
and Real Performance: Lessons from Stamford Brook; Leeds Beckett University: London, UK, 2011.

6. Johnston, D.; Farmer, D.; Brooke, M.; Brooke-Peat, M.; Miles-Shenton, D. Bridging the domestic building
fabric performance gap. Build. Res. Inf. 2016, 44, 147–159. [CrossRef]

7. Johnston, D.; Miles-Shenton, D.; Wingfield, J.; Farmer, D.; Bell, M. Whole House Heat Loss Test Method
(Coheating). 2013. Available online: https://www.leedsbeckett.ac.uk/as/cebe/projects/cebe_coheating_test_
method_june2013.pdf (accessed on 31 July 2019).

8. Bauwens, G. In Situ Testing of A Building’s Overall Heat Loss Coefficient. Ph.D. Thesis, KU Leuven, Leuven
Belgium, 2015.

9. Subbarao, K.; Burch, J.D.; Hancock, C.E.; Lekov, A.; Balcomb, J.D. Short-Term Energy Monitoring (STEM):
Application of the PSTAR Method to a Residence in Fredericksburg, Virginia; SERI/TR-254-33 56; Solar Energy
Research Institute: Golden, CO, USA, 1988.

10. Palmer, J.; Pane, G.; Bell, M.; Wingfield, J. Comparing Primary and Secondary Terms Analysis and Re-Normalisation
(PStar) Test. and Co-Heating Test. Results. Final Report: BD2702; DCLG Publications: London, UK, 2011.

11. Alzetto, F.; Pandraud, G.; Fitton, R.; Heusler, I.; Sinnesbichler, H. QUB: A fast dynamic method for in-situ
measurement of the whole building heat loss. Energy Build. 2018, 174, 124–133. [CrossRef]

12. Ghiaus, C.; Alzetto, F. Design of experiments for Quick U-building method for building energy performance
measurement. J. Build. Perform. Simul. 2019, 12, 465–479. [CrossRef]

13. Bouchié, R.; Alzetto, F.; Brun, A.; Boisson, P.; Thebault, S. Short methodologies for in-situ assessment of
the intrinsic thermal performance of the building envelope. In Proceedings of the Sustainable Places 2014
(SP2014), Nice, France, 1–3 October 2014.

14. Boisson, P.; Bouchié, R. ISABELE method: In situ assessment of the building envelope performances.
In Proceedings of the Ninth International Conference on System Simulation in Buildings (SSB2014), Liege,
Belgium, 10–12 December 2014; pp. 302–320.

15. Thébault, S.; Bouchié, R. Refinement of the ISABELE method regarding uncertainty quantification and
thermal dynamics modelling. Energy Build. 2018, 178, 182–205. [CrossRef]

16. Senave, M.; Reynders, G.; Verbeke, S.; Saelens, D. A simulation exercise to improve building energy
performance characterization via on-board monitoring. Energy Procedia 2017, 132, 969–974. [CrossRef]

17. Ljung, L. System Identification: Theory for the User, 2nd ed.; PTR Prentice Hall: Upper Saddle River, NJ,
USA, 1999.

18. Madsen, H. Time Series Analysis; Chapman & Hall/CRC: Boca Raton, FL, USA, 2008; ISBN 9781420059670.
19. Jack, R.; Loveday, D.; Allinson, D.; Lomas, K. First evidence for the reliability of building co-heating tests.

Build. Res. Inf. 2017, 46, 383–401. [CrossRef]
20. Alzetto, F.; Farmer, D.; Fitton, R.; Hughes, T.; Swan, W. Comparison of whole house heat loss test methods

under controlled conditions in six distinct retrofit scenarios. Energy Build. 2018, 168, 35–41. [CrossRef]
21. European Commission. Benchmarking Smart Metering Deployment in the EU-27 with a Focus on Electricity;

European Commission: Brussels, Belgium, 2014.

http://dx.doi.org/10.2785/326009
http://www.leedsmet.ac.uk/as/cebe/projects/elmtree/elmtree_finalreport.pdf
http://www.leedsmet.ac.uk/as/cebe/projects/elmtree/elmtree_finalreport.pdf
http://dx.doi.org/10.1080/09613218.2014.979093
https://www.leedsbeckett.ac.uk/as/cebe/projects/cebe_coheating_test_method_june2013.pdf
https://www.leedsbeckett.ac.uk/as/cebe/projects/cebe_coheating_test_method_june2013.pdf
http://dx.doi.org/10.1016/j.enbuild.2018.06.002
http://dx.doi.org/10.1080/19401493.2018.1561753
http://dx.doi.org/10.1016/j.enbuild.2018.08.047
http://dx.doi.org/10.1016/j.egypro.2017.09.687
http://dx.doi.org/10.1080/09613218.2017.1299523
http://dx.doi.org/10.1016/j.enbuild.2018.03.024


Energies 2019, 12, 3322 28 of 29

22. Annex 71 of the programme “EBC” of the IEA on “Building Energy Performance Assessment Based on
In-situ Measurements”. 2016–2021. Available online: http://www.iea-ebc.org/projects/project?AnnexID=71
(accessed on 31 July 2019).

23. Castillo, L.; Enríquez, R.; Jiménez, M.J.; Heras, M.R. Dynamic integrated method based on regression and
averages, applied to estimate the thermal parameters of a room in an occupied office building in Madrid.
Energy Build. 2014, 81, 337–362. [CrossRef]

24. Erkoreka, A.; Garcia, E.; Martin, K.; Teres-Zubiaga, J.; Del Portillo, L. In-use office building energy
characterization through basic monitoring and modelling. Energy Build. 2016, 119, 256–266. [CrossRef]

25. Uriarte, I.; Erkoreka, A.; Giraldo-Soto, C.; Martin, K.; Uriarte, A.; Eguia, P. Mathematical development of
an average method for estimating the reduction of the Heat Loss Coefficient of an energetically retrofitted
occupied office building. Energy Build. 2019, 192, 101–122. [CrossRef]

26. Senave, M.; Reynders, G.; Bacher, P.; Roels, S.; Verbeke, S.; Saelens, D. Towards the characterization of the
heat loss coefficient via on-board monitoring: Physical interpretation of ARX model coefficients. Energy Build.
2019, 195, 180–194. [CrossRef]

27. Senave, M.; Reynders, G.; Sodagar, B.; Verbeke, S.; Saelens, D. Mapping the pitfalls in the characterisation of
the heat loss coefficient from on-board monitoring data using ARX models. Energy Build. 2019, 197, 214–228.
[CrossRef]

28. Chambers, J.D.; Oreszczyn, T. Deconstruct: A scalable method of as-built heat power loss coefficient inference
for UK dwellings using smart meter data. Energy Build. 2019, 183, 443–453. [CrossRef]

29. De Dietrich. Modulens: Staande Hoog Rendement Ketel: AGC 15 BE-25 BE-35 BE.
Available online: http://nl.dedietrich-heating.be/download/file?file=var/ddth/storage/original/application/

ab3fd134254179a7081a4720c6d14a29.pdf&filename=NOT-300026053-06.pdf (accessed on 28 May 2015).
30. Cuypers, D.; Birigt Vandevelde, B.; Marlies Van Holm, B.; Stijn Verbeke, B. Belgische Woningtypologie Nationale

Brochure over de TABULA Woningtypologie, 2nd ed. 2014. Available online: http://episcope.eu/fileadmin/tabula/

public/docs/brochure/BE_TABULA_TypologyBrochure_VITO.pdf (accessed on 31 July 2019). (In Dutch).
31. Belgisch Staatsblad (Belgian Official Journal). Bijlage 4 bij het MB van 28 december: Transmissie Referentie

Document. 2019. Available online: https://www.energiesparen.be/EPB-pedia/bijlagen-coordinatieMB#
bijlage4 (accessed on 31 July 2019). (In Dutch).

32. Belgian Bureau for Standardisation (NBN). NBN EN 12831: Heating Systems in Buildings: Method for Calculation
of the Design Heat Load; Belgisch instituut voor normalisatie (BIN): Brussels, Belgium, 2003.

33. ISO (International Organization for Standardization). ISO 13370: Thermal Performance of Buildings: Heat
Transfer via the Ground: Calculation Methods; International Organization for Standardization: Geneva,
Switzerland, 2017.

34. Schietecat, J. Warmteoverdracht Door Wanden van Gebouwen in Contact Met. de Grond. Toepassing van de
Rekenmethode Uit de Norm en ISO 13370; WTCB: Brussels, Belgium, 2002. (In Dutch)

35. RENOSEEC -Collectief Renoveren, 2014–2018. Available online: http://www.renoseec.com/ (accessed on
31 July 2019).

36. De Proeftuinen van Het IWT-Duurzame ontwikkeling. Available online: https://do.vlaanderen.be/de-
proeftuinen-van-het-iwt (accessed on 31 July 2019).

37. Senave, M.; Reynders, G.; Sodagar, B.; Saelens, D. Uncertainty in building energy performance
characterization: Impact of gas consumption decomposition on estimated heat loss coefficient. In Proceedings
of the 7th International Building Physics Conference. (IBPC 2018), Syracuse, NY, USA, 23–26 September
2018; pp. 1491–1496.

38. Bureau for Standardisation (NBN). NBN EN ISO 9972: Thermische Eigenschappen van Gebouwen: Bepaling van
de Luchtdoorlatendheid van Gebouwen: Overdrukmethode Met. Ventilator; Belgisch instituut voor normalisatie
(BIN): Brussels, Belgium, 2015. (In Dutch)

39. Senave, M.; Roels, S.; Reynders, G.; Verbeke, S.; Saelens, D. Assessment of data analysis methods to identify
the heat loss coefficient from on-board monitoring data. Energy Build. 2019. submitted for publication.

40. ISO (International Organization for Standardization). ISO 9869-1: Thermal Insulation: Building Elements:
In-situ Measurement of Thermal Resistance and Thermal Transmittance: Part. 1: Heat Flow Meter Method;
International Organization for Standardization: Geneva, Switzerland, 2014.

41. Bauwens, G.; Roels, S. Co-heating test: A state-of-the-art. Energy Build. 2014, 82, 163–172. [CrossRef]

http://www.iea-ebc.org/projects/project?AnnexID=71
http://dx.doi.org/10.1016/j.enbuild.2014.06.039
http://dx.doi.org/10.1016/j.enbuild.2016.03.030
http://dx.doi.org/10.1016/j.enbuild.2019.03.006
http://dx.doi.org/10.1016/j.enbuild.2019.05.001
http://dx.doi.org/10.1016/j.enbuild.2019.05.047
http://dx.doi.org/10.1016/j.enbuild.2018.11.016
http://nl.dedietrich-heating.be/download/file?file=var/ddth/storage/original/application/ab3fd134254179a7081a4720c6d14a29.pdf&filename=NOT-300026053-06.pdf
http://nl.dedietrich-heating.be/download/file?file=var/ddth/storage/original/application/ab3fd134254179a7081a4720c6d14a29.pdf&filename=NOT-300026053-06.pdf
http://episcope.eu/fileadmin/tabula/public/docs/brochure/BE_TABULA_TypologyBrochure_VITO.pdf
http://episcope.eu/fileadmin/tabula/public/docs/brochure/BE_TABULA_TypologyBrochure_VITO.pdf
https://www.energiesparen.be/EPB-pedia/bijlagen-coordinatieMB#bijlage4
https://www.energiesparen.be/EPB-pedia/bijlagen-coordinatieMB#bijlage4
http://www.renoseec.com/
https://do.vlaanderen.be/de-proeftuinen-van-het-iwt
https://do.vlaanderen.be/de-proeftuinen-van-het-iwt
http://dx.doi.org/10.1016/j.enbuild.2014.04.039


Energies 2019, 12, 3322 29 of 29

42. Ghiaus, C. Experimental estimation of building energy performance by robust regression. Energy Build. 2006,
38, 582–587. [CrossRef]

43. Janssens, A. IEA EBC Annex 58: Report of Subtask 1b: Overview of Methods to Analyse Dynamic Data; KU Leuven:
Leuven, Belgium, 2016.

44. Madsen, H.; Bacher, P.; Bauwens, G.; Deconinck, A.H.; Reynders, G.; Roels, S.; Himpe, E.; Lethé, G. IEA EBC
Annex 58: Report of Subtask 3, part 2: Thermal Performance Characterisation Using Time Series Data–Statistical
Guidelines; KU Leuven: Leuven, Belgium, 2016.

45. Belgisch Staatsblad (Belgian Official Journal). Bijlage 5 bij het energiebesluit: Bepalingsmethode EPW:
Bepalingsmethode van het peil van primair energieverbruik van residentiële eenheden. 2019. Available online:
https://www.energiesparen.be/EPB-pedia/regelgeving/energiebesluit/bijlageV (accessed on 31 July 2019).
(In Dutch).

46. ISO (International Organization for Standardization). ISO 8996: Ergonomics of the Thermal Environment:
Determination of Metabolic rate; International Organization for Standardization: Geneva, Switzerland, 2004.

47. Klein, S.A.; Beckman, W.A.; Mitchell, J.W.; Duffie, J.A.; Duffie, N.A.; Freeman, T.L.; Kummer, J.P. TRNSYS 17:
A Transient System Simulation Program; Solar Energy Laboratory, University of Wisconsin: Madison, WI, USA,
2009; Available online: http://sel.me.wisc.edu/trnsys (accessed on 31 July 2019).

48. Klein, S.A.; Beckman, W.A.; Mitchell, J.W.; Duffie, J.A.; Duffie, N.A.; Freeman, T.L.; Mitchell, J.C.; Braun, J.E.;
Evans, B.L.; Kunmmer, J.P.; et al. TRNSYS 17: A Transient System Simulation Program: Volume 4: Mathematical
Reference; Solar Energy Laboratory, University of Wisconsin: Madison, WI, USA, 2014.

49. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2017; Available online: https://www.r-project.org/ (accessed on 31 July 2019).

50. R-core. lm: Fitting Linear Models. Available online: https://www.rdocumentation.org/packages/stats/
versions/3.4.3/topics/lm (accessed on 31 July 2019).

51. Jiménez, M.J.; Madsen, H.; Andersen, K.K. Identification of the main thermal characteristics of building
components using MATLAB. Build. Environ. 2008, 43, 170–180. [CrossRef]

52. Efron, B.; Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of
statistical accuracy. Stat. Sci. 1986, 1, 54–75. [CrossRef]

53. Suszanowicz, D. Internal heat gain from different light sources in the building lighting systems. In E3S Web
of Conferences; EDP Sciences: Yulis, France, 2017; Volume 19, p. 01024.

54. Stamp, S.; Lowe, R.; Altamirano-Medina, H. Using simulated co-heating tests to understand weather driven
sources of uncertainty within the co-heating test method. In Proceedings of the ECEEE 2013 Summer Study,
Toulon/Hyères, France, 3–8 June 2013; pp. 2049–2055.

55. Kronvall, J. Testing of houses for air leakage using a pressure method. ASHRAE Trans. 1978, 84, 72–79.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.enbuild.2005.08.014
https://www.energiesparen.be/EPB-pedia/regelgeving/energiebesluit/bijlageV
http://sel.me.wisc.edu/trnsys
https://www.r-project.org/
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/lm
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/lm
http://dx.doi.org/10.1016/j.buildenv.2006.10.030
http://dx.doi.org/10.1214/ss/1177013815
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Description of Case Study 
	The Building 
	The Monitoring Campaign 

	Research Methodology 
	Data Analysis Methods 
	Input Data Packages 
	Model Fitting and Validation, Determination of HLC 

	Results and Discussion 
	Sensitivity Analysis 
	Impact of Representation of Exterior and Interior Temperature 
	Impact of Representation of Internal Heat Gains 
	Impact of Representation of Solar Heat Gains 
	Overall Impact of Input Data and Analysis Method 

	Comparison with Theoretical Value and Assessment of Uncertainties 

	Conclusions 
	References

