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Abstract: This paper presents a data-based Takagi-Sugeno (T–S) fuzzy modeling approach for aircraft
engines in the flight envelope. We propose a series of T–S fuzzy models for engines with flight
conditions as premises and engine linear dynamic models as consequences. By engine dynamic
clustering, we determine rough T–S fuzzy models to approximate the nonlinear dynamics of engines in
the flight envelope. After that, the maximum–minimum distance-based fuzzy c-means (MMD-FCM)
algorithm comes to refine the fuzzy rules and the least square method (LSM) comes to identify
premise parameters for each single rough model. The proposed MMD-FCM algorithm guarantees the
refined results are stable and reasonable, and the identification improves the accuracy of the steady
and transient phases. The model verification showed that the T–S fuzzy models for engines had
a high accuracy with a steady error less than 5%, and that the root mean squared error (RMSE) of
transient errors was less than 8 × 10−4 with good generalization ability in the flight envelope.

Keywords: aircraft engine; T–S fuzzy model; Max-Min distance; Fuzzy-C-Means; least square method;
parameter identification

1. Introduction

Aeroengines are a typical kind of time-varying, complex and uncertain nonlinear system [1].
Their mathematical model mainly includes state-space models and aero-thermodynamic models.
On the basis of those two kinds of model, the concept of fuzziness is introduced, hence the fuzzy model
for aeroengines is established through environment parameters, performance data and knowledge
based on human experience.

After Zadeh established fuzzy theory [2], new theories and applications such as fuzzy control,
fuzzy identification and fuzzy algorithms have been gradually formed [3]. Fuzzy relations generalize the
concept of classical relations by admitting partial relations among elements. As a result, fuzzy relations
can be used in modeling vague relationships between objects [4]. The “if–then” fuzzy rule is one
of the most popular fuzzy relations, and is used to form the T–S fuzzy model to approximate
nonlinear systems [5]. By establishing multiple local linear models connected through membership
functions, a global fuzzy model has been formed. The method of establishing a T–S fuzzy model
from data was based on the idea of constructing continuous structures and identifying parameters [6].
The identification of the T–S fuzzy model included model structures and parameter identification [7].
As described by Abonyi [8], parameter identification of the premise part of the rule and the conclusion
part of the rule were carried out separately [9]. This idea not only simplifies the steps of model
identification, but also improves generalization ability [10]. The least square method is usually used to
identify the subsequent parameters of the T–S fuzzy model. For parameter identification of the T–S
fuzzy model’s antecedent part, reasonable parameters are often obtained by fuzzy clustering analysis.
However, fuzzy clustering criteria are not unique [11]. Different researchers use different clustering

Energies 2019, 12, 3284; doi:10.3390/en12173284 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-0266-5850
http://dx.doi.org/10.3390/en12173284
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/17/3284?type=check_update&version=2


Energies 2019, 12, 3284 2 of 15

domains, different clustering algorithms and clustering effectiveness indexes to determine the number
of rules. The fuzzy c-means FCM algorithm is a kind of fuzzy clustering algorithm widely used in the
identification of the T–S fuzzy model.

The advantage of the FCM algorithm is that it not only can improve the generalization ability of
the T–S fuzzy model, but it can also solve the problem of the number of rules that increase with the
rising complexity of the system. For this reason, it is widely used in engineering. Gao used the FCM
algorithm to identify the antecedent part of the fuzzy model, and established an accurate model of a
stripper temperature system [12]. Zhao used the FCM algorithm to determine the reference values
of boiler operation parameters and obtained a more reasonable reference value model [13]. Li used
the FCM algorithm to identify the antecedent parameters of the T–S fuzzy model and established the
temperature system of the boiler steam turbine [14]. Research to improve the FCM algorithm is still
ongoing. Moêz proposed a fuzzy C regression algorithm combined with a particle swarm optimization
algorithm to identify the antecedent parameters of the T–S fuzzy model and make the partition space
more reasonable [15]. Mohamed proposed a joint FCM algorithm to reduce the sensitivity of the FCM
algorithm to noise data and make the model more accurate and reliable [16].

Evaluating clustering results under different clustering numbers, namely, the clustering
effectiveness is an important research problem [17]. In this regard, scholars construct validity functions
to evaluate clustering, such as the Hubert statistics index for the hard c-means (HCM) algorithm [18],
the Xie index for the FCM algorithm [19], and so on. Through numerical analysis, mathematicians
have proposed a maximum number of clusters to determine the search scope [20]. Bezdek adopted
the F-statistic to judge the best clustering number from the perspective of mathematical statistics.
Sun further proposed mixed F-statistics, highlighting the influence of small components on total
weight, so as to ensure a higher degree of classification [21].

For the strong nonlinear systems such as aeroengines, researchers have carried out related work
based on the above modeling ideas. In order to study the fault diagnosis technology of aeroengines,
Wang [22] constructed three fuzzy sub-models and constructed the fuzzy model in full envelope by
using the triangular membership function. The advantage of this modeling method is that it is easy
to implement and simple, but the disadvantage is that it does not take into account the influence of
nonlinear relationships between the antecedents of fuzzy rules on the model. Meanwhile, to study the
fault diagnosis of aircraft engines, Zhai [23] adopted generalized distances to determine the clustering
center, then constructed the T–S fuzzy model. The likely benefit of this approach are realizing a complete
coverage of the full envelope with the least amount of division, while the dynamic characteristics
of the engine are not considered. Under different import environment conditions, engine dynamic
characteristics vary greatly. Without taking into account the dynamic characteristics, it is difficult to
ensure the accuracy of the model. Cai [24] used the input and output data of an aeroengine to identify
the structure and parameters of the T–S fuzzy model through the least square method to improve the
model accuracy. However, this method is highly dependent on data, difficult to train and does not
guarantee generalization.

In this paper, in order to simulate engine strong nonlinear dynamics with high accuracy and
fidelity and low complexity, we explored T–S fuzzy modeling for engines by using a clustering and
identification approach. Via clustering of the engine dynamics, we formed a series of rough T–S fuzzy
models for aircraft engine nonlinear dynamics in the flight envelope. For each rough T–S fuzzy model,
the maximum–minimum distance-based fuzzy c-means (MMD-FCM) algorithm was proposed to
determine the fuzzy rule numbers and consequent engine linear models. Input and output sequences of
aircraft engines were employed to identify the premise parameters with the least square method (LSM).



Energies 2019, 12, 3284 3 of 15

This paper offers three main contributions. First, clustering with dominant poles of engine linear
models in the entire flight envelope guarantees that similar dynamics of engines can be simulated by a
T–S fuzzy model, and this T–S fuzzy model can have fewer fuzzy rules, which is beneficial to reducing
model complexity. Second, the proposed MMD-FCM algorithm guarantees that the clustering process
that determines the fuzzy rule numbers and consequent engine linear models in each T–S fuzzy model
is stable and more reasonable. Third, the identification of steady and transient data improves the
accuracy of the T–S fuzzy model during the engine dynamic process.

2. Main Philosophy of T–S Fuzzy Modeling for Aircraft Engines

Aircraft engines are a complex aero-thermodynamic system. Figure 1 depicts the major structure
of a turbofan engine, a kind of aircraft engine comprising an inlet, fan, compressor, combustor,
high-pressure turbine, low-pressure turbine, afterburner and nozzle.
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Figure 1. Diagram of a turbofan engine.

Consider a turbofan engine described as a series of T–S fuzzy models Fk, k = 1, 2, · · · , Nk as

Fk : Ri : IF vk1 is Li
k1, vk1 is Li

k1, · · · , vk1 is Li
k1,

Then
.
x(t) = AC

kix(t) + BC
kiu(t),

y(t) = CC
kix(t) + DC

kiu(t),

(1)

where i = 1, 2, · · · , Nc
k is the number of fuzzy rules, vki is the premises without dependence on the

system state, Li
ki, (l = 1, 2, · · · g) is the antecedent fuzzy set, t ∈ R is time, x(t) ∈ Rn is the engine state,

u(t) ∈ Rm is the control input, y(t) ∈ Rn is the engine output and AC
ki, BC

ki, CC
ki and DC

ki are the known
real matrices with appropriate dimensions.

Hence, by using a weighted-average defuzzifier, the global T–S fuzzy model can be inferred as

.
x(t) = Azkx(t) + Bzku(t),
y(t) = Czkx(t) + Dzku(t),

(2)

where

Azk =
rk∑

i=1
hki(vk(t))AC

ki, Bzk =
rk∑

i=1
hki(vk(t))BC

ki,

Czk =
rk∑

i=1
hki(vk(t))CC

ki, Dzk =
rk∑

i=1
hki(vk(t))DC

ki,

vk = [vk1, vk2, · · · , vkg]
T,

(3)

with hki(v(t)) = µki(vk(t))/
rk∑

i=1
µki(vk(t)),

rk∑
i=1

hki(vk(t)) = 1 and hki(vk(t)) > 0. Here, µki(vk(t)) =

g∏
j=1

Lki j(vkj(t)) and Lki j(vkj(t)) is the degree of membership function of vkj in the fuzzy sets Li
k j,

while Lki j(vkj(t)) = exp
(
−

(vkj−γki)
2

σi j

)
is a Gaussian function.
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Remark 1. Since the dynamic characteristics of aircraft engines vary significantly and nonlinearly under
different inlet conditions and different operation conditions, a single T–S fuzzy model has difficulty precisely
describing the engine behaviors in the full flight envelope. In this paper, we intend to adopt multiple T–S fuzzy
models Fk to simulate more comprehensive engine dynamics in the full flight envelope.

Based on this modeling philosophy, we propose the following approach to the engine T–S
fuzzy modeling:

Step 1. Under an operating condition, linearize an aircraft engine to a state space and adopt the
dominant eigenvalue of the system matrix to demonstrate the engine dynamics.

Step 2. For a given number of the engine T–S fuzzy model Nk, cluster the engine dynamics to
determine the sub-region of the flight envelop in which the T–S fuzzy model Fk works.

Step 3. In each sub-region, use the mixed-F statistic method to determine the number of fuzzy
rules NC

k required to guarantee the engine dynamics in each rule are distinguished.
Step 4. In each sub-region, use an improved fuzzy C-means (FCM) to determine the consequence

(the engine state-space model) in the ith rule.
Step 5. Using the data from the engine static and dynamic process and the least square method,

modify the engine’s T–S fuzzy model.
In Section 3, we will present the details of the above modeling steps.

3. Engine T–S Fuzzy Modeling

3.1. Engine Dynamic Clustering Based on K-Means Algorithm

Under an operation point in the flight envelope (shown in Figure 2a), an aircraft engine is
described as .

x(t) = Aix(t) + Biu(t),
y(t) = Cix(t) + Diu(t),

(4)

where i = 1, 2, · · · , Ns, Ai, Bi, Ci and Di are constant matrices with appropriate dimensions. The
eigenvalue of Ai is ζi j(Ai), j = 1, 2 · · · , n. For all ζi j(Ai), we define the dominant pole

ζi(Ai) =
{
ζi j(Ai)

∣∣∣∣min
(∣∣∣Re(ζi j)

∣∣∣)} , (5)

where Re(·) is the real part of a complex number. Therefore, the sample set of engine dynamics is
Z = (ζ1, ζ2, · · · , ζNs). Suppose that all samples in the set Z are clustered into (Z1, Z2, · · ·ZNk) and the
sample number in the cluster Zk is nk.

Define the value function as

JDY =

Nk∑
k=1

∑
ζi∈Z

‖ζi − ξ
∗
k||

2
2 , (6)

where ξ∗k = 1
nk

∑
ζi∈Zk

ζi is the cluster center of all samples in cluster Zk. By a K-means clustering

algorithm [25], we obtain Nk which minimizes the value function JDY and the corresponding clustering
sets (Z∗1, Z∗2, · · · , Z∗Nk

).

Remark 2. By clustering ζi, we actually gather the similar dynamics of an engine together in the flight envelope.
If the matrix Ai depends on the flight height and Mach number of an engine operation, this clustering means we
divide the flight envelope (Figure 2a) into Nk sub-regions (Z∗1, Z∗2, · · · , Z∗Nk

). For each sub-region, the T–S fuzzy
model Fk in Equation (1) is established to simulate the engine behavior. To show the details of clustering clearer,
we neglect the real shape of these sub-regions and demonstrate them with rectangles as shown in Figure 2b.
Moreover, Figure 2b also illustrates the clustering details in the sub-regions in Section 3.2.
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3.2. Determination of Fuzzy Rule Number Nc
k Based on Mixed-F Statistics

Next, we use the mixed-F statistics-based FCM algorithm to determine an optimal fuzzy rule
number Nc∗

k , k = 1, 2, · · ·Nk in Equation (1). Therefore, Nc∗
k is also the number of clustering class.

Define the value function as

JFL,k(Ωk, vk) =

NC
k∑

i=1

nk∑
j=1

ωK
kijd

2
ki j , (7)

where Ωk = [ωki j] ∈ RNc
k×Ns is the weight matrix and ωki j is the membership degree of a sample that

belongs to the class i and satisfies

NC
k∑

i=1

ωki j = 1, j = 1, 2, · · · , nk. (8)

Nc
k is the number of clustering center in sub-region Z∗k, nk is the sample number in the sub-set Z∗k and

K ∈ [1,∞) is fuzzy weight index:
dki j = ‖vki − γkj‖2. (9)

Here, the Euclidean distance dki j is the distance between the sample vki and the clustering center γkj in
the sub-set Z∗k. It is worth noting that Equation (8) suggests the sub-set Z∗k is further clustered into Nc

k
classes Z∗k1, Z∗k2, · · · , Z∗kNc

k
.

In the sub-region Z∗k, suppose the clustering centers are Ok1, Ok2, · · · , Ok,Nc
k
. According to Equations

(7) and (8), we form a Lagrange equation:

Jk(Ωk, vk,λk1, · · · ,λkNc
k
) =

NC
k∑

i=1

Ns∑
j=1

ωk
ki j‖vki − γ j‖

2
2 +

Ns∑
j=1

λkj


NC

k∑
i=1

ωki j − 1

 , (10)

where λkj is the Lagrange multiplier. Set the gradient of Jk to 0, namely,

∂Jk
∂ωki j

= κωκ−1
ki j d2

ki j − λkj = 0 , (11)



Energies 2019, 12, 3284 6 of 15

∂Jk
∂λkj

=

NC
k∑

i=1

ωki j − 1 = 0 , (12)

∂Jk
∂γkj

= −2
Ns∑
j=1

ωκki j

(
vki − γkj

)
= 0 , (13)

giving us

ωki j =

 λkj

κd2
ki j


1
κ−1

. (14)

(
λkj

κ

) 1
κ−1

=

NC
k∑

i=1

 1
d2

ki j


−

1
κ−1

. (15)

Introduce Equations (15) into (14), giving us

ωki j =

 1
d2

ki j


1
κ−1 NC

k∑
i=1

(
d2

ki j

) 1
κ−1

. (16)

Using Equations (13) and (16), this yields

γkj =

Ns∑
j=1

ωκki jvki

Ns∑
j=1

ωκki j

. (17)

Further, for the clustering number Nc
k in the sub-region Z∗k, we define the mixed-F statistic as

Fk,mix =
g

g∑
i=1

1
Fk(l)

, (18)

with

Fk(l) =

NC
k∑

i=1
nki(γki,l − γk,l)

2(nk −Nc
k)

NC
k∑

i=1

nki∑
j=1

(vki j,l − γki,l)
2(Nc

k − 1)

. (19)

Here nki is the sample number in the sub-set Z∗ki, and γki, j is the lth entry of γki and

γk,l =
1

Nc
k

NC
k∑

i=1

γki,l. (20)

Let NC
k = 1, 2, · · · , rk, and using Equations (16)–(18) we can calculate a series of Fk,mix, namely,

Fk1,mix, Fk2,mix, · · · , FkNC
k ,mix.

Define
NC∗

k :
{
i
∣∣∣max(Fki,mix, i = 1, 2 · · · , rk)

}
, (21)

and we obtain the optimal fuzzy rule number NC∗
k in regard of the mixed-F statistic Fk,mix.
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Remark 3. In the FCM algorithm, the clustering number NC
k directly affects the performance of the T–S

fuzzy model. Too many rules might lead to model redundancy, and fewer rules could cause poor accuracy in
approximating the physical system with the fuzzy model. We adopt the mixed-F statistic as an index to seek an
optimal NC

k . The numerator of the mixed-F statistic means the distance between classes, and the denominator
means the distance between data points and clustering center. Therefore, the maximum of the mixed-F statistic
implies the farthest distance between every pair of classes and the optimal classification.

3.3. Consequence Modeling Based on the MMD-FCM Algorithm

Using Equation (21), we determine an optimal fuzzy rule number for each fuzzy model Fk. In this
subsection, we propose the MMD-FCM algorithm for modeling the consequences of each fuzzy rule
in Fk.

In the sub-region Z∗k, let the arbitrary vector vki, i = 1, 2, · · · , nk, as the initial of the first center zk1,
namely, zk1 = vki.

Using

zk2 =

(
vkj|max

j

(
‖vkj − zk1‖2, j = 1, 2, · · · , nk, j , i

))
, (22)

we determine the initial of the second center zk2. Let

Dki j,l = ‖vkj − zki‖2, (23)

and the (l + 1)th center zk,l+1 is

zl+1 =

(
vkj

∣∣∣∣∣∣max
j

(
min

{
Dki j,l

}) )
, i = 1, 2, · · · , l, j = 1, 2 · · · , nk. (24)

Using Equations (23)–(24), we can get all the initial centers Zk =
(
zk1, zk2, · · · , zkNC

k

)
in Fk.

We regard Zk =
(
zk1, zk2, · · · , zkNC

k

)
as the initial centers and introduce it into Equation (16).

Give NC∗
k by Equation (21) and choose the appropriate threshold value ε, and we can calculate

membership matrix Ω;
Next we can calculate the value function JFL(Ω, v)using Equation (7). If JFL(Ω, v) < ε, the algorithm

stops; if not, continue to calculate γkj using Equation (17). Repeat this process until satisfying
JFL(Ω, v) < ε.

Through the above process, optimal center γ∗ki, i = 1, 2, · · · , NC
k in Fk can be obtained. In γ∗ki,

we linearize the nonlinear model of an aeroengine using the fitting method to get the corresponding
linear model AC

ki, BC
ki, CC

ki and DC
ki.

Remark 4. The FCM algorithm uses the gradient method to search for optimal clustering [26]. The initials
affect the searching gradient, and inappropriate initials will lead to unstable clustering results or local minimums.
In this paper, we adopt the maximum and minimum distance (MMD) to obtain the appropriate initials for
FCM [27]. The MMD collaborates with FCM, namely the MMD-FCM, to achieve a stable clustering result.

3.4. Model Parameter Identification with LSM

In order to make the T–S fuzzy model closer to the actual system, after determining the
fuzzy consequent parts AC

ki, BC
ki, CC

ki and DC
ki, the parameter σi j in a Gaussian function Lki j

(
vkj(t)

)
=

exp
(
−

(vkj−γki)
2

σi j

)
will be identified as a smooth parameter, and the selection of parameter will affect the

smoothness of the system. A smaller σi j may lead to a small fitting error, but it is difficult to generalize
the data of non-training points. A larger σi j may lead to a good generalization performance, but it could
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cause larger errors in the training data. Therefore, the appropriate parameter σi j should be selected
to maintain the balance between fitting and generalization. In this paper, the least square method is
adopted to identify smooth parameters. Given the input sequence 4u, we can achieve output sequence
4y and define the value function JLs =

∑
‖4y−4y‖22, where 4y is the output of fuzzy model with the

input sequence 4u. To minimize JLs we should achieve a reasonable parameter σi j. In order to avoid
too large or too small of a parameter σi j to affect the fitting and generalization performance of the fuzzy
system, the upper and lower bounds of identification are set.

3.5. T–S Fuzzy Modeling Process

We summarize the engine’s T–S fuzzy modeling process in Figure 3. As mentioned in Section 2,
the process of T–S fuzzy modeling for an engine involves five steps. In Figure 3, we match the
corresponding process blocks with the five steps. It is shown that the MMD-FCM is the core algorithm
in the modeling. It is noted that, in this process, rk is the upper bound of rk. Let rk = 1, 2, · · · , rk and
obtain the optimal NC∗

k in (1,2 · · · , rk) by MMD-FCM. Therefore, when rk > rk, the search of NC∗
k is

ended and the transition occurs.
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4. An Illustrative Example

4.1. The T–S Fuzzy Modeling for a Turbofan Engine

Consider a turbofan engine as shown in Figure 1 and described as the T–S fuzzy model
(Equation (1)).

We established a grid of a flight envelope depicting every 0.5 km and 0.05 Mach number. Hence,
the 725 grid vertices were yields in the flight envelope. Each vertex demonstrated the turbofan
state-space model shown in Equation (4). Therefore, Ns = 725. The 725 dominant poles of matrices
Ai (i = 1,2, . . . , 725) of all state-space models were calculated. Due to the space limitation, we prefer
not to present these calculation results. Next, let Nk = 4. By the K-means algorithm and dominant
poles, the operation points in the flight envelope were clustered into four classes, which means the
flight envelope are divided into four sub-regions based on the engine dynamics (Figure 4a). Therefore,
n1 = 234, n2 = 172, n3 = 240 and n4 = 79. Let κ = 1.5 and rk = 1,2, . . . , 20. Using Equations (16)–(20),
we calculate the mixed-F statistics for regions 1–4 and depict the calculations in Figure 4b.
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Figure 4 shows different T–S fuzzy models built in different sub-regions, with different mixed-F
statistics calculated under different classification numbers. When the mixed-F statistics reached the
maximum value, the corresponding clustering number is the best. Hence, for regions 1–4, the best
classification numbers were 6, 10, 9 and 6, namely, NC∗

1 = 6, NC∗
2 = 10, NC∗

3 = 9 and NC∗
4 = 6.

Using Equations (23)–(24), we can get all the initial centers Zk =
(
zk1, zk2, · · · , zkNc

k

)
, k = 1, 2, 3, 4,

NC∗
k = 6, 10, 9, 6. Using Equations (7) and (17), we obtain the optimal centers of regions 1–4. The positions

of the optimal centers are shown in Figure 5 and their coordinates in the flight envelope are listed in
Table 1.
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Table 1. Cluster centers of the flight envelope.

Center1 Center2 Center3 Center4 Center5 Center6 Center7 Center8 Center9 Center10

R1 (0.7,10.9) (1.4,15.2) (1.1,15.1) (0.8,9.7) (1.1,11.6) (1.2,13.3) (1.2,13.3) (0.6,8.0) (0.4,6.8) *
R2 (0.9,7.2) (1.5,12.5) (0.1,2.7) (0.7,5.9) (0.4,3.7) (1.2,9.8) * * * *
R3 (0.5,0.9) (1.5,10.4) (1.2,7.2) (0.9,4.7) (0.07,0.4) (1.1,0.6) (0.8,3.3) (1.3,8.9) (0.3,0.6) (0.6,2.1)
R4 (0.9,1.3) (1.5,8.4) (1.2,6.0) (0.7,0.3) (1.1,4.1) (1.3,6.7) * * * *

*: No center point.
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The clustering center results are shown in Table 1 below.
The selected initial values were σki(·) = 0.3. The transition states at 1, 1.2 and 1.4 s for 725 points

selected in the envelope of the nonlinear system under a 3% fuel step input at the conversion speed
of the high-pressure rotor were added to train with the output data of the steady-state response.
The smooth parameter of the Mach number membership σki(Ma) is listed in Table 2, and the smooth
parameter of height membership σki(H) is listed in Table 3.

Table 2. Mach number membership σki(Ma).

σk1 σk2 σk3 σk4 σk5 σk6 σk7 σk8 σk9 σk10

R1 0.4271 0.2007 0.2001 0.2490 0.2007 0.3512 0.3001 0.3102 0.3008 *
R2 0.2001 1.7398 0.4001 0.6681 0.2025 0.3318 * * * *
R3 0.2081 0.9362 0.2156 0.2187 0.4251 0.4488 0.3479 0.26645 0.5151 0.2051
R4 0.2901 0.9895 0.2412 0.3346 0.2503 0.2227 * * * *

*: No value.

Table 3. Mach number membership σki(H).

σk1 σk2 σk3 σk4 σk5 σk6 σk7 σk8 σk9 σk10

R1 0.2048 0.3650 0.2949 0.2005 0.2006 0.2049 0.2053 0.4228 0.2981 *
R2 0.2005 0.2001 0.2008 0.2008 0.2006 1.7143 * * * *
R3 0.2095 0.4076 0.2013 0.2057 1.2483 0.9086 1.4999 0.5464 0.2000 0.2079
R4 0.3158 0.2789 0.2874 0.2786 0.2809 0.2905 * * * *

*: No value.

4.2. Model Verification

In order to verify the feasibility of the proposed T–S fuzzy modeling method in the full envelope,
simulation verification was carried out under different flight conditions. Because the turbofan
component-level nonlinear models can simulate real turbofan engines with high accuracy and
fidelity [1,28], in the simulation, a turbofan nonlinear model was adopted as the baseline. The responses
of the turbofan T–S fuzzy model were compared to those of the nonlinear model in order to verify the
T–S fuzzy model.

Under a 3% fuel step input, the responses of the T–S fuzzy model with and without LSM
identification (LSM-ID) were compared with those of the nonlinear model shown in Figures 6 and 7.
The relative error for the steady error and the RMSE for all errors are shown in Figures 8 and 9.

Figures 6 and 7 show that, according to the LSM-ID, the relative steady-state error of T–S fuzzy
models after identification between nonlinear models was less than 5%. Compared to the T–S fuzzy
models without LSM-ID, the T–S fuzzy models with LSM-ID had less relative errors.

In Figures 8b and 9b it can be seen that the dynamic errors of T43 and EPR were bigger than those
of NL and NH. The possible reason is that T43 and EPR were formulated as a linear function of NL and
NH in Equation (1). In fact, the relationships between them are a nonlinear. These modeling errors
may cause the dynamic errors of T43 and EPR.

Moreover, in order to verify the generalization of the resulted model within the flight envelope,
non-identification operation points in the flight envelope were selected for simulation. The simulation
conditions were the same as those in Figures 6 and 8. The engine responses are shown in Figures 10
and 11 and the relative error and RMSE of the T–S fuzzy models with/without LSM-ID are depicted in
Figures 12 and 13. Figures 12 and 13 show that, at non-identification operation points, the outputs of
the fuzzy model with/without LSM-ID were close to those of the nonlinear model. Figures 12 and 13
show that the relative errors of the T–S fuzzy model with LSM-ID at non-identification operation
points were slightly bigger than those at the identification points, which indicates that the fuzzy model
had good generalization ability.
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Figure 12. Relative error and RMSE compared with the nonlinear model under 10.5 km and 1.22 Mach.
(a) Relative errors. (b) RMSEs.
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5. Conclusions 

In this paper, an improved FCM algorithm was used to achieve the fuzzy division of a flight 
envelope, and the fuzzy division regions and clustering centers were obtained. The state-space model 
was used as the subsequent part of the T–S fuzzy model, and the weight of the T–S fuzzy model was 
identified, allowing the T–S fuzzy model of an aeroengine within the full envelope to be obtained. (1) 
By comparing with the nonlinear model, it was proven that this modeling method has good accuracy, 
and all the four steady-state outputs met an error of <5%. (2) The identification method proposed in 
this paper had high identification accuracy and strong generalization, so this identification algorithm 
can also be used for the identification of other complex nonlinear systems with time-varying 
uncertainties. 

Via the positive results of the model verification, further efforts are encouraged. (1) The engine 
data in bench test data and flight data could be used for further model verification, which would 
facilitate the application of the resulting T–S fuzzy model to real turbofan engines. (2) The proposed 
modeling algorithm could be applied to nonlinear system with large-scale nonlinear dynamics, such 
as turboshaft engines, electric pumps and mechanical hydraulic systems.  
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5. Conclusions

In this paper, an improved FCM algorithm was used to achieve the fuzzy division of a flight
envelope, and the fuzzy division regions and clustering centers were obtained. The state-space model
was used as the subsequent part of the T–S fuzzy model, and the weight of the T–S fuzzy model was
identified, allowing the T–S fuzzy model of an aeroengine within the full envelope to be obtained.
(1) By comparing with the nonlinear model, it was proven that this modeling method has good accuracy,
and all the four steady-state outputs met an error of <5%. (2) The identification method proposed in this
paper had high identification accuracy and strong generalization, so this identification algorithm can
also be used for the identification of other complex nonlinear systems with time-varying uncertainties.

Via the positive results of the model verification, further efforts are encouraged. (1) The engine
data in bench test data and flight data could be used for further model verification, which would
facilitate the application of the resulting T–S fuzzy model to real turbofan engines. (2) The proposed
modeling algorithm could be applied to nonlinear system with large-scale nonlinear dynamics, such as
turboshaft engines, electric pumps and mechanical hydraulic systems.
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Nomenclature

vk the premise variables Zk the sample set in the kth sub-region
Nk the number of fuzzy models Nk the sample number in Zk
Fk fuzzy models γki the clustering center in Zk{
AC

ki, BC
ki, CC

ki, DC
ki

}
consequent linear model of the ith fuzzy model ωki j

the membership of the sample v j
belonging to the class i in Zk

ζi(Ai) the dominant pole of Ai matrix Ns the number of total samples
NC

k the number of cluster of each sub-region ξ∗k the clustering center of Zk
J value function
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