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Abstract: Induction motors (IMs) play an essential role in the field of various industrial applications.
Long-time service and tough working situations make IMs become prone to a broken rotor bar (BRB)
that is one of the major causes of IMs faults. Hence, the continuous condition monitoring of BRB
faults demands a computationally efficient and accurate signal diagnosis technique. The advantage
of high reliability and wide applicability in condition monitoring and fault diagnosis based on
vibration signature analysis results in an improved cyclic modulation spectrum (CMS), which is
one of the cyclic spectral analysis algorithms. CMS is proposed in this paper for the detection and
identification of BRB faults in IMs at a steady-state operation based on a vibration signature analysis.
The application of CMS is based on the short-time Fourier transform (STFT) and the improved CMS
approach is attributed to the optimization of STFT. The optimal window is selected to improve the
accuracy for identifying the BRB fault types and severities. The appropriate window length and
step size are optimized based on the selected window function to receive a better calculation benefit
through simulation and experimental analysis. Compared to other estimators, the improved CMS
method provides better fault detectability results by analyzing vertical vibration signatures of a
healthy motor, and damaged motors with 1 BRB and 2 BRBs under 0%, 20%, 40%, 60%, and 80% load
conditions. Both synthetic and experimental investigations demonstrate the proposed methodology
can significantly reduce computational costs and identify the BRB fault types and severities effectively.

Keywords: induction motors; broken rotor bar; vibration signature; cyclic spectral analysis

1. Introduction

Induction motors (IMs) are considered as the most popular motors in electromechanical energy
conversion and various industrial applications. However, various failures in IMs are frequently caused
by the operations in harsh environments, continuous wearing, overloads, and unexpected incidents.
The broken rotor bar (BRB) fault is one of the most serious failures and needs to be detected on account
of its destructiveness. According to the statistics by the Institute of Electrical and Electronics Engineers
(IEEE), approximately 9% of IMs faults are due to the BRB, and 8% are caused by BRB faults according
to the statistics from the Electric Power Research Institute (EPRI) [1]. If the BRB fault is left undetected
and not resolved in time, it can lead to the occurrence of serious BRB faults or other types of motor
faults and can waste the electric power. Consequently, the entire motor may collapse, which can result
in higher maintenance costs, lower power transmission efficiency, and even serious accidents.

Currently, researchers have applied considerable efforts to the development of effective IMs fault
diagnosis technologies for improving operational reliability and reducing downtime. The most widely
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applied techniques for BRB faults detection are the motor current signature analysis (MCSA) and the
motor vibration signature analysis (MVSA) [2]. Further, magnetic flux measurements have been used,
but a flux sensor needs to be installed that can increase the detection costs. Regarding the diagnosis of
BRB faults in IMs, a vibration signature analysis can receive satisfactory detection results as well as the
MCSA [3]. In addition, the vibration diagnosis is a more reliable and standardized analysis since the
measured vibration signals from machines contain useful information reflecting the health conditions
of machinery systems. The vibration signature analysis is the most widely used technique in condition
monitoring and fault diagnosis due to its simplicity, less comparative cost, and relative ease of the
application. Further, no structural changes are required for the application of the vibration analysis for
the existing machines [4].

There are a variety of fault diagnosis methods that have been developed based on vibration signal
analysis for detecting the BRB faults of IMs. In [5], the advanced use of wavelet analysis by analyzing
an axial vibration signal was introduced for BRB faults detection through removing the effects of the
interference frequency components. In [6], the Zhao-Atlas-Marks (ZAM) distribution was investigated
for BRB faults diagnosis based on vibration transient signals. In a recent work, Rangel-Magdaleno [7]
developed a demodulation methodology using discrete wavelet transform (DWT) and autocorrelation
methods for the incipient broken bar detection based on MVSA. Delgado-Arredondo [8] presented the
complete ensemble empirical mode decomposition (CEEMD) for BRB faults diagnosis, which solves the
drawbacks of empirical mode decomposition (EMD) and the ensemble empirical mode decomposition
(EEMD) for obtaining accurate analysis results. The orthogonal matching pursuit algorithm (OMP) in [9]
focused on the decomposition of signals, which demonstrated the detection method is effective. On the
other hand, several MCSA-based demodulation techniques such as empirical mode decomposition
(EMD) and neural networks [10], Hilbert-Huang transform (HHT) [11], multiple signal classification
(MUSIC) [12], and synchrosqueezing transform (SST) [13] were also developed for BRB fault diagnosis.
There are also other techniques such as magnetic field analysis [14], infrared data analysis [15],
and air-gap torque analysis [16] that were applied for BRB faults detection.

Despite being powerful signal processing tools and potential applications for BRB fault detection,
these diagnosis methodologies mentioned above still have serious shortcomings. They contain
substantial computational costs for the exhibition of BRB fault features and lower accuracy for the
identification of BRB fault types and severities. For example, solving the intrinsic mode function
(IMF) of a signal by using the CEEMD algorithm in [8] is indeed a complicated calculation process.
Similarly, the popular methods based on DWT, EMD, HHT, SST, etc., are also faced with low processing
efficiency. The estimated parameters used in [7,12] cannot present a clear classification of the BRB
fault severities. However, the conventional methods based on a fast Fourier transform (FFT) show its
inability to process non-linear and non-stationary vibration signals. Hence, there is an urgent need to
develop an accurate and efficient approach for BRB fault diagnosis in IMs.

Furthermore, IMs are typical rotary machines, so that the measured vibration signal from the motor
surface has strong periodic modulation characteristics, and these periodically-modulated vibration
signals can be regarded as the second-order cyclostationary (CS2) signals. The CS2 signal is the
advancement of the first-order cyclostationary (CS1) signal characterized by the mean or expected
value, and both CS2 and CS1 signals belong to the category of cyclostationarity [17]. Cyclostationarity
refers to a promising signal processing method that has been subverting the field of mechanical
signature analysis in recent decades. The conventional Fourier transform (FT) has been proven to be
effective in dealing with CS1 components, but it fails to describe CS2 signals because the CS2 signals
are complexly modulated. In order to remedy this deficiency, a cyclic spectral analysis was proposed
in the 1990s by Gardner and applied to the analysis of CS2 signals [18]. It effectively reconstructs the
CS2 signals from a new perspective and extracts the useful information related to mechanical failures.
Briefly stated, a cyclic spectral analysis represents the CS2 contents by two frequency variables: Spectral
frequency (ƒ) and cyclic frequency (α). The spectral frequency is employed to exhibit the carrier
frequency contents of the signal, and the cyclic frequency aims to indicate the modulation components
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leading to the faults [19]. Cyclic spectral analysis is therefore effective in processing non-stationary
and non-linear signals, which can reveal the periodic behaviour associated to mechanical faults hidden
in the CS2 signals.

According to the advantages of vibration-based fault diagnosis in terms of the cyclic spectral
analysis, an improved cyclic spectral analysis method based on the vibration signature analysis was
investigated to detect the BRB faults of IMs. One of the cyclic spectral analysis approaches, cyclic
modulation spectrum (CMS), that has been described in [20] is referred to and improved on in this
paper. The CMS algorithm contains the calculation of the short-time Fourier transform (STFT) method,
and it can fully present its value in the diagnosis and identification of a specific mechanical fault by
optimizing the use of the STFT. The focus of the present work is to improve the CMS algorithm to
get higher accuracy in the classification of BRB fault types and severities and larger computational
gains by optimizing the window function, window length and step size for the application of the
STFT. Firstly, an optimal window function used in the STFT was selected according to the specific
signal form, which can increase the accuracy of identifying the BRB fault types and the severities.
Subsequently, the window length and step size were optimized based on the selected window function,
which can receive a better computational gain. According to the analysis results in [21], the amplitude
of characteristic frequency can be considered as the indicator for the identification of BRB faults. In this
paper, the amplitudes of BRB fault characteristic frequencies serve as a criterion for judging BRB
fault types and severities. The effectiveness and performance of the proposed method is validated
through processing the vertical vibration signals issued from healthy motor and damaged motors
with 1 BRB and 2 BRB faults under 0%, 20%, 40%, 60%, and 80% load conditions. Compared to the
power spectral density (PSD) [2,3,5,22–25] that has been widely explored for BRB fault detection and
other cyclic spectral analysis estimators, such as the cyclic power spectrum (CPS) [26], averaged cyclic
periodogram (ACP) [27], and fast spectral correlation (FSC) [28], the improved CMS can provide better
diagnosis capability.

This paper is organized as follows: Section 2 briefly presents the information in connection with
BRB faults which need to be analyzed and reviews the brief principle of the CMS algorithm. Section 3
introduces the procedures of the improved CMS method. The performance of the improved CMS
algorithm for BRB fault feature extraction is validated by simulation studies in Section 4. Section 5
provides the introduction of test rigs and the experimental verification. The conclusions are finally
drawn in Section 6.

2. Basic Theory of Methodology

2.1. BRB Fault Characteristics

The IMs are liable to BRB faults due to both the changing electromagnetic and the mechanical
forces. In healthy IMs, the rotor generates symmetrical currents that cause a forward rotating magnetic
field at a synchronous speed. If the rotor bar is cracked, a resultant background rotating field can
occur [8]. Consequently, the inverse frequency component of the rotor currents at −sf0 (where s denotes
the slip and f 0 denotes the supply frequency) appears. The inverse sequence components act on the
stator side and lead to the frequency components of (1 − 2ks) f0 (where k = 1, 2, 3, ... is any positive
integer), and the produced additional frequency information mainly leads to the presence of BRB fault
frequency components at (fr ± 2ksf 0) in radial and axial vibration signals [2]. As a result, a torque ripple
and a speed oscillation are generated at the frequency of 2ksf 0, which acts as a frequency component
modulated on the rotation frequency fr in the vibration spectrum that are given by:

fBRB = fr ± 2ks f0 (1)

where fBRB is the sideband frequency related to the BRB fault. The slip s is defined by the mechanical
speed (nm) of the IM and the synchronous speed (ns) as expressed [28]:
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s =
ns − nm

ns
(2)

Further, the research shows 2sf 0 is the main modulation component in the BRB fault vibration
signals, which helps in identifying BRB faults easily and effectively [29]. In the following analysis,
2sf 0 is explored and used as the most important fault feature for BRB faults detection.

2.2. Cyclic Modulation Spectrum (CMS)

A cyclostationary signal is a special type of non-stationary signal, and it contains hidden periodicity
in the signals associated to mechanical faults. The cyclostationarity covers rich statistical characteristics,
thus the cyclostationary signal can be divided into a first-order (mean value) cyclostationary signal,
a second-order (correlation function and spectral correlation density) cyclostationary signal, and even
a higher-order cyclostationary signal [17]. For cyclostationary discrete signals x[n] with a length of
samples L and a sampling frequency of Fs, its time-varying autocorrelation function can be expressed as:

Rx[n, τ] = E
{
x[n + βτ]x[n− βτ]

∗
}

(3)

where β+ β = 1, n, β, β ≥ 0, τ represents the time-lag variable, and n = 0, 1, ..., L − 1. However,
the traditional cyclic spectral correlation analysis methods based on the instantaneous autocorrelation
function require high computational costs. In order to improve the efficiency of the calculation,
an effective calculation technique, cyclic modulation spectrum (CMS), was proposed by Antoni [20].
This approach contains the calculation of STFT. The STFT of signal x[n] mentioned above is defined as:

XSTFT = (k, fi) =
∑Nw−1

n=0
x[kR + n]w[n]e− j2πn

fi
Fs (4)

where the discrete frequency fi = i∆f, i = 0, 1, ..., Nw − 1, w[n] is a data-window of signal x[n] with
Nw-long data, R stands for the time shift, the total shift number is K, K = |(L − Nw)/R| + 1 (|K| represents
the largest integer not greater than K), and k = 1, 2, ..., K. The CMS can be obtained by efficiently
calculating the discrete Fourier transform (DFT) of the STFT spectrum. Hence, the CMS of the signal
with a data-window based on STFT can be expressed as:

SCMS(α, f ) =
1

K||w||2Fs

∑K−1

k=0

∣∣∣XSTFT(k, f )
∣∣∣2e− j2π(kR+M) αFs (5)

||w||2 =
∑Nw−1

n=0

∣∣∣w[n]
∣∣∣2 (6)

where M denotes the intermediate time value of the window function w[n] and w[M − n] = w[M + n].
α is the cyclic or modulation frequency and f is the spectral or carrier frequency. The CMS considers
the periodic energy of signal in a frequency band of ∆f.

∆ f =
Fs

Nw
(7)

Table 1 presents the cyclic frequency resolution ∆α and the maximum cycle frequency αmax of
four cyclic spectral analysis algorithms and it is noted that they have the advantage of higher cyclic
frequency resolution. Although the CMS method can reduce the calculation cost, this approach still has
the shortcoming of a limit modulation frequency analysis [28]. Its maximum cyclic analysis frequency
is limited to the range of carrier frequency resolution. For example, if the carrier frequency resolution
∆f = 10 Hz, then the maximum cyclic frequency αmax that can be detected is smaller than or equal to
∆f. Therefore, the CMS method can only provide effective analysis results when the carrier frequency
resolution can guarantee the analyzable maximum cyclic frequency range meets the needs of the
fault diagnosis.
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Table 1. Cyclic frequency parameters of four cyclic spectral analysis algorithms.

Cyclic Frequency CPS ACP CMS FSC

∆α Fs/L Fs/L Fs/L Fs/L
αmax Fs/2 Fs/2R Fs/Nw Fs/2R

3. The Improved CMS

3.1. The Window Function

The STFT is a powerful tool to process the non-stationary signal. It is applied by shifting a window
function with a fixed window length and step size along the time axis of a signal, hence the signal
can be divided into many segments in which it is regarded as a stationary signal [30]. The different
window function has different performance parameters including the width of the main lobe, the peak
of the minor lobe, and the rate of decay in the spectrum. The signals consisting of different fault forms
must be processed with specific window functions as the appropriate window function is capable of
improving the accuracy of fault identification. Otherwise, it is impossible to accurately extract the
fault characteristics from the analyzed signals, so choosing the most suitable window function is an
important step based on the fault that is being analyzed [31].

3.2. The Window Length and Step Size

The window length and step size also play an important part in the STFT. The overlap between the
two adjacent moving windows due to the appropriate step size can reduce the leakage of the spectrum.
However, the different window length and step size can affect the computational efficiency of the STFT,
which also increases the computational complexity of the CMS algorithm. Hence, it is necessary to
select the appropriate window length and step size for a specific signal while guaranteeing the time
resolution and frequency resolution [30].

In this regard, improved CMS method needs a two-step process in which the appropriate window
function is chosen to enhance its sensitivity for identifying BRB faults, and then window length and
step size are optimized in order to harvest a better computational benefit. A detailed flowchart of the
proposed method is shown in Figure 1.
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4. Simulation Study

In this section, a synthetic cyclostationary signal was established to validate the performance
of the proposed method. The simulated signal is similar to the vibration signal obtained from the
IMs with BRB faults at a steady-state operation. When the BRB fault occurs, the fault characteristic
frequency of the rotor is a low frequency component, the rotation frequency of the rotating shaft is a
high frequency component, and the low frequency related to the BRB fault is modulated on the rotating
shaft frequency. The synthetic cyclostationary signal consists of a carrier frequency fr showing the
rotation frequency of rotation shaft, and a modulation frequency α0 denoting the frequency component
related to the BRB faults. The simulated signal x(t) consists of a carrier signal x1(t), a modulation
signal x2(t), and a Gaussian white noise signal n(t) with a specific signal-to-noise ratio (SNR) of −2
dB. The length of the samples L and sampling frequency Fs were 106 and 10 kHz, respectively. Where
t = n/Fs (n = 0, 1, ..., L − 1) denotes the discrete time, and M1, M2 represent the amplitude of a carrier
signal and a modulation signal, respectively. M1 and M2 can indicate the energy of the carrier signal
and the modulated signal and the different fault levels can be built by setting their values. In this study,
M1 was set to 1, and M2 was set to 1 and 0.5 to represent 2 BRBs fault and 1 BRB fault cases. Moreover,
the carrier frequency fr was set to 40 Hz, and the modulation frequency α0 was set to 4.27 Hz and
3.27 Hz to denote 2 BRBs fault and 1 BRB fault, respectively. Therefore, the simulation signals can be
expressed as:

x(t) = (1 + M2 × x2(t)) ×M1 × x1(t) + n(t) (8)

x1 BRB(t) = (1 + 0.5× sin(2×π× 3.27× t)) × sin(2×π× 40× t) + n(t) (9)

x2 BRBs(t) = (1 + sin(2×π× 4.27× t)) × sin(2×π× 40× t) + n(t) (10)

4.1. The Improvement of Window Function

In order to determine the optimal window function, the different window functions were applied
to the analysis with the same simulated data. The objective is to select the most suitable window
function by analyzing the diagnosis results.

In this processing, the A1 and A2 respectively represent the amplitude of the characteristic
frequencies α0 of simulated 1 BRB and 2 BRBs faults. In addition, η is to show the failure level of
2 BRBs to 1 BRB. The higher the failure level is, the better of the selected window function can be in the
classification of the BRB faults.

η =
A2 −A1

A1
× 100% (11)

As can been seen from Table 2, the flat top function is able to receive a higher BRB detection
capability based on the simulated BRB fault signals. Obviously, its diagnostic power is more than four
times that of the rectangular window function. As a result, the CMS method using the flat top function
can get more accurate BRB diagnosis performance based on the simulated signals.
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Table 2. The types of window function and their broken rotor bar (BRB) fault recognition capabilities
in the simulation.

Window Fiction η (%)

Rectangular 6.95
Triangular 30.15
Blackman 28.37
Hanning 25.90
Bartlett 30.21
Flat top 32.29
Nuttal 30.23

Gaussian 28.03
Hamming 25.16

Kaiser (β = 1) 10.43
Kaiser (β = 2) 22.30
Kaiser (β = 3) 27.07
Kaiser (β = 4) 26.93
Kaiser (β = 5) 25.04

4.2. The Improvement of the Window Length and Step Size

To get a better computational gain of the CMS algorithm, the flat top function with the window
length of 26, 27, 28, and 29 was respectively used in the simulation. Additionally, the step size was
selected as 25%, 30%, 35%, 40%, 45%, and 50% of the flat top window length, respectively, which
ensures that the overlap between two adjacent moving windows is between 50% and 75% to reduce
spectrum leakage and the effect of window length and step size on BRB fault identification. The step
size was selected to be an integer according to the rounding principle. For example, if the window
length is 26, then the step size is chosen as follows: 16, 19, 22, 26, 29, and 32. The simulated results are
shown in Figure 2.
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Figure 2. Simulated time required for different step sizes in four window lengths.

Thus, in order to ensure time efficiency, the window length of 28 and the step size of 40% of the
window length were selected for the CMS operation. The appropriate step size used for the simulation
study was 102 and the required simulation time was only 0.5540 s as shown in Figure 2. All simulations
and their experimental data processing were performed on a computer with a i5-7400 CPU processor
3.00 GHz. The parameter values used in the improved CMS algorithm and calculation time for all
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algorithms utilized in synthetic simulation are presented in Table 3. The improved CMS not only
ensures the optimal BRB fault identification accuracy based on the existing window functions, but also
improves the calculation efficiency.

Table 3. Simulated parameters and calculation time used in the five algorithms.

Parameters and Methods Setting and Time

Window Flat top
Nw 28

R 102
∆α 0.01 Hz

PSD 0.0630 s
CPS 185.7380 s
ACP 7.0652× 103 s

Improved CMS 0.5540 s
FSC 1.6160 s

The optimized window length and step size make only 0.5540 s is taken by the improved CMS
method, in which its computational efficiency is only second to conventional PSD method as shown in
Table 3. In the synthetic simulation, the characteristic frequency can be clearly extracted by several
algorithms and the order of computational efficiency is PSD > CMS > FSC > CPS > ACP. However, it is
worth mentioning that the simulation time of the ACP algorithm takes approximately 7.0652× 103 s,
which is far from the computational efficiency of other algorithms. This is the reason why this algorithm
is greatly limited in practical applications. Considering the higher computational cost and lower value
of the ACP algorithm in practical applications, in the following study, ACP will not be applied to the
processing of the experimental data.

According to the simulation Equation (10), the improved CMS algorithm with the flat top window
function can extract the fault characteristic frequency from the simulated signals with a SNR of −30
dB as shown in Figure 3. This offers an excellent immunity to noise in the measurements. Therefore,
the CMS method can be improved to give optimal analysis results based on the flat top function, with a
window length of 28, and step size of 40% of the window length.
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5. Experimental Verification

5.1. Experiment Setup

To prove the efficiency and performance of the proposed approach in the BRB fault diagnosis,
a special IM test platform was employed to acquire vibration data from three IMs with the same
specification, with a baseline and two different degrees of BRB severity motors. Figure 4 illustrates the
main structure of the experimental setup used in this study. The experimental system consists of a
DC load generator, a flexible coupling, an AC drive motor, an encoder, a thermocouple, a horizontal
accelerometer, and a vertical accelerometer. The AC drive motor is a 2-pole pairs, 3-phase motor and
the supply fundamental frequency and synchronous speed are 50 Hz and 1500 rpm, respectively. In the
meantime, the two different BRB fault cases are shown in Figure 5. As illustrated in Figure 5a,b, the BRB
fault conditions are complete bar breakages that have been artificially produced by completely drilling
one bar to its full depth. These motors will eventually be tested under different loads to evaluate the
performance of the improved CMS method.

Moreover, to estimate the influence of the operating conditions on the fault detection performance,
the vertical vibration signals were measured under a series of loads from 0%, 20%, 40%, 60 to 80%
of the full working load at the rated speed. All test signals were simultaneously measured using a
multi-channel data acquisition system with a sampling frequency of 96 kHz. A data length of 30 s was
acquired for each working condition to guarantee the integrity and accuracy of the information. In this
study, the improved CMS method is validated based on the optimization of the window function,
window length, and step size.
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5.2. Parameter Optimization for CMS Application

5.2.1. The Selection of Window Function

The different window functions were applied to the analysis of the same experimental data to
select the optimal window function. The objective is to select the most suitable window function
for obtaining accurate diagnosis results, which not only can obtain the best accuracy for identifying
the BRB fault types and severities, but also can basically reflect the law that the amplitude of the
characteristic frequency related to BRB faults increases with increasing the loads.

In this paper, the A0,k, A1,k, and A2,k (k = 1, 2, 3, 4, 5) respectively represents the sum of the
amplitudes of the characteristic frequencies 2sf 0 of healthy motor, and the faulty motors with 1 BRB
and 2 BRBs under five different loads. In addition, η1 BRB, η2 BRB, and η2−1 BRB indicate the failure level
of 1 BRB, 2 BRBs, and the fault level of 2 BRBs with respect to 1 BRB as follows:

η1 BRB =
A1,k −A0,k

A0,k
× 100%

η2 BRB =
A2,k −A0,k

A0,k
× 100% (12)

η2−1 BRB =
A2,k −A1,k

A1,k
× 100%

Through the analysis, it can be found that only the rectangular window and some Kaiser windows
with some β parameters cannot show the trend that the amplitude of the characteristic frequency 2sf 0

increases with increasing the loads. However, the other window functions presented in Table 4 can
reflect this feature, and different window functions still have different identification abilities of BRB
fault types and severities.

Table 4. The types of window function and their BRB fault identification capabilities in the experiments.

Window Fiction η1 BRB (%) η2 BRB (%) η2−1 BRB (%)

Triangular 197.71 359.60 54.37
Blackman 198.81 356.05 52.62
Hanning 203.69 358.54 50.98
Bartlett 221.38 400.53 55.74
Flat top 296.73 480.62 46.35
Nuttal 231.94 469.87 71.68

Gaussian 244.28 489.09 71.85
Hamming 246.71 494.29 71.41

Kaiser (β = 3) 262.05 527.32 73.27
Kaiser (β = 3.5) 255.08 508.41 71.20
Kaiser (β = 4) 250.79 499.20 70.86
Kaiser (β = 5) 245.95 488.66 70.16

From the analysis results presented in Table 4, η1 BRB, η2 BRB, and η2−1 BRB have larger values
in the Kaiser (β = 3) window function than other window functions because the parameter β can
effectively adjust the relative proportion of the width of the main lobe and the rate of decay in the
spectrum. This indicates this window function has higher identification capabilities of BRB fault types
and severities. Hence, the Kaiser (β = 3) window was selected as the window function executed by
the CMS.
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5.2.2. The Selection of Window Length and Step Size

In the next step, the Kaiser (β = 3) window function with the window length of 26, 27, 28, and 29

was respectively used in the experimental analysis and the step size was still selected as 25%, 30%,
35%, 40%, 45%, and 50% of Kaiser (β = 3) window length.

All the experimental consumption of several step sizes in the four window lengths are illustrated
in Figure 6. The window length of 28 and the step size of 40% of the window length were eventually
selected for guaranteeing the accuracy and time efficiency of the CMS algorithm in BRB fault detection.
Moreover, the calculation time was 26.1710 s. Finally, the improved CMS with the Kaiser (β = 3)
function, the window length of 28, and the step size of 40% of the window length was applied to the
experimental validation. According to Table 1, the cyclic frequency resolution ∆α was approximately
0.03 Hz and the maximum cycle frequency αmax for improved CMS analysis was 375 Hz according to
the selected window length. This considerably satisfies the extraction of the BRB fault characteristics
because the modulation information causing the BRB faults is a low frequency component.

Energies 2019, 12, x FOR PEER REVIEW 11 of 19 

 

5.2.2. The Selection of Window Length and Step Size 

In the next step, the Kaiser (β = 3) window function with the window length of 26, 27, 28, and 29 

was respectively used in the experimental analysis and the step size was still selected as 25%, 30%, 

35%, 40%, 45%, and 50% of Kaiser (β = 3) window length.  

All the experimental consumption of several step sizes in the four window lengths are illustrated 

in Figure 6. The window length of 28 and the step size of 40% of the window length were eventually 

selected for guaranteeing the accuracy and time efficiency of the CMS algorithm in BRB fault 

detection. Moreover, the calculation time was 26.1710 s. Finally, the improved CMS with the Kaiser 

(β = 3) function, the window length of 28, and the step size of 40% of the window length was applied 

to the experimental validation. According to Table 1, the cyclic frequency resolution Δα was 

approximately 0.03 Hz and the maximum cycle frequency αmax for improved CMS analysis was 375 

Hz according to the selected window length. This considerably satisfies the extraction of the BRB 

fault characteristics because the modulation information causing the BRB faults is a low frequency 

component. 

 

Figure 6. The experimental time required for different step sizes in the four window lengths. 

5.3. Experimental Results 

As mentioned above, the characteristic frequency α0 = 2sf0 (f0 = 50 Hz) is known to be the most 

obvious component related to BRB faults. Table 5 illustrates the slips of IMs with different fault cases 

under different load conditions. The detection results obtained by the analysis of the PSD, CPS, FSC, 

and the improved CMS method respectively are shown in Figures 7–10. 

Figure 6. The experimental time required for different step sizes in the four window lengths.

5.3. Experimental Results

As mentioned above, the characteristic frequency α0 = 2sf 0 (f 0 = 50 Hz) is known to be the most
obvious component related to BRB faults. Table 5 illustrates the slips of IMs with different fault cases
under different load conditions. The detection results obtained by the analysis of the PSD, CPS, FSC,
and the improved CMS method respectively are shown in Figures 7–10.

Table 5. The slips and characteristic frequencies of three fault cases under different loads.

Load
Slip (s) Characteristic Frequency

α0 = 2sf 0 (Hz)Healthy Motor 1 BRB 2 BRBs

0% 0.0012 0.0020 0.0020 0.12/0.20/0.20
20% 0.0080 0.0092 0.0097 0.80/0.92/0.97
40% 0.0148 0.0172 0.0180 1.48/1.72/1.80
60% 0.0228 0.0268 0.0270 2.28/2.68/2.70
80% 0.0308 0.0372 0.0400 3.08/3.72/4.00
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Figure 7. The right sideband components fr1 and fr2 for 1 BRB and 2 BRBs based on the power spectral
density (PSD) method at (a) 0% load, (b) 20% load, (c) 40% load, (d) 60% load, and (e) 80% load under
operating conditions. Blue for 1 BRB, Pink for 2 BRBs, and Green under healthy motor.
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Figure 8. The characteristic frequencies of α01 and α02 for 1 BRB and 2 BRBs based on the cyclic power
spectrum (CPS) method at (a) 0% load, (b) 20% load, (c) 40% load, (d) 60% load, and (e) 80% load under
operating condition. Blue for 1 BRB, Pink for 2 BRBs, and Green under healthy motor.
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Figure 9. The characteristic frequencies of α01 and α02 for 1 BRB and 2 BRBs based on FSC method at
(a) 0% load, (b) 20% load, (c) 40% load, (d) 60% load, and (e) 80% load under operating condition. Blue
for 1 BRB, Pink for 2 BRBs, and Green under healthy motor.
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Figure 10. The characteristic frequencies of α01 and α02 for 1 BRB and 2 BRBs based on the improved
CMS method at (a) 0% load, (b) 20% load, (c) 40% load, (d) 60% load, and (e) 80% load under operating
conditions. Blue for 1 BRB, Pink for 2 BRBs, and Green under healthy motor.

5.4. Results Discussion

As observed in Figure 7, the characteristic frequency components related to BRB faults obtained
by PSD are weak, especially in light loads. Further, only the right sidebands can present BRB fault
peaks clearly. Table 6 shows the characteristic frequency components obtained by the four methods
under different load conditions for two BRB faults detection. Compared to the theoretical characteristic
frequency components presented in Table 5, it is can be seen the PSD method can only roughly reflect
the fault information and it cannot present any fault symptoms when the load is 0%. Hence, regarding
the non-linear and non-stationary vibration signals produced by BRB faults, the PSD approach fails to
extract BRB fault information accurately, especially for vibration signals with high noise.

By contrast, the cyclic spectral analysis methods indeed provide a better analysis for processing
non-stationary signals since the signals are processed based on the cyclostationary level. According to
the results from cyclic spectral analysis as shown in Figures 8–10, the three algorithms can obviously
exhibit BRB fault features better than conventional PSD methods. In addition, the three cyclic spectral
analysis methods are able to accurately extract characteristic frequencies about BRB faults according to
the results as shown in Tables 5 and 6, while three approaches have different discrimination capabilities
of BRB fault types and severities.
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Table 6. The different characteristic frequencies detected by four methods under different loads.

Load
PSD (Hz) CPS (Hz) FSC (Hz) Improved CMS (Hz)

1 BRB 2 BRBs 1 BRB 2 BRBs 1 BRB 2 BRBs 1 BRB 2 BRBs

0% - - 0.200 0.200 0.200 0.200 0.200 0.200
20% 1.333 1.000 0.933 0.967 0.933 0.967 0.933 0.967
40% 1.830 1.900 1.767 1.833 1.767 1.833 1.767 1.833
60% 2.800 2.800 2.700 2.767 2.700 2.767 2.700 2.767
80% 3.770 4.030 3.667 4.033 3.667 4.033 3.667 4.033

Furthermore, the amplitude of the fault characteristic frequency can be applied to distinguish
the fault types, and theoretically, the amplitude will be increased along with the increasing of fault
severities. Typically, the BRB fault severity will also be increased along with the increasing of operating
loads for all the BRB fault case. Firstly, as can be observed in Figure 11a, the fault information obtained
by PSD cannot obviously provide clear distinctions for the different BRB fault types and severities
under different operating loads. Secondly, although the CPS method can reflect the BRB fault types
as shown in Figure 11b, this method cannot accurately show that the BRB fault severity increases
with increasing the loads. In contrast, the FSC method has the advantage of reflecting the trend and
distinguishing the BRB fault types as shown in Figure 11c, but this method has a lower accuracy for
the detection of BRB fault types under various operating conditions, which is not conducive to the
diagnosis and discrimination of BRB fault types.

For comparison purposes, the CMS algorithm with the same window length and step size as the
improved CMS method but with Hanning window function was applied to the experimental analysis.
According to the diagnostic results as shown in Figure 11d, while the CMS method spends the same
amount of time in processing the same data, it presents a lower diagnostic accuracy for BRB faults.
Similarly, Figure 11e shows the result analyzed by the CMS method with the Kaiser (β = 3) window,
but with the window length of 27 and the step size of 30% of the window length. The diagnosis results
obtained by the improved CMS method with the Kaiser (β = 3) window, the window length of 28, and
the step size of 40% of the window length is shown in Figure 11f. This CMS method with different
window lengths and step sizes has similar accuracy to the BRB faults detection. However, 27.1340 s
are consumed by this CMS as illustrated in Figure 6 compared to 26.1710 s taken by the improved
CMS method.

Moreover, based on the analysis results presented in Figure 11f, the improved CMS can exhibit
larger distinctions between a healthy motor, and a faulty motor with 1 BRB and 2 BRBs. The improved
CMS algorithm with the Kaiser (β = 3) window can provide a higher sensitivity for BRB faults diagnosis
than other methods presented in Figure 11, which is due to the parameter optimization for the
CMS applications.

Most importantly, the improved CMS algorithm significantly minimizes the computational costs,
and approximately 26.1710 s as shown in Table 7 is utilized to obtain better diagnosis results than the
other two algorithms owing to the optimization of the window length and the step size. However, the
CPS approach consumes substantial computational time, which takes approximately 2.4028× 104 s
to process and analyze the data containing 2,880,000 sampling points. Therefore, the improved CMS
algorithm is indeed an efficient cyclic spectral analysis algorithm to analyze and detect the BRB faults
in IMs.

Table 7. Computing consumption of the three algorithms in experimental processing.

CPS FSC Improved CMS

Time (s) 2.4028× 104 30.2250 26.1710
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Figure 11. The amplitudes of characteristic frequency component α0 under different loads in three BRB
cases extracted by (a) PSD, (b) CPS, (c) fast spectral correlation (FSC), (d) CMS with Hanning window
function, (e) CMS with window length of 27 and step size of 30% of the window length, and (f) the
improved CMS, respectively.

6. Conclusions

In this paper, an improved CMS fault feature extraction method based on the optimization of a
window function, length and step size for the STFT was proposed for BRB fault diagnosis. The efficiency



Energies 2019, 12, 3279 18 of 20

and performance of the proposed method was validated based on the simulation and experimental
studies. Both the simulation and experimental studies presented that the window function having
more influence on the accuracy of BRB fault diagnosis and the window length and step size can affect
the efficiency of the CMS method. In simulation studies, the synthetic signals with different SNRs are
simulated and analyzed. The analysis results show the proposed method has high noise immunity
and is able to accurately extract BRB fault features. The computational efficiency of the improved
CMS is not only optimized but also outperformed other cyclostationary analysis methods based on the
comparison analysis. The experimental study validated the ability of the improved CMS method for
diagnosing and classifying healthy motors, and faulty motors with 1 BRB and 2 BRBs under different
operating conditions with higher accuracy and lower computational costs. It demonstrated that the
improved CMS method gives more sensitivity than other cyclic spectral analysis estimators for BRB
failures detection. Therefore, the improved CMS approach can be considered as a promising online
fault diagnostic technique with higher sensitivity, and its applicability for online fault diagnosis of
various machines could receive further consideration due to its robustness and efficiency.
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