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Abstract: Forecasting energy demand is the basis for sustainable energy development. In recent
years, the new discovery of East Africa’s energy has completely reversed the energy shortage, having
turned the attention of the world to the East African region. Systematic research on energy forecasting
in Africa, particularly in East Africa, is still relatively rare. In view of this, this study uses a variety of
methods to comprehensively predict energy consumption in East Africa. Based on the traditional grey
model, this study: (1) Integrated the power coefficient and metabolic principles, and then proposed
non-linear metabolic grey model (NMGM) forecasting model; (2) Used Auto Regressive Integrated
Moving Average Model (ARIMA) for secondary modeling, and then developed a metabolic grey
model-Auto Regressive Integrated Moving Average Model (MGM-ARIMA) and non-linear metabolic
grey model-Auto Regressive Integrated Moving Average Model (NMGM-ARIMA) combined models.
In terms of the prediction interval, the data for 2000–2017 is a fit to the past stage, while the data
for 2018–2030 is used for the prediction of the future stage. To measure the effect of the prediction,
the study used the average relative error indicator to evaluate the accuracy of different models.
The results indicate that: (1) Mean relative errors of NMGM, MGM-ARIMA, and NMGM-ARIMA
are 2.9697%, 2.0969%, and 1.4654%, proving that each prediction model is accurate; (2) Compared
with the single model, the combined model has higher precision, confirming the superiority and
feasibility of model combination. After prediction, the conclusion shows that East Africa’s primary
energy consumption will grow by about 4 percent between 2018 and 2030. In addition, the limitation
of this study is that only single variable are considered.

Keywords: energy consumption forecasting; East Africa; power coefficient; linear and nonlinear
model; new combined models

1. Introduction

Energy forecasting is the basis for countries and regions to develop energy development strategies
and achieve sustainable energy using. Africa is rich in energy resources. In recent years, the new
discovery of energy in East Africa has completely reversed the situation of energy shortage and put
the energy industry on the track of rapid development. At the same time, the world has turned its
attention to East Africa. However, most of the existing research on energy in Africa focuses on North
Africa, Southern Africa and sub-Saharan Africa, which provides a gap for our research [1,2]. Therefore,
a comprehensive analysis of East Africa’s energy consumption by various methods will be helpful to
the mastery of East Africa’s energy in the future.

Taking East Africa as an example, this work forecasts the primary energy demand from 2018 to 2030
with the help of the primary energy consumption from 2000 to 2017 published by BP Statistical Review
of World Energy 2018. Forecasting results will provide insights into rational allocation for existing
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resources in East Africa, which will be conducive to coping with future opportunities and challenges
and formulating sustainable development strategies. In this paper, two categories and five methods are
utilized to predict the primary energy demand in East Africa. First, NMGM (non-linear metabolic grey
model) forecasting model is proposed by integrating the power coefficient and metabolic principles to
grey model (GM) model. Then, based on the strategy of quadratic modeling, the combined metabolic
grey model-Auto Regressive Integrated Moving Average Model (MGM-ARIMA) and non-linear
metabolic grey model-Auto Regressive Integrated Moving Average Model (NMGM-ARIMA) models
are developed. According to the forecasting results of various methods, the future energy consumption
in East Africa will be more comprehensively reflected.

The structure of this paper is as follows: the second section mainly reviews the research on energy
forecasting in Africa and the development and application of GM and ARIMA Model. The third
section mainly explains the prediction principles and steps of the five methods. The fourth section
shows the actual prediction process and related parameters. Fifth section summarizes the entire paper.

2. Literature Review

This section begins with a review and discussion of African energy forecasting studies. Then the
development of Grey model and ARIMA model and related applications in recent years are discussed.
Finally, based on the above analysis, this section gives a summary of the existing literature.

2.1. Review of Energy Research in Africa

For the whole of Africa, Mulugetta et al. [3] made an economic assessment of biodiesel and
studied the energy transition [4]. Sanoh et al. [5] analyzed the optimal project for supplying electricity
to national economies by using high voltage lines. Mentis et al. [6] assessed the potential of wind
energy technology. Ouedraogo et al. [7] studied the long-term sustainable electricity supply and
demand. In addition, other scholars have studied the issue of renewable energy technologies [8] and
development [9]. Besides, energy research in Africa is generally carried out by region, i.e., North
Africa, West Africa, East Africa, Central Africa, Southern Africa, and sub-Saharan Africa.

For North Africa, Tsikalakisa et al. [10] studied the best way of use solar energy in MENA
countries [11]. Lacher et al. [12] discussed potential threats to energy security and the development
of renewable energy plans. For West Africa, Gnansounoua [13] discussed the prospects for the
development of the West African electric power industry. Lee and Leal [14] provided a systematic
review of the energy planning (EP) activities being conducted in the Economic Community of West
African States (ECOWAS). Ameyaw et al. [15] predicted and discussed the relationship between CO2

Emissions and GDP in five West African countries. For East Africa, James [16] discussed energy
transformation in rural. Tigabu et al. [17] analyzed technology innovation systems (TIS) by comparing
Kenya with Rwanda. For middle Africa, Kenfack et al. [18] used Cameroon as an example to discuss
renewable energy and energy efficiency in Central Africa.For Southern Africa, there are relatively
few studies. Conway et al. [19,20] discussed the relevance between climate and water–energy–food.
Then they studied hydroelectric plans in Southern and Eastern Africa.Rafeya et al. [21] studied the
implications of the Medupi coal-fired power plant in South Africa Fant et al. [22] assessed the impact
of climate change on wind and solar energy resources. For sub-Saharan Africa, Bazilian et al. [23]
used long-term forecasting methods to forecast installed generation capacity. Esso [24] studied the
relationship between threshold cointegration, causality, energy use and growth. Al-mulali [25] and
Kivyiroab et al. [26] studied the relationship between energy consumption and CO2 emissions and
economic growth, respectively. Asumadu-Sarkodie et al. [27] forecasted Nigeria’s energy consumption
by an econometric approach. Emodia et al. [28] explored the relationship between energy supply and
demand and carbon emissions from 2010 to 2040. Another researcher studied the relationship between
Nigeria’s carbon dioxide emissions and GDP [29]. Wu et al. [30] predicted South Africa’s carbon
dioxide emissions. Lebotsa et al. [31] tested the forecasting model using South Africa’s electricity
consumption and made a prediction of short-term electricity demand. Sigauke et al. [32] predicted daily
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peak load demand in South Africa. Moreover, scholars have studied the price and income elasticity of
South Africa’s oil import demand [33], the economic growth and Electricity consumption [34].

In summary, a review of the literature on energy forecasting in Africa reveals that there is relatively
more energy research in North Africa and sub-Saharan Africa and less systematic research on primary
energy consumption projections in East Africa.

2.2. Review of Grey Model

The grey theory, first put forward by Professor Deng [35], is the theory that some of the information
is unclear and has an uncertain phenomenon. The resulting Grey Model is commonly used in the field
of prediction. Xie et al. [36] used grey model to predict China’s energy demand and self-sufficiency
rate. Mao [37] used GM (1,1) in vehicle fatality risk estimation and got accurate prediction. Jouini
et al. [38] applied GM(1,1) model to forecast historical medical sensor data towards system preventive
in smart home e-health for elderly person. Jiang et al. [39] applied grey model to the operating energy
performance of air cooled water chillers. Although GM is widely used in forecasting, there is room
for improvement. As for the GM model, the data obtained by the prediction are not fully utilized.
Therefore MGM (grey model of metabolism) improved the grey model according to the principle of
metabolic, added the latest predicted data into the original data for grey prediction again, and so
on to obtain the predicted value of the target. At present, it is also commonly used in the field of
prediction. Wang et al. [40] applied GM and MGM to forecast the consumption of coal in the US.
Truong et al. [41] studied the feasibility of applying MGM (1,1) to real-time control of wave energy
converters (WECs). Tang et al. [42] combined MGM with BP neural network to construct a tandem
Grey Neural Network model for load forecasting of smart grid. Lee et al. [43] used MGM model and
GM model to evaluate air quality in traffic tunnels. Wang et al. [44] applied MGM to forecast future
energy consumption in China and India. Akay et al. [45] used Grey prediction with rolling mechanism
(GPRM) to forecast the Turkey’s total and industrial electricity consumption. Kumar et al. [46] used a
variety of models to predict India’s energy consumption. Among them, MGM was used to predict
India’s coal consumption. Despite the fact that MGM models are used more in energy prediction,
they become inaccurate when the time series is nonlinear. By adding the power factor β to the MGM
model, a new model, the non-linear metabolic grey model (NMGM), has been created. It is a nonlinear
prediction method, which obtains both linear and nonlinear prediction results by proper adjustment of
power coefficient, so that the results are more accurate. Today, energy forecasting is widely available.
Wang et al. [47] established the NMGM model and applied it to the prediction of shale oil production
in the United States and compared with other three model [48]. Later, NMGM served several times in
the field of energy forecasting [49].

Furthermore, other researchers have enhanced the Grey model. For instance:Lee et al. [50]
combined genetic programming with grey model to improve the grey model. Bahrami et al. [51]
used PSO (particle swarm optimization) algorithm to improve the grey model and used the model
to forecast the short-term electric load. Ding et al. [52] improved grey model byalterable weighted
coefficients and rolling mechanism. Chen [53] investigates forecasting by using novel nonlinear grey
bernoulli model (NGBM). Xu et al. [54] proposed a adaptive grey model with buffered rolling method.
Zeng et al. [55] proposed a new multivariate grey model by combining multivariate grey model with
univariate grey model. Li et al. [56] used BP (Back Propagation) to improve the NMGM model. To sum
up, after years of development, the grey model has been optimized in more and more ways, and the
prediction effect has become better and better.

2.3. Review of ARIMA Model

ARIMA Model is recognized as Autoregressive Integrated Moving Average Model and abbreviated
as ARIMA. It is a famous time series prediction method proposed by Box and Jenkins in the early
1970s [57]. The basic idea of the ARIMA model is to process the data sequence formed by the predicted
object into a random sequence over time, which is roughly described by a precise mathematical model.
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Once identified, the model can predict future values from the past and present values of the time series.
Nowadays, ARIMA model is applicable to ecological, economic, energy and other aspects of time series
prediction. In terms of ecology, Kumar et al. [58] applied ARIMA to the prediction of atmospheric
pollutants (Ozone, carbon monoxide, nitric oxide, nitrogen dioxide) and could effectively predict
short-term atmospheric pollutants. Nieto et al. [59] used four models to predict PM10 concentration,
including ARIMA. Aasim et al [60] proposed combined repeated wavelet transform and ARIMA to
forecast short-term wind speed. S. Swain et al. [61] applied ARIMA to forecast Monthly Rainfall. On
the economic front, Nyangarika et al. [62] used the modified ARIMA model to predict oil prices. Prasad
et al. [63] applied ARIMA model to the prediction of India’s total export value. Hossain et al. [64]
used ARIMA to forecast the prices of motor, mash and mung. For energy, Edigera et al. [65] used
ARIMA to forecast Turkey’s primary energy consumption and found that the ARIMA forecasting of
the total primary energy demand appears to be more reliable than the summation of the individual
forecasts. Musaylh et al. [66] used ARIMA to forecast short-term electricity demand in Australia.
Jiang [67] take advantage of ARIMA to calculate China’s coal consumption and price from 2016 to 2030.
Mehedintu et al. [68] used five single methods to predict the share of renewable energy consumption
in total consumption in 2020, including ARIMA model. It can be seen that ARIMA model is widely
used, and the accuracy of prediction results is also accepted by researchers. Because the application
of ARIMA model has been paid a lot of attention, so many researchers have made optimization and
improvement of the ARIMA model. For instance, Wang et al. [69] combined ARIMA with MNGM to
establish the MNGM-ARIMA model that produced more accurate forecasting results. Ludlow and
Enders [70] found that a non-linear time-series can be represented by a deterministic time-dependent
coefficient model without first specifying the nature of the non-linearity. Chen et al. [71] proposed
a nonlinear ARIMA model based on SVR (support vector regression). Zhang et al. [72] combined
EEMD and ARIMA to establish the EEMD-ARIMA model to predict hotel daily occupancy rate, which
has obvious advantages in short-term prediction Celestino et al. [73] combined ARIMA and SVM
models for the remaining useful life of aircraft engines forecasting. Lee et al. [74] combined ARIMA
model with genetic programming to improve both models and commit the effectiveness of the new
model. Baraka and Sadegh [75] proposed a hybrid ARIMA-ANFIS (Adaptive Neuro Fuzzy Inference
System) algorithm which based on three different pattern. Dindarloo [76] compared ARIMA and ANN
(Artificial Neural Network). Daz-Roblesa et al. [77] combined ARIMA with ANN (Artificial Neural
Network) to predict particulate matter in urban areas. Wang et al. [78] combined ARIMA with ANN to
forecast shale gas monthly production in Pennsylvania and Texas of the United States and compared
with single model and the result of application shows the advantages of this method. Zhang et al. [79]
improved MEEMD-ARIMA model by using PE. Matyjaszek et al. [80] used the full time series, GRNN
(generalized regression neural network) models to improve ARIMA model. These improvements
make ARIMA’s predictions more convincing.

Although GM and ARIMA model have been widely used in real life, there is still room for
improvement. Therefore, the model needs to be strengthened to get more accurate predictions.
At present, there are roughly three improved methods. First, put together a few single models to
predict and compare prediction accuracy, and finally put the results together to show or select the most
accurate model. Secondly, the theory of single model is improved. For example, the MGM model,
the NMGM model. Third, the combination of more than two models complements the advantages to
achieve more accurate results.

Based on this, this study has the following contributions: (1) From the existing research, it was
found that the systematic prediction of energy resources in East Africa is a gap. This study predicts
primary energy demand in East Africa from 2018 to 2030. The forecasting results will be helpful for a
comprehensive understanding of the current energy situation in East Africa and for the prospects of
energy development.

(2) For more accurate prediction, various prediction methods have been developed and used in
this study. On the one hand, NMGM (non-linear metabolic grey) forecasting model was proposed
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by integrating the power coefficient and metabolic principles to GM model. On the other hand, the
improved grey model and ARIMA model are combined by the strategy of secondary modeling, thus
resulting in MGM-ARIMA and NMGM-ARIMA models.

3. Method

This section will detail the operation of five models used to predict primary energy consumption
in East Africa one by one. Five are MGM, NMGM, ARIMA MGM-ARIMA, and NMGM-ARIMA, of
which the latter two models are combinations of the first three models. The relevant formulas and
steps will be presented. In addition, a formula for measuring the prediction accuracy of the five models
is attached at the end of this section.

For ease of understanding, Table 1 presents the meaning of the relevant symbols in the formulas.

Table 1. Meaning of the symbols in the formula.

Notation Explanation Notation Explanation

X(0)(k) Raw sequence εt Error term of initial data
X(1)(k) Once accumulated sequence θi Harmonic parameter
X̂(0)(k) Prediction of Raw sequence B Matrix of data and constants
X̂(1)(k) Prediction of 1-AGO sequence d Order of the data sequence

t Time sequence p Order of auto -regression
D Matrix of data and constants q Order of moving average
Cn Matrix of data E(0)(1) Initial residual sequence
a Constant parameter E∗(0)(1) Predicted residual sequence
b Constant parameter X∗t (i) Corrected forecasts
β Power coefficients n Sample size
Yt Initial data sequence y(i) Fitting value
Y∗t Predicted data sequence x(i) Truth value
µ Constant term

3.1. MGM Model

MGM model is a shorthand for metabolic grey model. This method uses the obtained data
sequence to establish the grey differential equation. The objective is to obtain the law of these data
and predict the future data. Assume that the original data sequence is: X(0) = {X(0)(1), X(0)(2), X(0)(3),
. . . , X(0)(n)}. In most cases, the original data’s rules are not obvious, and cannot be directly used
for modeling. For the sake of getting a more stable time series data, we accumulate it and get the
once accumulated sequence (1-AGO): X(1) = {X(1)(1), X(1)(2), X(1)(3), . . . , X(1)(n)}. Among them,
X(1) =

∑m
i=1 X(1)(i), k = 1, 2, 3 . . . n.

After that, the following differential equation is established by means of the obtained cumulative
sequence:

dX
dt

+ aX(1)(t) = b (1)

For differential Equation (1), the cumulative matrix D, constant term Cn and the values of ‘a’ and
‘b’ are obtained by using the least square method. The construction results are as follows:

D =


−

1
2

(
X(1)(1) + X(1)(2)

)
1

−
1
2

(
X(1)(2) + X(1)(3)

)
1

...
...

−
1
2

(
X(1)(n− 1) + X(1)(n)

)
1

 (2)

Cn =
[

X(0)(2) X(0)(3) · · · X(0)(n)
]
T (3)
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[
a
b

]
=

(
DTD

)−1
DTCn (4)

Put the calculated value of “a” and “b” into the Equation (1) to get the result. Since the results are
also cumulative sequences, the predicted values are obtained by cumulative subtraction.

The forecast is calculated as follows:

X̂(0)(k) = X̂(1)(k) − X̂(1)(k− 1)(k = 2, 3, 4 · · · n) (5)

3.2. NMGM Model

The NMGM model is called the nonlinear metabolic grey model, which is a nonlinear prediction
method and an improvement of MGM. The difference between NMGM and MGM is the addition
of power factor “β”. When the data is non-linear, MGM becomes inaccurate. Therefore, by properly
adjusting the power coefficient, the results will be more accurate when considering linearity and
nonlinearity. In general, grey predictions are calculated using 4 to 10 data, and here are five data
for convenience. Suppose the original time series data is: X = {X(1)X(2) · · · X(n)}. The steps of the
calculation are as follows:

i. Extract 5 pieces of data from the original data:

X(0) = {X(0)(i)X(0)(i + 1)X(0)(i + 2) · · ·X(0)(i + 4)} i = (1, 2, · · · n− 4) (6)

ii. Get the cumulative sequence:

X(1) = {X(1)(1) X(1)(2) · · · X(1)(n)} (7)

Based on (7), get the linear addition sequence:

Z(1)k =
1
2
(X(1)(k− 1) + X(1)(k)) (8)

iii. On the basis of (7) and (8), the differential equations of NMGM are as follows:

X(0)(k) + a(z(1)(k))
β
= b (9)

dX(1)

dt
+ a(X(1)(t))

β
= b (10)

After the differential equations are listed, the following equations are used to solve them:

D =



−

(
z(1)(2)

)β
1

−

(
z(1)(3)

)β
1

...
...(

z(1)(n)
)β

1


(11)

Cn =
[

X(0)(2) X(0)(3) · · · X(0)(n)
]T

(12)

β =

[
a
b

]
=

(
DTD

)−1
DTCn (13)

Referring to the fourth-order Runge–Kutta, the equation is

dX
dt

= F(t, X) (14)
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L1 = F(tn, Xn)

L2 = F(tn +
h
2 , Xn +

h
2 L1)

L3 = F(tn +
h
2 , Xn +

h
2 L2)

L4 = F(tn + h, Xn + hL3)

Xn+1 = Xn +
h
6 (L1 + 2L2 + 2L3 + L4)

(15)

iv. The cumulative sequence of the predicted value can be obtained from the iii, and the predicted
values are obtained by deducting it. The formula is as follows:

X̂(0)(k + 1) = X̂(1)(k + 1) − X̂(1)(k) (16)

3.3. ARIMA Model

The principle of ARIMA is to transform the non-stationary time series into stationary time series,
and then return its lag value and random error term and establish a model. In fact, ARIMA model
consists of auto-regressive (AR) model and moving average (MA) model. On the one hand, AR can
describe the relationship between the current value and the historical value. On the other hand, the
historical time data of the variable itself can also be used to estimate and predict itself. The MA model is
devoted to the accumulation of error terms from the regression model, which can effectively eliminate
the random fluctuations in the prediction.

The p-order autoregressive formula AR (p) is:

Y∗t = µ+ ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + εt (17)

Where the εt is the error term.
The q-order moving average formula is MA(q) for:

Y∗t = εt − θ1Yt−1 − θ2Yt−2 − · · · − θpYt−p (18)

By combining AR (p) and MA (q), the autoregressive average moving formula ARMA (p, q) is
obtained as follows:

Y∗t = ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + θ0εt − θ1Yt−1 − θ2Yt−2 − · · · − θpYt−p + µt (19)

Firstly, aiming to meet the requirement of stability, the order in which the time series becomes
smooth is denoted as “d”. Secondly, the two specific parameters related to AR and MA are “p”
and “q”. “P” is called autoregressive term, and “q” is called moving average term. Therefore,
the ARIMA model can be written as ARIMA (p, d, q). In addition, set the original time series
as Yt = [Y(0)(1)Y(0)(2) · · · Y(0)(n)]. The forecast result is Y∗t = [Y(1)(1)Y(1)(2) · · · Y(1)(n)]. In the
process of solving the Equation (19), it is found that Y∗t can be represented by Yt, the specific formula is
as follows:

Y∗t = (1− B)dYt (20)

B =


−

1
2

(
Y(1)(1) + Y(1)(2)

)
1

−
1
2

(
Y(1)(2) + Y(1)(3)

)
1

...
...

−
1
2

(
Y(1)(n− 1) + Y(1)(n)

)
1

 (21)

3.4. MGM-ARIMA and NMGM-ARIMA Model

Based on three single MGM, NMGM, and ARIMA models, this study conducted a combination
of models and proposed MGM-ARIMA and NMGM-ARIMA. The principle is to use the MGM and
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NMGM for initial forecasting, and then recalibrate the error series by ARIMA, so as to reduce the error
and get more accurate prediction results. Therefore, the prediction steps for combining models include
three parts. First of all, the predicted value is obtained and then the error is corrected and new error
sequence is obtained. Finally, the novel predicted value can be obtained by subtracting the predicted
value obtained by MGM from the new relative error time series.

For ease of understanding, set the error series to be: E(0) = {E(0)(1)E(0)(2) · · · E(0)(2)}
The corrected error is: E∗(0) = {E∗(0)(1)E∗(0)(2) · · · E∗(0)(n)}
Figure 1 shows this process.
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Figure 1. The Forecasting Process of metabolic grey model-Auto Regressive Integrated Moving Average
Model (MGM-ARIMA) and non-linear metabolic grey model (NMGM)-ARIMA.

3.5. The Comparison of Five Models and Formulas for Measuring Accuracy

Based on the interpretation of these five methods, the conclusions shown in Table 2 are derived.
Besides, mean absolute per error (MAPE) is used to measure the accuracy of the model. The formula is
Equation (22).
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Table 2. The comparison of five models.

Difference Feature

Principle Data trend Advantages Disadvantages

MGM Differential
equation Model Linear

Sample;
Does not need regularity

and large numbers;
Add metabolic principle to
the modeling of GM model

Cannot reflect the
non-linearity of data series

NMGM Differential
equation Model Non-Linear

Sample;
Does not need regularity

and large numbers;
Add metabolic and

none-linear principles to
the modeling of GM model

The Positive and negative
fluctuations of the error

are too large

ARIMA
Differential auto

regressive moving
average Model

Linear

The mathematical requires
only endogenous variables

without resorting to
exogenous variables

Determination of model
parameters is complicated;

Non-linear relationship
cannot be reflected;

Require timing data to be
stable

MGM-ARIMA
Cover two

principle of MGM
and ARIMA

Linear

Use ARIMA model to
correct the fluctuations of

NMGM model; Wider
application range

Non-linear relationship
cannot be reflected;

More steps than a single
model

NMGM-ARIMA

Cover two
principle of
NMGM and

ARIMA

Cover Linear
and Non-Linear

Use ARIMA model to
correct the fluctuations of
NMGM model; Combine

linearity with
None-linearity; Wider

application range

The effects of multiple
variables on predictors
cannot be considered;

More steps than a single
model

Similarity Forecast period: Short and Medium term
The number of variables: Univariate

MAPE =
1
n

n∑
i=1

y(i) − x(i)
x(i)

(22)

Accordingly, the predicted goodness can also be calculated based on the relative error. The
formula is as follows:

Goodness = 1−APE = 1−
|Prediction-True value|

True value
(23)

4. Empirical Results and Discussion

Figure 2 shows the primary energy consumption in East Africa and the growth rates from 2000
to 2017 (data from the BP Statistical Review of World Energy 2018). The data demonstrates that the
overall trend in primary energy consumption in East Africa is increasing. Since 2008, the overall trend
has remained relatively stable.

Built on the explanation of Figure 2. This section mainly demonstrates the prediction process
of the five models, MGM, NMGM, ARIMA, MGM-ARIMA, and NMGM-ARIMA, the generation of
relevant parameters and the fitting data. In addition, after the fitting results are obtained, the accuracy
of the five models is analyzed and compared with the original data. Then make a forecast of the energy
consumption of East Africa from 2018 to 2030.
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Figure 2. Primary energy consumption (Unit: mtoe) and growth rate in East Africa from 2000 to 2017.

4.1. Forecasting Process of MGM Model

Using the raw data, first step adds up to a cumulative time series. As shown in Figure 3, the
cumulative processing of the data becomes more stable.
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In the second step, the accumulated sequence is used to establish the differential equation, and
as mentioned in Equation (4), the parameters “a” and “b” are calculated by the least square method,
as shown in Table 3.

Table 3. The value of MGM Parameters in 2005-2030.

2005 2006 2007 2008 2009 2010 2011

a −0.0281 −0.0386 −0.0495 −0.0405 −0.0239 −0.0228 −0.0423
b 25.4265 25.4278 25.4351 27.5843 29.7357 30.746 30.15

2012 2013 2014 2015 2016 2017 2018

a −0.0649 −0.0495 −0.0479 −0.0695 −0.0744 −0.0511 −0.035
b 29.2509 32.4913 34.6235 34.3844 35.9062 41.2347 45.5445

2019 2020 2021 2022 2023 2024 2025

a −0.035 −0.0364 −0.035 −0.0357 −0.0357 −0.0353 −0.0355
b 47.056 48.4787 50.5573 52.2065 54.1031 56.1414 58.1107

2026 2027 2028 2029 2030

a −0.0353 −0.0353 −0.0354 −0.0353 −0.0353
b 60.2676 62.4286 64.6446 66.9892 69.4027

Next, this study used the values of parameters “a” and “b” obtained and EXCEL to obtain the
fitting value and predicted value.

4.2. Forecasting Process of NMGM Mode

As described in the method, the actual operation process of NMGM’s prediction is generally
divided into two steps. In the first step, the five data of the original time series are operated to get the
fitting value from 2000 to 2017 through the cycle. The second step is to use the data from 2013 to 2017
to get the predicted value for 2018, and then put the predicted value of 2018 into the original data,
namely metabolism. In other words, the predicted value needs to be used as the known data and used
for prediction to get the predicted value of 2018 to 2030.

As mentioned above, a series of power coefficient “β” values can be obtained by using Matlab
R2018b, the same goes for a and b. as shown in Table 4. “β”, “a” and “b” values in the table can be
used to obtain the fitting values and predicted values.

Table 4. The value of NMGM Parameters in 2005–2030.

Year β a b Year β a b

2005 1 −0.0281 25.4256 2018 1.023 −0.0305 45.642
2006 1 −0.0386 25.4278 2019 1.434 −0.0028 48.44
2007 0.131 −16.8519 −0.223 2020 0.962 −0.0508 47.8173
2008 1 −0.0405 27.5843 2021 1.274 −0.0078 51.3491
2009 0.001 −2.1175 −2.095 2022 0.95 −0.059 51.3057
2010 0.151 −6.5919 19.9396 2023 1.19 −0.0135 55.1413
2011 1 −0.0423 30.15 2024 0.959 −0.0583 55.7161
2012 1 −0.0649 29.2509 2025 1.142 −0.0185 59.7007
2013 0.001 −4.8584 −4.8429 2026 0.973 −0.0551 60.8656
2014 1 −0.0479 34.6235 2027 1.112 −0.0228 64.9779
2015 1 −0.0695 34.3844 2028 0.987 −0.0517 66.715
2016 0.621 −0.7374 30.7245 2029 1.092 −0.0263 70.9873
2017 0.001 −6.3232 −6.3056 2030 0.999 −0.0489 73.2918
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4.3. Forecasting Process of ARIMA Model

ARIMA model requires smooth raw data. To stabilize the data, the unit root test, autocorrelation
function (ACF) and partial autocorrelation function (PACF) can be the tool. In this work, Eviews 7 was
used to obtain the order of the difference required, that is, the value of “d”. As shown in Table 5, the
first-order difference is performed on the original data. If the test value is less than three critical values,
data series pass the square root test. Therefore, the value of “d” is determined to be 1.

Table 5. Square root test results of first-order difference.

Augmented Dickey-Fuller Test Statistic
t-Statistic Prob.*

−4.8604 0.0080

Test critical values: 1% level −4.7284
5% level −3.7597
10% level −3.3250

Since the value of “d” is 1, the autocorrelation function diagram and partial autocorrelation
function diagram are drawn by using Eviews 7, as shown in Figure 4. The autocorrelation function
graph and partial correlation function diagram of the original time series under the difference of order
1 show that neither of the two functions has the characteristic of 0 after a certain order, and neither of
them has the property of censoring, but has the property of trailing. According to the model selection
rules, ARIMA model should be selected for prediction.
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Next step requires to determine the values of “p” and “q” parameters, aiming to minimize the
error of the prediction results. In this step, ARIMA modeler of time series model in IBM SPSS statistics
is used to model. In order to obtain more accurate fitting value, the optimal model with high fitting
accuracy is selected by referring to the following principles: First, the higher the fixed value R2 is,
the better the fitting degree is; Second, the larger the decision coefficient R2 is, the better the fitting
degree of the model is; Third, the larger the root mean square error (RMSE) is, the greater the degree of
data dispersion is, the worse the fitting degree of the model is, the lower the reliability is. Fourth, the
smaller the maximum absolute prediction error MAPE is, the better the fitting degree of the model
is. After repeated experiments, the final selected ARIMA (11,1,2). The data required for judgment is
shown in Table 6.
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Table 6. Parameters of the goodness of fit for the ARIMA (11,1,2) Model.

Model Number of
Predictors

Model Fit Statistics

Stationary R-Squared R-Squared RMSE MAPE

ARIMA (11,1,2) 1 0.643 0.993 2.13 1.59

4.4. Forecasting Process of MGM-ARIMA Model

The first step of MGM-ARIMA is to obtain the residual by subtracting the original data from
the fitted values obtained from MGM model. After calculation, the fitting values, original data and
absolute errors of MGM are shown in Table 7.

Table 7. Relative error based on MGM fitting.

Year Raw Data Fitting Value Obtained by MGM Residual

2000 24.7252 24.7252 0.0000
2001 26.6129 26.4917 0.1212
2002 27.5444 27.2467 0.2977
2003 27.1190 28.0232 0.9042
2004 29.3231 28.8218 0.5012
2005 30.4504 29.6432 0.8072
2006 31.6666 31.4755 0.1911
2007 33.1097 33.4884 0.3787
2008 32.5465 34.4190 1.8725
2009 34.3482 33.8933 0.4549
2010 37.2472 34.8381 2.4091
2011 39.3385 38.0948 1.2437
2012 39.9579 42.0569 2.0990
2013 43.3790 42.6155 0.7634
2014 47.9040 44.9973 2.9066
2015 49.7643 50.5590 0.7947
2016 51.0530 54.2879 3.2349
2017 53.3564 54.4711 1.1147

In the second step, the ARIMA model is used to correct the residual. Firstly, the difference is used
to stabilize the relative error. The square root test results are shown in Table 8. We found that the
zero-order difference of the relative error has already passed the square root test, so the original error
is stable without difference, that is, “d” is 0.

Table 8. Square root test of zero order differential of MGM relative error.

Augmented Dickey–Fuller Test Statistic
t-Statistic Prob.*

−6.4376 0.0005

Test critical values: 1% level −4.6679
5% level −3.7332
10% level −3.3103

Based on the above analysis, the autocorrelation function diagram and part of autocorrelation
function diagram are drawn by using “d” value through Eviews 7, as shown in Figure 5. It can be
seen that under the first-order difference of the original time series, the autocorrelation function graph
and the partial correlation function graph neither has the characteristics of zero after a certain order,
nor has the truncation property, but has the trailing property. According to the model selection rules,
ARIMA model is selected.
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Figure 5. Autocorrelation (AC) and Partial Autocorrelation coefficients (PAC) of MGM-ARIMA.

To get more accurate results, the ARIMA model of time series model in data mining and analysis
tool IBM SPSS statistics is used to model, and after continuous testing, MGM-ARIMA (3, 0, 9) model is
selected, and the required data is shown in Table 9. For comparison, we put the relative error of MGM
and corrected error into Figure 6. Figure 6 shows that the relative error of MGM becomes smoother
after correction by the ARIMA model, indicating that the MGM-ARIMA model is more accurate than
the MGM model.

Table 9. Parameters of the goodness of fit for the MGM-ARIMA (3,0,9).

Model Number of
Predictors

Model Fit Statistics

Stationary R-Squared R-Squared RMSE MAPE

MGM-ARIMA (3,0,9) 1 0.703 0.703 1.697 73.033
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4.5. Forecasting Process of NMGM-ARIMA Model

As shown in the method, the NMGM-ARIMA model is like the prediction process of the
MGM-ARIMA model. Therefore, the prediction process is as follows: first step is to obtain the
NMGM-ARIMA residual time series. The fitting value, raw data, and residuals of NMGM are
calculated as shown in Table 10.
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Table 10. Residual based on NMGM model.

Year Raw Data Fitting Value Obtained by NMGM Residual

2000 24.7252 24.7252 0.0000
2001 26.6129 26.4926 −0.1203
2002 27.5444 27.2482 −0.2962
2003 27.1190 28.0253 0.9063
2004 29.3231 28.8246 −0.4985
2005 30.4504 29.6467 −0.8037
2006 31.6666 31.4718 −0.1948
2007 33.1097 32.5918 −0.5179
2008 32.5465 34.4112 1.8647
2009 34.3482 33.4706 −0.8776
2010 37.2472 34.3667 −2.8805
2011 39.3385 38.0857 −1.2528
2012 39.9579 42.0644 2.1065
2013 43.3790 41.3733 −2.0057
2014 47.9040 44.9876 −2.9164
2015 49.7643 50.5522 0.7879
2016 51.0530 53.2581 2.2051
2017 53.3564 52.8345 −0.5219

In the second step, ARIMA is used to correct the residuals. First, the difference makes the residual
stable. The residual of first-order differential has passed the square root test, that is, “d” for 1. Square
root test results as shown in Table 11.

Table 11. Square root test of first order differential of NMGM residual.

Augmented Dickey-Fuller Test Statistic
t-Statistic Prob.*

−5.4485 0.0037

Test critical values: 1% level −4.8001
5% level −3.7912
10% level −3.3423

Based on the above analysis, “d” value is used to draw autocorrelation function and partial
autocorrelation function. As shown in Figure 7, the autocorrelation function and partial correlation
function graphs of the original time series under first order difference show that the two functions are
not truncated after a certain period but have tailing property.
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Analogous to MGM-ARIMA, in order to obtain more accurate results, the ARIMA modeler of
the time series model in IBM SPSS statistics was used for modeling. After continuous testing, the
NMGM-ARIMA (4,1,1) model was finally selected, and the required data was determined in Table 12.
To facilitate comparison, we put the residual of NMGM and the corrected error into Figure 8. Figure 8
shows that the residuals of NMGM becomes more stable after the correction of ARIMA model.

Table 12. Parameters of the goodness of fit for the NMGM-ARIMA (4,1,1).

Model Number of
Predictors

Model Fit Statistics

Stationary R-Squared R-Squared RMSE MAPE

NMGM-ARIMA(4,1,1) 1 0.752 0.496 1.374 89.307
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Figure 8. Comparison between the residual of NMGM fitting results and the corrected residual.

4.6. Comparison of Fitting Results by Multiple Model

This section compares the accuracy of the five models and analyzes the performance of the five
models, as well as the advantages of the combined model over the single model. Table 13 shows the
fitting results of five models. Figures 9 and 10 shows our comparative results.
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Table 13. Fitting results of five models (Unit:mtoe).

Year Raw
Data

MGM
Fitting
Value

NMGM
Fitting
Value

ARIMA (11,1,2)
Fitting Value

MGM-ARIMA
(3,0,9) Fitting

Value

NMGM-ARIMA
(4,1,1) Fitting

Value

2000 24.7252 24.7252 24.7252 24.7252 24.2885 24.7252
2001 26.6129 26.4917 26.4926 25.5111 26.2707 26.5720
2002 27.5444 27.2467 27.2482 27.5392 26.9254 27.3952
2003 27.1190 28.0232 28.0253 27.9491 26.7398 26.8756
2004 29.3231 28.8218 28.8246 28.1713 29.5874 29.5278
2005 30.4504 29.6432 29.6467 31.4469 29.2630 29.7684
2006 31.6666 31.4755 31.4718 31.0226 31.5284 31.6552
2007 33.1097 33.4884 32.5918 32.9752 33.2940 33.4650
2008 32.5465 34.4190 34.4112 34.5129 32.0962 32.1749
2009 34.3482 33.8933 33.4706 34.8919 34.3922 34.1104
2010 37.2472 34.8381 34.3667 37.2656 35.9700 35.7398
2011 39.3385 38.0948 38.0857 39.1968 38.8543 39.2275
2012 39.9579 42.0569 42.0644 39.7740 41.7028 41.4293
2013 43.3790 42.6155 41.3733 43.2524 43.5410 43.3391
2014 47.9040 44.9973 44.9876 48.0133 45.4742 45.4348
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Figure 10. Comparison of NMGM and NMGM-ARIMA.

It can be seen roughly from Figures 7 and 8 that the deviation of MGM and NMGM is reduced
after being corrected by ARIMA model at some points, which shows that it is reasonable and effective
to use ARIMA to correct MGM and NMGM. In other words, the combined model is more accurate than
the single model. As can be seen from Figure 9, there are not many differences between the absolute fit
of the five models and the raw data. In order to see the accuracy of the five models more accurately,
we explain them using formulas. First of all, as mentioned in the Method part, the MAPE of five models
is calculated by using Excel. As show in Table 14, firstly, the accuracy of NMGM-ARIMA is the highest,
followed by MGM-ARIMA and ARIMA, and finally MGM and NMGM; secondly, the combined model
does improve the accuracy of a single grey model. Thirdly, criteria of MAPE is shown as Table 15,
which is also the standard of the acceptability of the forecasting error. And the MAPE of the five
models is lower than 5%, which shows that the five models are quite reliable.

Table 14. Error of Five Models.

MGM MGM-ARIMA(3,0,9) ARIMA(11,1,2) NMGM NMGM-ARIMA(4,1,1)

MAPE 2.8216% 2.0969% 1.5013% 2.9697% 1.4654%

Table 15. Criteria of mean absolute per error (MAPE).

MAPE (%) Forecasting Power

<10 Excellent
10–20 Good
20–50 Reasonable
>50 Incorrect

Finally, the prediction errors of each model are calculated by formula (22). The accuracy of the
five models is shown in Figure 11. As can be seen from the chart, although the accuracy of all models
varies every year, it still exceeds 90%. This shows that these five models are very accurate and can be
used for prediction.



Energies 2019, 12, 3278 19 of 24

Energies 2019, 12, x FOR PEER REVIEW 19 of 24 

 

 

Figure 11. Goodness of fit for Five Models at different time points. 

4.7. Prediction Results 

From the above analysis, the prediction results obtained by these five models have high 

accuracy. In this paper, the primary energy consumption in East Africa from 2018 to 2030 can be 

predicted Table 16 shows the forecast results of the five models. Figure 12 shows the predicted results 

of the five models. 

Table 16. Primary energy forecast results for East Africa (Unit：mtoe). 

 MGM NMGM ARIMA(11,1,2) MGM-ARIMA(3,0,9) 
NMGM-ARIMA 

(4,1,1) 

2018 55.0936 55.1227 55.7106 56.5922 58.0108 

2019 57.0484 57.7738 57.6927 56.8401 58.3880 

2020 59.2440 59.9616 59.5321 57.2969 58.8521 

2021 61.2762 62.9231 61.4511 60.0575 63.6027 

2022 63.5449 65.5126 64.7580 64.2203 67.7430 

2023 65.8450 68.7909 70.1049 66.1489 69.6403 

2024 68.1709 71.7930 73.7653 66.7320 71.3927 

2025 70.6477 75.4205 76.2181 69.0905 76.1446 

2026 73.1826 78.8638 80.8147 72.9075 80.6821 

2027 75.8097 82.8894 85.9204 75.8358 83.8636 

2028 78.5456 86.8177 88.5782 77.5107 86.9145 

2029 81.3472 91.3016 90.4780 79.7870 92.0956 

2030 84.2788 95.7718 94.2071 83.3983 97.3364 

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

Prediction Accuracy

MGM NMGM

ARIMA(11,1,2) NMGM-ARIMA(4.1,1)

MGM-ARIMA(3,0,9)

Figure 11. Goodness of fit for Five Models at different time points.

4.7. Prediction Results

From the above analysis, the prediction results obtained by these five models have high accuracy.
In this paper, the primary energy consumption in East Africa from 2018 to 2030 can be predicted
Table 16 shows the forecast results of the five models. Figure 12 shows the predicted results of the
five models.

Table 16. Primary energy forecast results for East Africa (Unit: mtoe).

MGM NMGM ARIMA(11,1,2) MGM-ARIMA(3,0,9) NMGM-ARIMA (4,1,1)

2018 55.0936 55.1227 55.7106 56.5922 58.0108
2019 57.0484 57.7738 57.6927 56.8401 58.3880
2020 59.2440 59.9616 59.5321 57.2969 58.8521
2021 61.2762 62.9231 61.4511 60.0575 63.6027
2022 63.5449 65.5126 64.7580 64.2203 67.7430
2023 65.8450 68.7909 70.1049 66.1489 69.6403
2024 68.1709 71.7930 73.7653 66.7320 71.3927
2025 70.6477 75.4205 76.2181 69.0905 76.1446
2026 73.1826 78.8638 80.8147 72.9075 80.6821
2027 75.8097 82.8894 85.9204 75.8358 83.8636
2028 78.5456 86.8177 88.5782 77.5107 86.9145
2029 81.3472 91.3016 90.4780 79.7870 92.0956
2030 84.2788 95.7718 94.2071 83.3983 97.3364
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5. Conclusions

In this paper, the primary energy demand of East Africa in the next 13 years is predicted by virtue
of BP Statistical Review of World Energy 2018. The main conclusions (findings) are as follows:

(1) In this study, five methods (MGM, NMGM, ARIMA, MGM-ARIMA, and NMGM-ARIMA)
are used to fit the primary energy consumption of East Africa from 2000 to 2017. On the one hand,
the average relative errors of the five models are 2.8216%, 2.9697%, 1.5013%, 2.0969%, and 1.4654%,
respectively. The average relative errors of the five models are all less than 3%. This shows that the
five models are suitable for prediction and can produce reliable prediction information. On the other
hand, compared with MGM and NMGM models, the average relative errors of models after ARIMA
correction decreased from 2.8216%, 2.9697% to 2.0969%, 1.4624%, which showed the advantages of the
combined model respectively.

(2) This work studies the future trend of primary energy consumption in East Africa. According
to the fitting results of five models, future average growth rate of primary energy demand in East
Africa is about 4% in the future. In short, this means that the demand for primary energy in East Africa
will continue to increase from 2018 to 2030, and East Africa has great potential in energy market.

In addition, the results showed that MGM is more accurate than NMGM that may be explained
by the linearity of raw data, whilst there are some cusps that means nonlinearity. But after
ARIMA correction, the NMGM-ARIMA is more accurate than MGM-ARIMA. The results show that
NMGM-ARIMA is an improvement of MGM-ARIMA and MGM when data is nonlinear. And further
research is needed on the application and improvement of MGM and NMGM.
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reagents/materials/analysis tools, and wrote the paper; R.L. conceived and designed the experiments
and wrote the paper. All authors read and approved the final manuscript.
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