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Abstract: Prognostics of the remaining useful life (RUL) of lithium-ion batteries is a crucial role in
the battery management systems (BMS). An artificial neural network (ANN) does not require much
knowledge from the lithium-ion battery systems, thus it is a prospective data-driven prognostic
method of lithium-ion batteries. Though the ANN has been applied in prognostics of lithium-ion
batteries in some references, no one has compared the prognostics of the lithium-ion batteries based
on different ANN. The ANN generally can be classified to two categories: the shallow ANN, such as
the back propagation (BP) ANN and the nonlinear autoregressive (NAR) ANN, and the deep ANN,
such as the long short-term memory (LSTM) NN. An improved LSTM NN is proposed in order to
achieve higher prediction accuracy and make the construction of the model simpler. According to the
lithium-ion data from the NASA Ames, the prognostics comparison of lithium-ion battery based on
the BP ANN, the NAR ANN, and the LSTM ANN was studied in detail. The experimental results
show: (1) The improved LSTM ANN has the best prognostic accuracy and is more suitable for the
prediction of the RUL of lithium-ion batteries compared to the BP ANN and the NAR ANN; (2) the
NAR ANN has better prognostic accuracy compared to the BP ANN.

Keywords: lithium-ion battery; prognostics; remaining useful life (RUL); nonlinear autoregressive
(NAR); long-short term memory (LSTM)

1. Introduction

Lithium-ion batteries have been widely used from portable electronics to battery-driven
hybrid vehicles owing to their higher energy density, higher output voltage, lower self-discharge,
longer lifetime, higher reliability and other advantages compared to other types of batteries available
in the market [1–3]. The lithium-ion battery failure consequence have different levels of severity:
from performance degradation to catastrophic failure [4]. The lithium-ion battery failure caused
several Boeing 787 to be caught fire and caused all airliners to be grounded indefinitely in 2013 [5].
Therefore, It is imperative and highly desired to detect the performance degradation and to predict the
remaining useful life (RUL) of lithium-ion batteries. Prognostics and health management (PHM) are
the technologies to evaluate the reliability of a system in its actual life cycle conditions to determine
the RUL [6,7]. One of the major work of prognostics is to predict RUL [1]. In this paper, we consider
the battery will fail when the battery’s capacity drops to 70% of its initial capacity, because both the
battery’s capacity and power will drop much faster after this point, and the battery is unreliable and
should be replaced [8,9].

Existing methods for lithium-ion batteries’ RUL prediction roughly can be classified into two main
categories: the physics-of-failure (PoF)-based method and the data-driven method [1,2]. The PoF-based
prognostic methods depend on the battery physical characteristics, i.e., a battery’s material property,
its failure mechanism and life cycle loading conditions, and tend to be computationally complex [10].

Energies 2019, 12, 3271; doi:10.3390/en12173271 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/12/17/3271?type=check_update&version=1
http://dx.doi.org/10.3390/en12173271
http://www.mdpi.com/journal/energies


Energies 2019, 12, 3271 2 of 13

Thus, the data-driven prognostic approach have widely been used because it does not require the
extensive knowledge mentioned before. Among data-driven prognostic approaches, the particle filter
(PF) and relevance vector machine (RVM) are two popular lithium-ion batteries’ RUL prognostic
approach [1]. PF is a sequential Monte Carlo method, which estimates the state probability distribution
function (PDF) from a set of “particles” and their associated weights [1]. Long [2] proposed prognostic
approach for lithium-ion batteries RUL based on the Verhulst model, particle swarm optimization (PSO)
and particle filter. Miao [11,12] proposed several modified particle filter algorithms for lithium-ion
battery RUL prediction. However, RUL prediction accuracy based on PF is limited by the particle
degeneracy problem [8,9]. Compared to Support Vector Machine (SVM), RVM is constructed under
Bayesian framework and thus has probabilistic outputs [1,13]. An intelligent prediction method for a
battery health is proposed based on sample entropy feature, SVM and RVM [14]. Their results showed
that RVM is better than SVM in battery health prognostics. However, the training time of RVM is too
long and RVM may not ultimately reflect the battery degradation trends [1,2].

In addition to the above methods, artificial neural networks (ANN) were also used in RUL
prediction of lithium-ion batteries [1,8,9,15–18]. ANN generally can be classified to two categories:
the shallow ANN, such as the back propagation (BP) ANN and the nonlinear autoregressive (NAR)
ANN, and the deep ANN, such as the long short-term memory (LSTM). Wu et al. [15] proposed a
RUL prediction method based on transfer components analysis and a feed forward neural network.
Pang et al. [16] proposed a lithium-ion battery RUL prediction method based on a nonlinear auto
regressive neural network. Liu et al. [17] proposed an adaptive recurrent neural network (ARNN)
for system dynamic state prediction and validated that the ARNN showed better learning capability
than classical training algorithms, including RVM and PF methods. Rezvani et al. [18] used both
recurrent neural network (RNN) and linear prediction error method to estimate the battery capacity
and RUL. But the RNN gradients will vanish and will be unable to learn any longer if RNN allows the
storage of information over some time [8,9]. The long short-term memory (LSTM) is a deep-learning
neural network, which is explicitly designed to learn the long-term dependencies [19]. LSTM has
been successfully applied in machine translation [20], travel time prediction [21], and wind power
prediction [22]. Though the ANN has been applied in prognostics of lithium-ion batteries in some
references [8,15–18], no one has compared the prognostics of the lithium-ion batteries based on different
ANN. Therefore, it is very interesting to compare the prognostics of the lithium-ion batteries based
on different ANN, such as BP, NAR, and LSTM. The structure of the BP ANN is relatively simple.
The NAR ANN retains the information of the previous data through feedback and delay. The LSTM
model has a simple structure and uses it for RUL prediction of lithium-ion batteries. It not only gives
the uncertainty of prediction results, but also has short training time and can achieve better prediction
results in the early, middle and late stages. At the time of writing, this paper is the first to compare the
prognostics of the lithium-ion batteries based on different ANN, i.e., BP, NAR, and LSTM. An improved
LSTM NN is also proposed in order to achieve higher prediction accuracy and make the construction
of the model simpler.

This paper is organized as follows: Section 2 describes the battery data and evaluation index,
Section 3 describes the different ANN models of RUL prediction method based on BP, NAR, and LSTM,
Section 4 gives the experimental results and discussion of RUL prognostics, and conclusions is presented
in Section 5.

2. Data and Evaluation Index

2.1. Data Description

The lithium-ion battery data we used in the prognostics analysis of this work was retrieved from
the NASA Ames Prognostics Center of Excellence (PCoE) data repository [23]. The lithium-ion battery
is a 18650 lithium-ion battery with a rated capacity of 2 Ah. A set of li-ion batteries (#B5) were run
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through three different operational profiles (charge, discharge and impedance) at room temperature
(24 ◦C). The capacity data of a lithium-ion battery is measured in a discharge cycle.

The voltage and current at a charge and discharge cycle is shown in Figure 1. And multiple
charging and discharging cycles is to repeat the process until the batteries reached end-of-life (EOL)
criteria, which was a 30% fade in rated capacity.

(a) Charging process: Charging was carried out in a constant current model at 1.5 A until the battery
voltage reached 4.2 V and then continued in a constant voltage model until the charge current
dropped to 0.02 A.

(b) Discharging process: Discharge was carried out at a constant current level of 2 A until the battery
fell to 2.7 V for batteries #B5.
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Figure 1. The voltage and current at a charge and discharge cycle.

When the actual capacity of the lithium-ion battery drops to 70% of the rated capacity, that is,
from 2 Ahr to 1.4 Ahr, the experiment stops, which means that the lithium-ion battery reaches the
cut-off life point. The capacity decline curve of the #B5 battery is shown in the Figure 2.

The capacity degradation curve of lithium-ion batteries is obvious nonlinear, non-Gaussian
characteristics, as shown in Figure 2. The battery is needed to be charged and discharged continuously,
thus the capacity of the battery will degrade over time. Due to the good continuity of the capacity
degradation trend, the actual capacity of the battery can be used to characterize the health status of the
lithium-ion battery. Therefore, the end of life (EOL) of the lithium-ion battery can be defined as the
number of discharge cycles when the actual capacity drops to the specified capacity threshold for the
first time. For the sake of simplicity, the capacity threshold is defined as 1.38 Ahr, which is an integer
multiple cycles and is near to 70% of the rated capacity.
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In addition, it will be interesting to observe that the temperature inside the lithium-ion battery
changes with the charge and discharge cycle at room temperature (24 ◦C). As can be seen from the
Figure 3, during the discharge process, the temperature of the battery gradually increased at first,
then dropped quickly in the end.
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2.2. Data Normalized

The input should be normalized by the follow formula:

x′ =
x− xmin

xmax − xmin
(1)

where x is the actual measured values; xmin and xmax are the minimum and maximum in the original
sequence correspondingly; x′ is the normalized value, which belong to [0, 1].

2.3. Evaluation Index

In order to evaluate the prediction accuracy of the network model quantitatively, the absolute
error, relative error and root mean square error of the lithium-ion battery RUL prediction can be used
for analysis.

RUL−ae = |EOP− EOL|
RUL−re(%) = RUL−ae

EOL ∗ 100%

RMSE =

√
1
N

N∑
i = 1

(
y′i − yi

)2
(2)

where EOP (end of prediction) represents the predicted battery end of life; RUL_ae represents the
predicted absolute error; RUL_re (%) represents the predicted relative error; RMSE represents the root
mean square error.

When the corresponding input and output of the network model are determined, one of the
problems that comes with it is how to determine the number of hidden layers and the number of hidden
layer nodes. In general, only the network structure with one hidden layer is considered, because firstly
a network included one hidden layer with enough neurons can solve any finite input-output mapping
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problem; secondly, it is more difficult to increase the prediction accuracy by adding hidden layer
than increasing the number of hidden layer nodes in actual training. At present, there is no accurate
mathematical formula for the selection of the number of hidden nodes in the NN, and most of them
are based on the following empirical model.

m =
√

n + l + α
m = log2 n
m =

√
nl

(3)

where m represents the number of hidden layer nodes; n represents the number of input layer nodes;
l represents the number of output layer nodes; α is a constant between 1 and 10.

3. Different NN Models

3.1. The BP NN Model

The BP NN belongs to a kind of multilayer feedforward NN. It advances layer by layer according
to the weight coefficient during training, and it adjusts the weight and bias of the network dynamically
based on the back propagation algorithm. Structurally, it consists of an input layer, an output layer,
and a hidden layer; in essence, the BP algorithm uses the squared error sum of the network as the
objective function and uses the gradient descent method to calculate the minimum value of the objective
function. Its basic structure is shown in the Figure 4:
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The neural model in Figure 4 can be expressed mathematically as,

am
j = σ

 k∑
i = 1

wm
ji a

m−1
i + bm

j

 (4)

where the input values of a node, am−1
i , replicate the dendrites of the biological neuron and are

multiplied by their respective connection weights, wm
ji , and then summed. The summation is applied

to the function of node σ, along with the bias bm
j , giving as a result the activation value of the node am

j .

3.2. The NAR NN Model

The dynamic NN can add the data saved at the previous time to the calculation of the data at a later
time through feedback and delay, so it is more suitable for the prediction of time series. Among them,
the NAR NN is a kind of dynamic NN, which has been widely used in practical applications. Its basic
structure is shown in Figure 5.
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y(t) = f (y(t− 1), y(t− 2), . . . , y(t− d)) (5)

As can be seen in equation (5), the output y(t) is defined by y(t− 1), y(t− 2), . . . , y(t− d),
which indicates that the current value of the system is determined by past values.

3.3. The LSTM NN Model

In general, the time series prediction modeling is a difficult problem, because unlike regression
prediction modeling, the interdependence between time series makes the problem difficult. As a kind
of deep learning network structure, LSTM has the advantage that the context of data is considered in
the training process. Compared with the traditional data-driven prediction method, the LSTM network
has stronger nonlinear approximation ability. The general structure of the LSTM network is shown
graphically in Figure 6.

There is a structure called “gate” in LSTM to remove or increase the ability of information to be
passed to the memory unit. A gate is a structure that allows information to pass selectively. It consists
of a sigmoid NN layer and a point multiplication operation. The sigmoid layer outputs a value between
0 and 1, describing how much of each part can pass. In a memory unit, there are three types of gates,
namely a forgotten gate, an input gate, and an output gate, which are described in detail below.Energies 2019, 12, x 7 of 14 
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Forget gate: ft. takes inputs of xt and ht−1, and outputs a number between 0 and 1 for each state
Ct−1. A = 1stands for retaining the state value completely, whereas A = 0 represents discarding the
value completely. The forget gate is calculated as follows:

ft = σ
(
W f [ht−1, xt] + b f

)
(6)

Input gate and input node: “input gate”, it, decides which values to update. “input node”, C̃t,
creates a new candidate state Ct. The equations to calculate the two outputs are as follows:

it = σ(Wi[ht−1, xt] + bi)

C̃t = tanh(WC[ht−1, xt] + bC)
(7)

Combing (6) and (7) to update the previous internal state Ct−1 into the current state Ct:

Ct = ft ∗Ct−1 + it ∗ C̃t (8)

Output gate: finally, there is a sigmoid layer called the “output gate”, ot, that determines
what information to output. After putting the internal state Ct through a tanh layer This can be
implemented as:

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)
(9)

where W and b are the layer weights and biases, respectively.

3.4. The Improved LSTM Model

The LSTM model selects the historical capacity data of the lithium-ion battery as an input variable
to predict the remaining capacity of the lithium-ion battery in the future. Taking the #B5 battery as an
example, the length of the capacity data is 168, that is:

X = {x1, x2, . . . , x168} (10)

The original capacity data is then divided into training sets Xtrain and testing sets Xtest based on
the predicted starting point T. The Xtrain will be normalized by the methods presented in the previous
parts and X′train will be got, namely:

X′train =
{
X′1, X′2, . . . , X′T

}
(11)

In the traditional LSTM prediction methods, XTrain =
{
X′1, X′2, . . . , X′T−1

}
and

YTrain =
{
X′2, X′3, . . . , X′T

}
will be defined as the input and output to construct a LSTM model.

Since there are few data samples, a data construction method of the following form is proposed
in order to achieve higher prediction accuracy and make the construction of the model simpler.
Assuming that the width of the split window is L and m = T − 1, the input and output of the LSTM
model can be expressed as:

X = {X1, X2, . . . , XL}

XT
i =

{
x′i , x′i+1, . . . , x′m−L+i−1

}
Y = {Y1, Y2, . . . , YL}

YT
i =

{
x′i+1, x′i+2, . . . , x′m−L+i

} (12)

where i belongs to [1, L]; x′i represents the normalized data sequence value; X represents the input of
the network; Y represents the output label of the corresponding input.

According to our lots of simulation experiments and relative references, the width of the split
window is set 12, i.e., l = n = 12, thus m belongs to (5, 15) based on the data processing method in
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Equations (3) and (12). Under the same conditions, we have studied the variation of the RMSE of the
LSTM network with m, as shown in the Figure 7. As can be seen from the Figure 7, when m is equal to
13, the root mean square error of the network is the smallest, so m = 13 in this paper.
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4. Results and Discussion

The software package and the version used to implement all three NNs structures is MATLAB2018a.
For the LSTM network model in this paper, according to our analysis and pre-experiments mentioned
above, l = n = 12, m = 13, α = 8, the learning rate is set 0.005. The predicted starting point is set
T1 = 69, T2 = 89, T3 = 109 for #B5. The battery will be predicted 200 times at each prediction
starting point and the point not reached failure threshold will be eliminated. Figures 8–10 show the
prediction results at three different prediction starting points.
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the prediction result is 124 and the relative error is−4.
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The prediction result of LSTM at T3 = 109 is shown in Figure 10. As can be seen in the Figure 10,
the prediction result is 131 and the relative error is 3.

The LSTM model can achieve a good prediction accuracy of the lithium-ion battery capacity,
as shown in Figures 8–10. In order to observe the prediction effect of the LSTM model under different
prediction starting points intuitively, the probability distribution histograms (PDH) of the #B5 battery
prediction results at different prediction starting points is shown in Figures 11–13.
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The probability distribution histograms and the probability distribution curve of the LSTM model
after 200 tests is shown in Figure 11. As can be seen in Figures 8 and 11, due to the randomness of
the network in initializing weights and bias, the prediction results are not same at each test, but the
improved LSTM model proposed in this paper can approach the real life cut-off point of lithium-ion
batteries with a high probability from the long-term prediction results, which verify the validity of
the model.

Figure 12 is similar to Figure 11, except that it is a statistical distribution of #B5 with the improved
LSTM model after 200 tests at T2 = 89. As seen in Figure 12, the prediction result is 130, which is very
close to the real life cut-off point of the lithium-ion battery.Energies 2019, 12, x 11 of 14 
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Figure 12. The PDH of LSTM prediction results at T2 = 89.

From the probability distribution histogram of the prediction results, when we use 69, 89, 109 as
the prediction starting point of the network to predict the remaining service life of the lithium-ion
battery, the life expectancy cutoff point of the battery B5 is 124, 130, 131, respectively. The corresponding
probabilities are 29%, 35%, and 42.5%, respectively. In addition, we can also see that the normal
distribution probability density curve fitted by the prediction results becomes thinner and thinner with
the increase of the prediction starting point, which indicates that the accuracy of the prediction is also
gradually increasing.
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In order to compare the prognostics of the lithium-ion batteries based on different ANN, such as
BP, NAR, and LSTM, the comparison results of the three algorithms are shown in Figure 14 and Table 1.
The parameters for LSTM and NAR are: n = l = 12, m = 13, α = 8, d = 20.Energies 2019, 12, x 12 of 14 
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Table 1. the comparison of three algorithms of #B5.

Algorithm Origin EOP RUL_ae RUL_re (%) RMSE

BP
T1 = 80 152 24 18.75 0.0586
T2 = 90 147 19 14.84 0.0394

T3 = 100 133 5 3.91 0.0233

NAR
T1 = 80 148 20 15.63 0.0493
T2 = 90 138 10 7.81 0.0373

T3 = 100 123 5 3.91 0.0282

LSTM
T1 = 80 141 13 10.16 0.0352
T2 = 90 132 4 3.12 0.0302

T3 = 100 130 2 1.56 0.0118

As can be seen from Table 1, among the three prediction algorithms, LSTM has the highest prediction
accuracy. When 80, 90, and 100 are used as prediction starting points respectively, the corresponding
absolute errors are 13, 8, and 2, and the relative errors are 10.16%, 6.25%, and 1.56%. From the absolute
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error, relative error and RMSE corresponding to the prediction results, the LSTM model is indeed
more accurate than the static BP network and the dynamic NAR network. By comparing these three
different prediction algorithms, we can know that the LSTM network is better for the time series
problem of lithium-ion battery life prediction, and the learning ability of the degradation process is
stronger. In addition, the NAR ANN has the better prognostic accuracy compared to the BP ANN.

5. Conclusions

An improved LSTM prediction method for lithium-ion battery RUL estimation is proposed in this
paper. And the prognostics comparison of lithium-ion battery based on the BP ANN, the NAR ANN
and the LSTM ANN has been studied in detail. The experimental results show: (1) compared with
the static NN prediction model and the dynamic NN prediction model, the LSTM model based on
the deep learning theory can achieve better dependence, lower prediction error and higher prediction
accuracy; (2) the NAR ANN has the better prognostic accuracy compared to the BP ANN.

For lithium-ion batteries, the error and accuracy of the prediction results obtained by applying the
LSTM model are different at different prediction starting points. By analyzing the prediction results of
the B5 using the LSTM model, the more the predicted starting point is, that is, the more samples are
trained, the higher the accuracy of the obtained network model, but the longer the training model
takes, a balance needs to be struck between prediction accuracy and training time.

Author Contributions: Methodology, B.L.; software and writing original draft, X.L.; editing, X.G.;
project administration, Z.L.

Funding: This work was supported in part by National Natural Science Foundation of China under
Grants U1830133.

Acknowledgments: The authors would like to thank NASA Ames Prognostics Center of Excellence (PCoE) for
their lithium-ion battery experimental data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, J.; Lee, J. A review on prognostics and health monitoring of Li-ion battery. J. Power Sources 2011, 196,
6007–6014. [CrossRef]

2. Long, B.; Xian, W.; Jiang, L.; Liu, Z. An improved autoregressive model by particle swarm optimization for
prognostics of lithium-ion batteries. Microelectron. Reliab. 2013, 53, 821–831. [CrossRef]

3. Xian, W.; Long, B.; Li, M.; Wang, H. Prognostics of Lithium-Ion Batteries Based on the Verhulst Model,
Particle Swarm Optimization and Particle Filter. IEEE Trans. Instrum. Meas. 2014, 63, 2–17. [CrossRef]

4. Eom, S.W.; Kim, M.K.; Kim, I.J.; Moon, S.I.; Sun, Y.K.; Kim, H.S. Life prediction and reliability assessment of
lithium secondary batteries. J. Power Sources 2007, 174, 954–958. [CrossRef]

5. Williard, N.; He, W.; Hendricks, C.; Pecht, M. Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion
Battery Reliability. Energies 2013, 6, 4682–4695. [CrossRef]

6. Vasan, A.S.S.; Long, B.; Pecht, M. Diagnostics and Prognostics Method for Analog Electronic Circuits. IEEE
Trans. Ind. Electron. 2013, 60, 5277–5291. [CrossRef]

7. Long, B.; Xian, W.; Li, M.; Wang, H. Improved diagnostics for the incipient faults in analog circuits using
LSSVM based on PSO algorithm with Mahalanobis distance. Neurocomputing 2014, 133, 237–248. [CrossRef]

8. Ren, L.; Zhao, L.; Hong, S.; Zhao, S.; Wang, H.; Zhang, L. Remaining Useful Life Prediction for Lithium-Ion
Battery: A Deep Learning Approach. IEEE Access 2018, 6, 50587–50598. [CrossRef]

9. Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long short-term memory recurrent neural network for remaining
useful life prediction of lithium-ion batteries. IEEE Trans. Vehicl. 2018, 67, 5695–5705. [CrossRef]

10. Gu, J.; Barker, D.; Pecht, M. Prognostics implementation of electronics under vibration loading. Microelectron.
Reliab. 2007, 47, 1849–1856. [CrossRef]

11. Miao, Q.; Xie, L.; Cui, H.; Liang, W.; Pecht, M. Remaining useful life prediction of lithium-ion battery with
unscented particle filter technique. Microelectron. Reliab. 2013, 53, 805–810. [CrossRef]

http://dx.doi.org/10.1016/j.jpowsour.2011.03.101
http://dx.doi.org/10.1016/j.microrel.2013.01.006
http://dx.doi.org/10.1109/TIM.2013.2276473
http://dx.doi.org/10.1016/j.jpowsour.2007.06.208
http://dx.doi.org/10.3390/en6094682
http://dx.doi.org/10.1109/TIE.2012.2224074
http://dx.doi.org/10.1016/j.neucom.2013.11.012
http://dx.doi.org/10.1109/ACCESS.2018.2858856
http://dx.doi.org/10.1109/TVT.2018.2805189
http://dx.doi.org/10.1016/j.microrel.2007.02.015
http://dx.doi.org/10.1016/j.microrel.2012.12.004


Energies 2019, 12, 3271 13 of 13

12. Zhang, X.; Miao, Q.; Liu, Z. Remaining useful life prediction of lithium-ion battery using an improved UPF
method based on MCMC. Microelectron. Reliab. 2017, 75, 288–295. [CrossRef]

13. Zhao, Q.; Qin, X.; Zhao, H.; Feng, W. A novel prediction method based on the support vector regression for
the remaining useful life of lithium-ion batteries. Microelectron. Reliab. 2018, 85, 99–108. [CrossRef]

14. Widodo, A.; Shim, M.-C.; Caesarendra, W.; Yang, B.-S. Intelligent prognostics for battery health monitoring
based on sample entropy. Expert Syst. Appl. 2011, 38, 11763–11769. [CrossRef]

15. Jia, B.; Guan, Y.; Wu, L. A State of Health Estimation Framework for Lithium-Ion Batteries Using Transfer
Components Analysis. Energies 2019, 12, 2524. [CrossRef]

16. Pang, X.; Huang, R.; Wen, J.; Shi, Y.; Jia, J.; Zeng, J. A Lithium-ion Battery RUL Prediction Method Considering
the Capacity Regeneration Phenomenon. Energies 2019, 12, 2247. [CrossRef]

17. Liu, J.; Saxena, A.; Goebel, K.; Saha, B.; Wang, W. An Adaptive Recurrent Neural Network for Remaining
Useful Life Prediction of Lithium-Ion Batteries. In Proceedings of the Annual Conference Prognostics Health
Management Society, Portland, OR, USA, 10–14 October 2010; pp. 1–9.

18. Rezvani, M.; AbuAli, M.; Lee, S.; Lee, J.; Ni, J. A comparative analysis of techniques for electric vehicle
battery prognostics and health management (PHM). SAE Tech. Pap. 2011. [CrossRef]

19. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

20. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput.
2000, 12, 2451–2471. [CrossRef] [PubMed]

21. Duan, Y.; Lv, Y.; Wang, F.Y. Travel Time Prediction with LSTM Neural Network. In Proceedings of the
IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4
November 2016; pp. 1053–1058.

22. Funaya, K.; Guo, T.; Xu, Z.; Yao, X.; Chen, H.; Aberer, K. Robust Online Time Series Prediction with Recurrent
Neural Networks. In Proceedings of the IEEE International Conference on Data Science and Advanced
Analytics (DSAA), Montreal, QC, Canada, 17–19 October 2016; pp. 816–825.

23. Saha, B.; Goebel, K. Battery Data Set, NASA Ames Prognostics Data Repository; NASA Ames: Moffett Field, CA,
USA, 2007.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.microrel.2017.02.012
http://dx.doi.org/10.1016/j.microrel.2018.04.007
http://dx.doi.org/10.1016/j.eswa.2011.03.063
http://dx.doi.org/10.3390/en12132524
http://dx.doi.org/10.3390/en12122247
http://dx.doi.org/10.4271/2011-01-2247
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1162/089976600300015015
http://www.ncbi.nlm.nih.gov/pubmed/11032042
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Evaluation Index 
	Data Description 
	Data Normalized 
	Evaluation Index 

	Different NN Models 
	The BP NN Model 
	The NAR NN Model 
	The LSTM NN Model 
	The Improved LSTM Model 

	Results and Discussion 
	Conclusions 
	References

