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Abstract: The traditional shading systems that greenhouses use cause some of the solar radiation
that is reflected or absorbed to be lost and, therefore, not used by the plants under cultivation.
An interesting solution to these problems is to position photovoltaic (PV) panels on the roofs of
greenhouses. All of the photovoltaic greenhouses that have been realized in Mediterranean areas
are characterized by a fixed position of the PV panels and excessive shading, especially in autumn
and winter. The purpose of this study is to describe a prototype of a photovoltaic greenhouse with
both fixed and horizontal PV panels that exploit the natural variation in the elevation angle of the
sun’s rays during the year to allow for “passive” variation in shading. The considerable variation in
the elevation angle of the sun’s rays (from 24.4◦ to 71.1◦) results in a high variation in shading (from
39.4% to 72.6%), with the highest values in the summer months and the lowest values in the winter
months. This trend is favorable for meeting the photosynthetically active radiation (PAR) needs of
greenhouse plants. If the plants under cultivation require more solar energy, it is necessary to increase
the distance between the panels. We implement a specific mathematical relationship to define the
precise distance to be assigned to the photovoltaic panels on the roof pitch.

Keywords: passive variation of shading; fixed horizontal PV panels; PAR; renewable source; passive
cooling system

1. Introduction

Climate changes in recent decades have been causing adverse weather conditions to occur more
frequently. Crops in the open field are subject to strong tensions that can cause deficits in agricultural
production and undermine the satisfaction of growing demand. All this requires the cultivation of
a substantial number of crops in a protected environment. The use of greenhouses is one way to
maintain crops and increase plant production despite a difficult and unstable external climate [1].

Badgery-Parker defines a greenhouse as “a covered structure that provides plants with an
optimally controlled environment for the adjustment of climate growth conditions to reduce the cost of
production and increase crop yields” [2]. The parameters that characterize the microclimate inside the
greenhouse can be kept under control thanks to specific cooling and heating systems; it is not possible
to do the same with open-field crops [3]. In this way, greenhouse cultivation can be functional [4] and
predictable [5]. These systems for monitoring the internal environment of the greenhouse allow for an
increase in crop yields and quality [6]. During hot seasons, the temperature inside the greenhouse
can increase a lot during the day; therefore, cooling systems, such as ventilation and/or shading, are
needed. In winter or during the night, the temperatures are reduced and not favorable to growth;
therefore, heating systems are needed [7].

The climate and the available technology and resources influence the choice of methods for
controlling a protected environment [8]. For example, mechanical ventilation and water evaporation
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are the preferred ‘active’ cooling methods in countries with cold climates, an abundance of economic
resources, significant water resources, and low levels of solar radiation [9–11]. ‘Passive’ cooling
methods are more widespread in countries with hot climates, limited water resources, and a scarcity
of economic resources. Indeed, they are less expensive in terms of both initial investment costs and
subsequent costs, as they require less energy and water [8]. According to Leyva et al., these systems
are widespread in “Mediterranean climates characterized by summer temperatures above 35 ◦C, high
solar radiation (about 30 MJ m−2 d−1), a relative humidity below 20% around midday, and limited
water resources generated with a loss of yield in crops” [12].

Several authors have studied cooling systems that can be used in different climatic areas [1,13].
The design of an adequate cooling system is not simple because it depends on the native environmental
conditions, on the crops chosen, on how simple it is to operate the system, and, therefore, on its
maintenance costs and economic profitability [14]. Sethi et al. say that “cooling technologies for
agricultural greenhouse applications can be classified as ventilation (natural and forced), shading,
evaporative cooling, and composite (heat exchanger) systems” [15]. Cooling through shading regulates
the entry of solar radiation [16,17] in order to facilitate plant cultivation [18]. The shading can be
performed with different systems: whitening [19,20], which is an economic method but limited in
time due to rain washout; “external shade cloths” [21–23]; “fixed or mobile reflective screens or
curtains” [24–27]; and “plastic nets” [28–32]. So, “the purpose of all shading methods is to regulate the
amount of solar energy that enters the greenhouse to reduce the heating load” during hot periods,
as mentioned by Abdel-Ghany et al. [33], to reduce water consumption [34–41], and to defend the
crops from heat fatigue [42], chloroplast damage [43], and foliar burns [44–47]. When a greenhouse
has shading, the intensity of the light that reaches the plants is reduced, creating a gradient of air
temperature between the internal and external environment of the greenhouse [5]. Kittas et al. [48] state
that “a 50% shaded greenhouse roof can be effective in lowering the internal greenhouse temperature
by 10 ◦C”, and it can also considerably reduce the temperature of the leaf surface [5]. Based on the
materials that are used for shading, according to Glenn et al., it is possible to hypothesize “a reduction
of light from 20% to 80% and the decrease of light sufficient for most greenhouse applications is
between 30% and 50%” [49].

Ross et al. define photosynthetically active radiation (PAR) as “the radiative flux contained in the
spectral regions between 400 and 700 nm” [50], because plants can convert only the energy possessed
by solar photons of this spectral range into chemical energy [51]. Sun Z. et al. report that “the PAR can
be expressed in terms of solar radiation (Wm−2) or photosynthetic photon flux (µmol m−2 s−1)” [52].
Alados et al. state that the “PAR is a necessary input in applications concerning plant physiology,
biomass production and natural lighting in greenhouses” [53].

The FAO established a trophic solar radiation limit of 8.4 MJ m−2 d−1 in 1990, below which summer
crops cannot grow [54]. This limit was confirmed in a study conducted on tomato plants in southern
Brazil by Andriolo et al. [55]. However, Sandri et al. found, in another study carried out on shaded
tomato plants, a daily solar radiation limit value of 5.0 MJ m−2. This means that the limit identified by
the FAO cannot be considered to apply on a global scale [30]. There is little information in the literature
regarding the upper limit of solar radiation beyond which plants do not survive. However, climatic
restrictions related to the upper limit have been imposed at the air temperature that causes harm to the
respiration and photosynthesis of plants [56,57].

In reality, it is not clear if solar radiation can be used alone as a parameter to guarantee the correct
growth and development of plants because other climatic variables can play a decisive role. For
example, the air temperature, even if correlated with solar radiation, does not change linearly with it
in time and space and, therefore, it would be appropriate to study the effects of the interactions among
different parameters [55].

Excessive shading can modify some morphological, anatomical, and biochemical traits in a more
or less marked and more or less sudden way based on the variety of plant [58], type of plant [59],
duration and intensity of the shading [60], and the period of development of the plant in which the
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shading is applied. Some studies have been done on the effect of shading on plant growth. For example,
Marchiori et al. observed that it produces “thinner and elongated stems” [61–63]. According to Allison
et al. “the leaf nitrogen content decreases linearly with slight reductions from top to bottom of the
vegetable crown” [64,65], while for Lemaire et al. “the leaves become senescent if the light intensity
is lower than the light compensation point” [66]. According to studies by Cai et al., shading delays
flowering [67]; in fact, it reduces the transport of sugar to the buds [68] and modifies the productivity
of the crops. Finally, for Cockshull et al., “the growth rates and the quality of agricultural production
are directly influenced by the amount of solar radiation received during the period of growth” [69].

There are many studies on the effects of the intensity of shading, the duration of shading, and the
type of shading system on agricultural production. For example, Kosma et al. studied the effects of
shading on the production and nutritional quality of lettuce. In winter and spring, the plants were
cultivated with four different levels of intensity of photosynthetically active radiation (26%, 47%,
73%, and 100%). “The results showed that the stomatal conductance and the speed of photosynthesis
decreased significantly in the shaded plants, leading to less biomass and production in both seasons and
the nutritional value (ascorbic acid concentration)” was also found to be significantly decreased [70].
Shifriss et al. showed that pepper plants, when subjected to 60% humidity for 35 days, did not produce
any fruit [71].

These shading systems have two disadvantages. From an energy point of view, the portion of
radiation that is reflected or absorbed will be lost and therefore not used by the plants. From the point
of view of vegetable cultivation, it would be advisable to create mobile shading systems to regulate the
PAR on crops according to their needs. Mobile shading, when applied only during sunny periods, has
been proven to be less harmful than fixed shading to tomato production [72].

Illić et al. state that “when mobile shading was applied under intense sunlight in Spain, it
increased the yield by 10%” [73], and El-Gizawy et al. observed that “the highest tomato production
was achieved with a shading of 35% and more shade eliminated the sunscreen on fruit” [74]. Moreover,
El-Aidy et al. noted that a shading of 40% resulted in an increase in tomato production [75].

An interesting solution to the first problem is to position the photovoltaic (PV) panels on the roofs
of greenhouses to create agrivoltaic (AVS) systems, which Dupraz et al. define as “mixed systems that
combine solar panels and culture at the same time on the same area” [76].

Photovoltaic greenhouses are more diffuse in Mediterranean areas [77]. Moreover, all of the
photovoltaic greenhouses that have been realized in these areas are characterized by a fixed position of
the PV panels and excessive shading, especially in autumn and winter [78].

Excessive shading can have significant effects on crop growth and yield [79]. Excessive shading
and an irregular distribution of light can cause an increase in fruit pathologies and defects (e.g.,
cracking), for which new agronomic strategies are needed [80–82].

To solve problems of excessive shading and to vary the shading within wide limits, mobile PV
panels can be used to realize a self-sufficient greenhouse from an energy point of view—a “zero-impact
greenhouse” [78]—to optimize energy production [83] and agricultural production. A constant shading
value is functional only for certain periods of the year and day and under particular external weather
conditions, such as in the case of clear skies.

To date, research has only developed greenhouses with photovoltaic shielding in a fixed position.
This research gap may be filled by photovoltaic greenhouses with variable shading.

In addition to a solution with mobile PV panels and mirrors [84], it is possible to conceive of
photovoltaic greenhouses that, despite having fixed panels, allow us to vary the shading based on the
climatic conditions and the needs of the plants.

In this study, we present a prototype of a photovoltaic greenhouse with fixed and horizontal PV
panels that exploit the natural variation in the elevation angle of the sun’s rays during the year to allow
for a “passive” variation in shading. This system allows one to vary the shading within wide limits,
increasing it from the autumn and winter months to the summer months in a way that is favorable to
meeting the needs of the plants under cultivation.
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In this research, we do the following:

1. analyze the variation over time of the internal and external solar radiation with the horizontal
fixed PV panels;

2. determine the shading value that is necessary to reach the minimum and maximum thresholds of
solar radiation for some plant species;

3. compare these shading values with those obtained from the fixed and horizontal PV panels in the
different months of the year; and

4. identify a simple mathematical model to determine the optimal distance between the fixed and
horizontal PV panels.

2. Materials and Methods

At the didactic experimental farm “N. Lupori” of the University of Tuscia of Viterbo (42◦25′38” N,
12◦04′51” E; 306 m above sea level), a dynamic photovoltaic greenhouse prototype was built whose
shading could be varied through the rotation of PV panels and mirrors.

The prototype greenhouse’s orientation was in the east–west direction and it had an asymmetrical
section. In this way, the pitch of the south-facing roof had a larger size than the one to the north, and,
based on the latitude of the experimental site, the angle of inclination was found to be optimal for
photovoltaic production. A height angle of 33◦ was obtained with the average of the values of the
angles obtained the 15th day of each month and weighted with the average global daily radiation.
These features have allowed us to position a large number of PV panels and, therefore, maximize the
production of electricity to safeguard agricultural production (Figure 1).
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Figure 1. A three-dimensional (3D) model, created with AutoCAD, of the dynamic photovoltaic (PV)
greenhouse prototype in which the PV panels and mirrors are visible.

The geometrical characteristics of and technical data on the greenhouse prototype are described
in more detail in Marucci et al. [78]. The main details are shown in the Table 1.
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Table 1. Geometric characteristics of the prototype greenhouse.

Geometric Elements Dimensions Unit of Measure

Length 3.79 m
Width 2.41 m

Ridge height 2.05 m
Eave height (south wall) 0.94 m
Eave height (north wall) 1.36 m

Photovoltaic surface 8.15 m2

Photovoltaic pitch slope (south) 33 ◦

Non-photovoltaic pitch slope (north) 51 ◦

Glass thickness 3 mm

The proposed dynamic coverage system allows for continuous shading variation to optimize
the shading’s value according to the needs of the plants under cultivation and external climatic
conditions [84]. The result is a technologically very advanced greenhouse that is extremely flexible but
complex, as it is equipped with control and movement systems for both the PV panels and mirrors.

The actions of external forces (permanent and accidental loads such as snow and wind) were
taken into consideration in the design of the structure. The panels are fixed and horizontal, while the
mirrors are mobile and in extreme adverse conditions can be closed and placed over the PV panels.

However, a simpler way to operate the prototype is with the PV panels positioned horizontally
and fixed, which allows us to passively vary the shading to take advantage of the considerable variation
in the height angle of the sun’s rays: from 24.3◦ to 71.2◦, if located at a latitude of 42.2◦ North. In this
way, variation in shading can be obtained that is less flexible than the above-described shading but
still sufficient to keep the internal solar radiation almost constant during the year, at least during the
central hours of the day. More precisely, with this solution, in the autumn and winter months when
the height angle of the sun’s rays is significantly lower than that during the summer months, there is
less shading and, therefore, more solar radiation incoming into the greenhouse.

Figure 2 shows the strong variability in the inclination angle of the sun’s rays during the year.
The values refer to the latitude of 42.2◦ North.
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With the fixed and horizontal PV panels, in the autumn and winter months, the angle of incidence
of solar rays is high with consequent losses of electric energy due to reflection. The solution that we
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have designed to reduce these losses consists of using high-reflectivity aluminum mirrors that allow
for the collection of a large part of the lost energy. The mirrors rotate parallel to the longitudinal axis so
as to remain constantly aligned with the sun’s rays. Figure 3 shows the principles of physics that allow
for the recovery of energy lost by reflection [78].
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Figure 4. The greenhouse prototype with PV panels fixed in the horizontal position and reflective
mirrors aligned with the sun’s rays.

For the subsequent analysis, it was necessary to calculate the elevation angle of the sun’s rays and
the corresponding shading with the horizontal PV panels.

The following formulas were used to calculate the elevation angle of the sun’s rays:

ω =
360
24

(12− h), (1)
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where n = Julian day, φ = latitude (◦), h = hour of the day; andω = hour angle (◦);

δ = 23.45 sen
[360
365

(284 + n)
]
. (2)

where δ = declination of the sun (◦).
From (1) and (2), we find the cosine of the zenithal angle:

cos θz = senφ senδ+ cosφ cos δ cosω. (3)

Finally, the elevation angle of sun rays α is

α = 90− θz. (4)

Figure 5 shows the elevation angle of the sun’s rays and the degree of shading that was obtained
with the horizontal fixed PV panels. Both were calculated on the 15th day of each month at a latitude
of 42.2◦ North.
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Figure 5. The elevation angle of the sun’s rays and the percentage shading (%Sh) with the fixed
horizontal panels at a latitude of 42.2◦ North and calculated on the 15th day of each month.

For the more clear days close to the 15th of each month of 2018, the external and internal global
solar radiation were measured using a Pyranometer CS300 (Campbell Scientific INC, Logan, UT, USA),
and the production of electricity was measured using a Current Transducer (CE-IZ04-35A2-1.0/0-50A,
DC, Phidgets, Calgary, AB, Canada) and a Voltage Sensor (CE-VZ02-32MS1-0.5, DC 0–200 V, Phidgets,
Calgary, AB, Canada). All sensors were connected to a Campbell CR1000 data acquisition system [78].

The degree of shading, moreover, should respect as much as possible and at any time a request
for solar radiation from the plants under cultivation inside the greenhouse.

The solar radiation requirement of the plants is expressed in PAR as the visible solar radiation
between 400 and 700 nm.

The American Society for Testing and Materials (ASTM) [85] and the photovoltaic industry have
defined the standard spectral distributions of extraterrestrial solar radiation and the global total on the
37th sun facing a tilted surface, which have been modeled using SMARTS2 (version 2.9. 2), a simple
model for Atmospheric Transmission of Sunshine of Gueymard [86–88].

The spectra of solar radiation at sea level and the PAR, which is about 42% of the total solar
radiation with these spectra, are shown in Figure 6.

The PAR value that is necessary for normal plant development varies with the considered species.
Table 2 shows the values, expressed in µmol m−2 s−1, suggested by L. D. Albright [89].

For the purposes of this research, the PAR (µmol m−2 s−1) was divided by 4.6 and by 0.42 and,
therefore, converted into solar radiation (Wm−2). The results obtained are reported in Table 2.

With the thresholds thus converted, the corresponding shading was compared with that obtained
from the fixed horizontal PV panels for the different values of solar radiation. At the latitude of 42.2◦

North, the solar radiation under clear skies at 12:00 passes from about 400 W m−2 in December to
around 900 W m−2 in June. Considering the levels of external solar radiation included between these
values, with an interval of 100 Wm−2, it was possible to identify the percentage of shading to be applied
with the photovoltaic roof to ensure the achievement of the solar radiation thresholds needed for the
species of plants shown in Table 2.

The percentage of shading was calculated as follows:

% Sh =
R0 −

Ri
τ

R0
100, (5)
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where % Sh is percentage shading, R0 is external global solar radiation (W m−2), Ri is total radiation
inside the greenhouse (W m−2), and τ is coverage material transmittance.
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Figure 6. The solar spectral irradiance and photosynthetic active radiation (PAR) (µmol s−1 m−2).

Table 2. Minimum and maximum levels of PAR (µmol m−2 s−1) required by some plant species and
converted into visible solar radiation (W m−2).

Plant Species PAR
(µ mol s−1 m−2)

Solar Radiation
(W m−2)

African Violet (Saintpaulia ionantha) 150–250 78–129
Ornamental leaf plants 150–250 78–129

Carnation (Dianthus caryophyllus) 250–450 129–233
Chrysanthemum (Dendranthema grandiflorum) 250–450 129–233

Lily (Lilium spp.) 250–450 129–233
Geranium (Pelargonium spp.) 250–450 129–233

Poinsettia (Euphorbia pulcherrima) 250–450 129–233
Cucumber (Cucumis sativus L.) 250–450 129–233

Lettuce (Lactuca sativa L.) 250–450 129–233
Cultivated strawberry (Fragaria x ananassa Duch) 250–450 129–233

Rose (Rosa multiflora Thunb) 450–750 233–388
Tomato (Lycopersicon esculentum) 450–750 233–388

A further elaboration was made by applying Formulas (1)–(4). Considering the 15th day of each
month, the value of the elevation angle of the sun’s rays and the corresponding value of the external
solar radiation at 12:00, through the model described by Marucci et al., were calculated [83].

Applying Equation (5), we then calculated the percentage of shading that it was necessary to have
within the greenhouse to achieve the maximum and minimum radiation thresholds for the plant species
shown in Table 2. Finally, the degree of shading necessary to maintain the minimum and maximum
thresholds required for the plants was compared with the degree of shading that was obtained by
positioning the fixed horizontal PV panels in the realized photovoltaic greenhouse prototype.

With this type of greenhouse (horizontal and fixed PV panels), the degree of shading that the
panels provide depends on their distance on the roof pitch. The distance must be determined in the
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design phase in accordance with the needs of the plants to be cultivated. For this purpose, a specific
mathematical calculation relationship was determined.

3. Results and Discussion

From the sections shown in Figure 5, it can be observed that the maximum value of the shading
degree, equal to 72.6%, occurs on 15 June 2018 when the elevation angle of the sun’s rays is equal to
71.1◦. The minimum value of the degree of shading obtained is 39.4% and occurs on 15 December 2018
when the elevation angle of the sun’s rays is 24.4◦. The range of variation in the elevation angle of the
sun’s rays is equal to 46.7◦, while the range of variation in the corresponding shading is 33.2% at the
latitude considered and for the 15th day of each month.

Figure 7 shows the results of the first elaborations on the measured radiation and the electricity
production data, on a clear day representative of each month of the year. In the winter months we took
the least cloudy day because there were no perfectly clear days.

The trend of the measurements made (Figure 7) shows that in the different months of the year
and during the central hours of the day, there is a limited variation in the solar radiation inside the
greenhouse (a maximum value between 206 and 285 W m−2), and a variation in the external solar
radiation of 377–945 W m−2, which favors the optimization of plant production and electricity. In other
words, the system allows for the maintenance of a high level of solar radiation for the plants even in
the winter months due to the passive reduction in shading.

However, the effect due to the reduction in the length of the day remains, which limits the total
amount of solar energy that is available to plants each day in the winter months, limiting the effect
of the reduction in passive shadowing. Figure 8 shows the values of the total daily energy that were
determined with the measured data.

The total amount of solar radiation that is available to the plants each day is almost constant in
the period from March 2018 to October 2018, with an average value of 7.3 MJ m−2 d−1. The critical
months are January, February, November, and December, with an average total internal radiation of
4.6 MJ m−2 d−1 and this, as mentioned above, is mainly due to the reduction of the day’s length.
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Nevertheless, it is interesting to note that the total amount of internal solar radiation in the
four critical winter months represents more than 50% of the global external solar radiation. In the
summer months, only 25%–30% of the external solar radiation reaches the inside of the greenhouse
and, consequently, the crops.

These results are due to the particular shading system that the greenhouse employs, with horizontal
and fixed PV panels, in which there is favorable variation in the shading that is caused by the natural
variation in the elevation angle of the sun’s rays. As the elevation angle of the sun’s rays increases,
the external solar radiation and the degree of shading increase and, consequently, the production of
electricity and the efficiency of the photovoltaic panels also increase, according to the trend observed
in Figure 8. It should be emphasized, however, that the energy efficiency of the horizontal panels,
as compared to those in an optimal position (a 33◦ elevation angle), is reduced by about one-third.
However, the energy produced may still be sufficient for technical installations.

Regarding the growth and optimal development of the plant species shown in Table 2, the
minimum and maximum values of the solar radiation thresholds have been reported previously
(Table 2). To reach these thresholds, a certain degree of shading is necessary, depending on the global
external solar radiation. Figure 9 shows the calculated value of the shading percentage that is necessary
to guarantee that the minimum and maximum radiation thresholds are met.
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Figure 9. (a) Percentage of shading in the photovoltaic greenhouse to guarantee that the minimum
radiation threshold that is necessary for the plants is met; (b) percentage of shading in the photovoltaic
greenhouse to guarantee that the maximum threshold that is necessary for the plants is met.

Figure 9a shows the shading values that are necessary to maintain the minimum radiation
thresholds (78, 129, and 233 W m−2) needed for the plants grown in the photovoltaic greenhouse
based on external solar radiation values of 400, 500, 600, 700, 800, and 900 W m−2, which are typical of
Mediterranean areas. Figure 9b instead shows the same comparison, but for the maximum radiation
thresholds required by the plants (129, 233, and 388 W m−2). It can be observed that the percentage of
required shading increases with the external solar radiation and decreases with the threshold of solar
radiation that is necessary for the plants. The values range from a minimum of 31% to a maximum
of 90% for the minimum thresholds, while the degree of shading that is necessary for maintaining
the maximum thresholds of solar radiation in the greenhouse ranges from a minimum of 0% to a
maximum of 83%.

Next, we compared the shading values necessary to reach the thresholds with those obtained
from the photovoltaic roof with the fixed and horizontal panels, with reference to the central hours of
the day (Figure 10).
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Figure 10. (a) Comparison of the percentage of shading available in the greenhouse with the fixed
horizontal PV panels and the percentage of shading necessary to guarantee the minimum threshold;
(b) comparison of the percentage of shading available in the greenhouse with the fixed horizontal PV
panels and the percentage of shading necessary to guarantee the maximum threshold.

Looking at Figure 10a, the degree of shading obtained with the horizontal and fixed PV panels
allows for the maintenance of the minimum thresholds of 78, 129, and 233 Wm−2, except in the
months of January, November, and December for the threshold of 233 Wm−2. Regarding the maximum
threshold, Figure 10b shows that the degree of shading obtained with the studied arrangement of the
photovoltaic panels is too high to guarantee the maximum solar radiation limit of 388 Wm−2.

Ultimately, the studied type of photovoltaic greenhouse is very effective and efficient at varying,
easily and economically, the shading during the year.

The studied solution, with panels of 20 cm positioned every 27 cm, was found to be appropriate for
most of the considered crops (Table 2). The shading was found to be excessive only for the maximum
threshold of 388 Wm−2. To reduce the degree of shading, it is necessary to increase the distance
between the panels during the design phase. This distance depends on the following parameters: the
elevation angle of the sun’s rays, the angle of the pitch height, the width of the PV panel, and the
shading of the internal area to be determined based on the needs of the plants that will be grown.

To precisely define the distance between the horizontal and fixed PV panels, the following function
has been obtained (Figure 11):

D =

[(
L cos β+ L

sin β
sinα

cosα+
L
Sh

)
sinα

sin(α+ β)

]
− L, (6)

where D = distance between the PV panels, L = width of the PV panels, β = height angle of the pitch,
α = elevation angle of the sun’s rays, and Sh = shading.
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By applying Formula (6), we found that to reach the maximum solar radiation threshold required
by the plants listed in Table 2, the distance between the panels on the roof pitch of the studied prototype
greenhouse should be increased by 15 cm, from 27 cm to 42 cm.

Economic Feasibility

Payback periods estimate the length of time (in years) required to recover the cost of an investment,
which is calculated by dividing the amount of the initial investment by the cumulative net cash flow for
each period. The costs that must be analyzed include the cost of the greenhouse (structure, photovoltaic
panels, mirrors, glass, handling system, and storage batteries) and the maintenance and insurance
costs (1% of the initial cost) [78]. The payback period calculated with incentive is around 6 years.
The estimated annual production of photovoltaic energy supplied to the photovoltaic greenhouse is
difficult to assess because it varies with the degree of cloudiness in the sky. In clear skies and at a
latitude of 42.2◦ North, photovoltaic energy production is about 750 kW h.

4. Conclusions

The results obtained from the research described in this paper show that it is possible to vary
the shading passively with fixed horizontal PV panels and using the natural variation of the angle of
elevation of the sun’s rays. The considerable variation in the elevation angle of the sun’s rays (from
24.4◦ to 71.1◦) was found to result in a high variation in shading (from 39.4% to 72.6%), with the highest
values in the summer months and the lowest values in the winter months. This trend is favorable for
meeting the PAR needs of greenhouse plants. The energy efficiency of the horizontal PV panels, as
compared to those in the optimal position, was reduced by about one-third; however, the amount of
energy produced may still be sufficient to make technical installations work. The shading obtained
during the year with the fixed horizontal PV panels of the used greenhouse prototype (a panel width
of 20 cm, a distance between panels of 27 cm, and a roof pitch height of 33◦) allows us to meet the
minimum and maximum solar radiation requirements of the plants in most of the considered cases. If
the cultivated plants require more solar energy, it is necessary to increase the distance between the
panels. A specific mathematical relationship has been established to define the precise distance to be
assigned to the photovoltaic panels on the roof pitch. Future research may concern the actual behavior
of the plants under this photovoltaic coverage, a more accurate definition of the solar radiation needs
of the plants under cultivation, and the use on the roof of photovoltaic elements different from those
studied in terms of shape and size.
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