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Abstract: The application of a hydrocyclone to recycle NGH and desand during NGH exploitation is
a novel idea. The flow field and performance of this hydrocyclone is in the frontier of the research
in this field and is unclear so far. This research aimed to reveal the flow field characteristics and
performance of NGH downhole hydrocyclones. In this paper, flow field, solid phase particle volume
distribution and separation efficiency were investigated according to the two objectives of NGH
recovery efficiency and sand removal efficiency with different inlet velocities by computational fluid
simulations (CFD)-FLUENT software. The results show that the short circuit flow contributed to the
recovery of NGH. Axial velocity is a decisive factor in balancing the two objectives of NGH recovery
efficiency and sand removal efficiency. In addition, the same as those in traditional hydrocyclones, the
static pressure, tangential velocity and turbulence intensity play key roles in separation performance,
hydrocyclone performance can be improved by increasing the inlet velocity. On the other hand, most
separation efficiencies were greater than 80%, when the particle size was larger than 15 µm, and the
differential pressure was less than 0.6 MPa. Therefore, all the above results confirm that hydrocyclone
has good performance in NGH exploitation, and the basis of its structural design and optimization
are provided.

Keywords: natural gas hydrate; hydrocyclone; desand; flow field characteristics; separation
performance; CFD-FLUENT

1. Introduction

Natural gas hydrate (NGH), also known as “Flammable Ice”, is considered as a potential clean
new energy resource because its combustion only produces hydrated carbon dioxide, and its reserves
are huge [1]. It is estimated that the total amount of methane gas in global gas hydrate resources
is approximately 3 × 1015 m3 [1,2]. These resources are mainly distributed in polar and deep-sea
slopes and nearly 95% are reserved in deep-sea slopes, which are characterized by large content and
weak cementation [3–5]. Therefore, they are difficult to exploit. In recent years, testing productions
have been terminated directly or indirectly due to sand production [6–8]. To solve this problem, a
downhole in situ separation technology is proposed based on the “Solid Fluidization” method that has
achieved good performance in South China Sea testing production [9,10]. The implementation process
is presented in Figure 1. In Step 1, the slim hole is drilled. In Step 2, the NGH reservoir is crushed by a
jet stream and fluidized into mixed slurry. In Step 3, the downhole in situ separation system separates
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the mixed NGH slurry into NGH and sand slurry, and then the NGH slurry is transported up through
the riser. The sand slurry is discharged from the outfall, and then the high-density sand is backfilled and
solidified in the backfill system [11]. This method is different from the depressurization method in that
the phase temperature and pressure balance does not change in the NGH reservoir position, and the
NGH reservoir is directly crushed and collected into the pipeline, so as to break the phase equilibrium
in the transport pipeline, so as to prevent the occurrence of phase transformation in the reservoir
location, leading to geological hazards. In this way, pipeline transportation energy consumption,
pipeline blockage, and tool wear can be reduced, and ultimately the production efficiency of NGH is
improved. In downhole hydrocyclone, as a key component of the downhole in situ separation system,
the performance and flow field characteristics play a decisive role.

Energies 2019, 11, x FOR PEER REVIEW  2 of 18 

 

then the high-density sand is backfilled and solidified in the backfill system [11]. This method is 

different from the depressurization method in that the phase temperature and pressure balance 

does not change in the NGH reservoir position, and the NGH reservoir is directly crushed and 

collected into the pipeline, so as to break the phase equilibrium in the transport pipeline, so as to 

prevent the occurrence of phase transformation in the reservoir location, leading to geological 

hazards. In this way, pipeline transportation energy consumption, pipeline blockage, and tool wear 

can be reduced, and ultimately the production efficiency of NGH is improved. In downhole 

hydrocyclone, as a key component of the downhole in situ separation system, the performance and 

flow field characteristics play a decisive role. 

 

Figure 1. The exploitation process of natural gas hydrate (NGH). 

Hydrocyclones are widely used in various engineering processes because of their simple 

design, flexible operation, large capacity, and low maintenance costs [12,13]. Flow field 

characteristics are highly complex multiphase structures in a hydrocyclone. There is turbulence 

intensity distribution, axial velocity distribution, static pressure distribution, tangential velocity 

distribution, radial velocity distribution, circulation flow and short-circuit flow in hydrocyclones, 

all of which play key roles during the separation process, and affect the final separation 

performance. In previous papers, short-circuit flow (the flow that enters directly from the inlet of 

the hydrocyclone into the bottom inlet of the vortex finder and then discharges from the outlet of 

the vortex finder without rotating through the separation zone of the cone section) played a 

negative role and circulating flow played a positive role in the separation process [14,15]. In recent 

decades, scholars have studied the flow field and performance of hydrocyclones with different 

structures applied in various engineering processes. Lanyue [16] investigated the influence of inlet 

velocity on a two-stage hydrocyclone separation performance and suggested that a higher inlet 

velocity was beneficial to the separation of two-stage hydrocyclones. Liow [17,18] investigated the 

flow field and performance of mini-tangential and mini-axial hydrocyclones and found that the 

reasons for poor separation performance were flow asymmetry and recirculation zones. Qiang 

Zhao [19] researched the separation performance and flow field of a hydrocyclone with different 

vortex finder wall thicknesses and concluded that the type of hydrocyclone researched was 

advantageous in effective classification. Shi-ying Shi [20] measured the swirling field in a vane-type 

pipe oil–water separator and obtained the distribution of the radial, tangential and axial velocities, 

which were beneficial to optimizing the design of the downhole oil–water separator. Wanwilai [21] 

performed simulations of influence of the inserted rod on the velocity distributions and separation 

performance and showed that the separation performance was improved by inserting an 

appropriate sized rod. However, the application of a hydrocyclone to recycle NGH and desand 

during NGH exploitation is a novel idea, and its performance needs to balance the recovery rate of 

the NGH outlet and the removal rate of the sand outlet. Nevertheless, the flow field and 

Figure 1. The exploitation process of natural gas hydrate (NGH).

Hydrocyclones are widely used in various engineering processes because of their simple design,
flexible operation, large capacity, and low maintenance costs [12,13]. Flow field characteristics are
highly complex multiphase structures in a hydrocyclone. There is turbulence intensity distribution,
axial velocity distribution, static pressure distribution, tangential velocity distribution, radial velocity
distribution, circulation flow and short-circuit flow in hydrocyclones, all of which play key roles
during the separation process, and affect the final separation performance. In previous papers,
short-circuit flow (the flow that enters directly from the inlet of the hydrocyclone into the bottom
inlet of the vortex finder and then discharges from the outlet of the vortex finder without rotating
through the separation zone of the cone section) played a negative role and circulating flow played
a positive role in the separation process [14,15]. In recent decades, scholars have studied the flow
field and performance of hydrocyclones with different structures applied in various engineering
processes. Lanyue [16] investigated the influence of inlet velocity on a two-stage hydrocyclone
separation performance and suggested that a higher inlet velocity was beneficial to the separation of
two-stage hydrocyclones. Liow [17,18] investigated the flow field and performance of mini-tangential
and mini-axial hydrocyclones and found that the reasons for poor separation performance were
flow asymmetry and recirculation zones. Qiang Zhao [19] researched the separation performance
and flow field of a hydrocyclone with different vortex finder wall thicknesses and concluded that
the type of hydrocyclone researched was advantageous in effective classification. Shi-ying Shi [20]
measured the swirling field in a vane-type pipe oil–water separator and obtained the distribution
of the radial, tangential and axial velocities, which were beneficial to optimizing the design of the
downhole oil–water separator. Wanwilai [21] performed simulations of influence of the inserted rod
on the velocity distributions and separation performance and showed that the separation performance
was improved by inserting an appropriate sized rod. However, the application of a hydrocyclone
to recycle NGH and desand during NGH exploitation is a novel idea, and its performance needs to
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balance the recovery rate of the NGH outlet and the removal rate of the sand outlet. Nevertheless, the
flow field and performance of NGH hydrocyclones are of great significance, and it is in the frontier of
the research and not clear so far.

In recent decades, with the improvement of computer technology, computational fluid dynamic
(CFD) technology has made remarkable progress in the numerical simulation of hydrocyclones. The
advantage of this method is that not only can the complex flow field in a hydrocyclone be better
understood but experimental time and cost can also be saved. For multiphase flow, current mainstream
models are of two major types: the Euler–Euler and Euler–Lagrange models [22]. The Euler–Lagrange
approach can track the movement of particles and predict flow structures and forces. However, the
limitations of this approach are neglecting particle collisions and influences of particle volume fraction
on the fluid and operating in dilute regimes [23,24]. The Euler–Euler models can accurately predict the
separation performance and flow characteristics in both dense and dilute regimes through considering
the interaction fluid and particles. Considering the ability of computers, the mixture model is generally
taken as a simple and economical multiphase flow model. For turbulence models, the prediction
of the Reynolds stress model (RSM) and large eddy simulation is reasonable but, considering the
computational efficiency, the former is usually adopted. However, very few of them have included
the flow characteristics and separation process of NGH hydrocyclone using the computational fluid
dynamics (CFDs) method.

The objective of this paper is to reveal the flow field characteristics and performance of NGH
downhole hydrocyclones. Further, the flow field and performance of NGH downhole hydrocyclones
are distinguished from those of traditional hydrocyclones. Finally, this study shows that hydrocyclone
separators have a very good effect on hydrate desalination and purification. In this paper, the flow field,
solid phase particle volume distribution and separation efficiency were investigated according to the
two objectives of NGH recovery efficiency and sand removal efficiency with different inlet velocities
by computational fluid dynamic (CFD)-FLUENT software. Specifically, the distribution of turbulence
intensity, static pressure, tangential velocity, axial velocity, radial velocity, solid phase particle volume,
NGH recovery efficiency and sand removal efficiency were obtained.

2. Numerical Method

2.1. Structure Geometry

Figure 2 and Table 1 present the geometrical parameters that were optimized in our previous
research [11].

Table 1. Structural parameters of hydrocyclones.

Names Size

Dominant diameter D, mm 70

Inlet height a, mm 18

Inlet width b, mm 6

Vortex finder diameter d0, mm 14

Vortex finder length L0, mm 50

Cylindrical length L, mm 60

Cone angle, ◦ 10

Spigot diameter ds, mm 13
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2.2. Model Description

In this paper, the Mixture model was adopted for multiphase flow models because the mixture
model is a simplification of the Euler–Euler model with characteristics of both the calculation precision
and speed.

The continuity equation is as follows:

∂ρ

∂t
+
∂ρui

∂xi
= 0 (1)

The momentum equation of the Mixture model is defined as:

∂
∂t (ρui) +

∂
∂x j

(
ρuiu j

)
= − ∂

∂xi
p + ∂

∂xi

(
n∑

k=3
pk

)
+ ∂

x j

[
µ
(
∂ui
∂x j

+
∂u j
∂xi

)
+

(
−ρu′i u′j

)
+

n∑
k=1

ρkudr,kiudr,kj

]
+ gρ

(2)

where g is gravitational acceleration, udr is the drift velocity, −ρu′i u′j is the Reynolds stress term. ρ, ui
and u j are the density and velocity of the mixture phase fluid, respectively, which are calculated by the
following equations:

ρ =
n∑

k=1

αkρk, ui =

∑n
k=1 αkρkuk,i

ρ
, µ =

n∑
k=1

αkµk (3)

where αk, ρk, uk and µk are the volume fraction, density, velocity and viscosity of the kth phase
fluid, respectively.

The characteristic flow inside hydrocyclones are strong, swirling, highly anisotropic, and turbulent.
To accurately predict the flow behavior for various categories of fluid flows, the RSM model was
applied, and its transport equation is defined as:

∂
(
ρu′i u′j

)
∂t

+
∂
(
ρuku′i u′j

)
∂xk

= DT,i j + DL,i j + Pi j + Gi j + Φi j + εi j + Fi j (4)
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where DT,i j is the turbulent diffusion, DL,i j is the molecular viscous diffusion, Pi j is the shear stress
generation, Gi j is the buoyancy generation, Φi j is the pressure strain, εi j is the viscous dissipation, and
Fi j is the system rotation generation.

2.3. Simulation Conditions and Boundary Condition

Figure 2 presents the mesh of the hydrocyclone. It is shown in Table 2 that the research on grid
independence was conducted with mesh sizes of 100,000, 200,000, 300,000, 400,000 and 500,000 cells.
This shows that the results are independent when the total number of grids is over 300,000. The results
of maximum static pressure indicate that better accuracies can be obtained when larger mesh sizes in
the hydrocyclone are obtained. In the rest of this study, the total number of grids discretizing the entire
geometry was approximately 300,000. To accurately capture the flow features, the grids were refined at
the critical regions, for example, around the core, at the spigot opening, near the walls, within and
near the vortex finder. For better visualization, the results were shown for a vertical 2D plane at the
specified axis center, and this plane is simply called the vertical plane in the rest of this paper. Figure 2
presents the directions of the positive tangential, axial and radial velocities.

Table 2. Relationship between total number of computational cells and maximum static pressure.

Mesh Sizes Maximum Static Pressure (MPa)

100,000 0.161555

200,000 0.293760

300,000 0.389087

400,000 0.389125

500,000 0.389053

In this paper, the FLUENT software was employed for CFD. A steady state, a 3-D model, and a
double-precision implicit solver were adopted. A SIMPLE algorithm scheme was carried out. The
higher-order quadratic upwind interpolation (QUICK) spatial discretization scheme was used. The
RSM and Mixture models were employed to simulate the inside flow field and to calculate the separation
efficiency of the NGH hydrocyclone. The NGH reservoir type is a non-diagenetic pore filling, the
seabed temperature is 3.75 ◦C, the geothermal gradient is 0.045 ◦C/m, and the estimation of the NGH
reservoir temperature is approximately 13 ◦C. The seawater has a depth of 1200 m, the overburden has
a thickness of 200 m, and the estimated pressure of the hydrate reservoir is approximately 14 MPa.
Therefore, the simulation operating condition (the temperature and pressure of the NGH Reservoir)
was set as 13 ◦C and 14 MPa. The flow rates can be obtained by multiplying the inlet velocity by the
inlet area. A velocity inlet (8, 12, and 16 m/s) and pressure outlets (Relative pressure 0) were used.
No slip boundary condition was adopted for the wall boundary. Table 3 shows the boundary and
initial condition.

Table 3. Boundary and initial condition.

Parameter Value

Inlet velocity, m/s (Inlet flow rates, m3/h) 8, 12, 16 (3.11, 4.67, 6.22)

Particle diameter, µm 2, 10, 30

Outlet pressure, MPa 0

Operating condition: temperature, ◦C, and pressure, MPa 13 and 14

According to the idea of the solid fluidization mining of NGH, the environment in the separator
is similar to that of the hydrate reservoir. That is, the temperature and pressure changes are very
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small. Although the hydrate is decomposed into gas to a certain extent, there is little decomposed gas.
Therefore, the gas phase is temporarily neglected in this simulation. Further, it was assumed that the
mixture slurry of NGH contained three phases of seawater, namely, NGH, solid and sand. All particles
are spherical in shape. Based on the analysis of sediment physical properties in the South China Sea,
Figure 3 shows the distribution of sediment particle diameters. As shown in Figure 3, the diameter of
the particles ranges from 1 to 100 µm, and most particles are approximately 30 µm in diameter. Table 4
shows the specific parameters of the media of the simulation calculation.
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Table 4. Physical parameters of various media.

Media Density, kg/m3 Viscosity, kg/m/s Volume Fraction, %

Seawater 1025 0.0017 75

Sand 2600 - 15

NGH 910 - 10

3. Results and Discussion

Firstly, CFD model validation was carried out and, then, the flow field features and separation
performance were studied. The inlet velocity directly affects the intensity of the centrifugal force field
in the hydrocyclone and is an important criterion of the hydrocyclone’s performance. Therefore, to
obtain more accurate flow field distribution characteristics and separation performance, hydrocyclones
with different inlet velocities were studied.

3.1. The Model Validation

The CFD model was validated by a comparison of our simulation results with the experiment
results by Hsieh [25] and Delgadillo [26] in the 75-mm and 250-mm hydrocyclone. Figure 4a presents
a comparison of the axial and tangential velocity on the vertical plane located at 60 mm away from
the top of the 75-mm hydrocyclone. The solid content and particle size distribution of the feed of the
250-mm hydrocyclone was used in the simulation as in Delgadillo’s work. Figure 4b shows comparison
curves of separation efficiency. As shown in Figure 4, the simulation results are in good agreement
with the experimental results, which indicates that the selected model can effectively predict velocity
profiles and separation performance in the hydrocyclone.
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3.2. Flow Field Characteristics

In this paper, the flow characteristics of the hydrocyclone were studied by presenting the contours
of the vertical plane and the distribution curves in different positions on the vertical plane (e.g., Figure 5,
Z = 15, 120, 210, 300, and 390 mm) with different inlet velocities.
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3.2.1. Turbulence Intensity

Turbulence intensity is defined as the ratio of the fluctuating velocity to the average velocity. It is
known that turbulence intensity conditions are always related to the number of misplaced particles
and energy consumption, which may deteriorate the hydrocyclone’s performance. Figure 6 shows
representative turbulence intensity contours with different inlet velocities across the vertical plane.
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It shows that the turbulence intensity values are higher at 16 m/s than those at other inlet velocities.
This will lead to NGH and sand particles being misplaced. The maximum value occurs at the bottom
of the vortex finder as a traditional hydrocyclone with an air core, and the larger values occur at
the middle of the cone. This will lead to sand particles being misplaced to the vortex finder. On
further increasing the inlet velocity, the turbulence intensity increases. It is mainly due to the fact
that as the inlet velocity increases, fluid velocity fluctuations and collision are strengthened, which
leads to an increase in turbulence intensity. The greater the turbulence intensity is, the greater the
collision between hydrated particles and sand particles in the hydrocyclone and the higher the energy
consumption. Besides, when the inlet velocity increases, the turbulence intensity at the bottom of the
vortex finder and the middle of the cone increases sharply. This phenomenon occurs because with the
increase in inlet velocity, more and more water passes to the overflow and the fluid velocity reverses in
the axial direction, intensifying friction. It is suggested that the fluid stability could be maintained by
modifying the structure, controlling the inlet velocity and so on.

3.2.2. Static Pressure

The static pressure contours across the vertical plane are shown in Figure 7a. Here, the absolute
value of the static pressure increases from center to wall along the radial direction, and the distribution
of the static pressure is in approximate symmetry about the center, which is the same in a traditional
hydrocyclone. When the inlet velocity increases, the positive pressure values increase, while the
negative values decrease.

The sand and NGH particles are governed to move to the center in a radial direction by the
pressure gradient force F4p.

F4p =
dp
dr

V = ∆pV (5)

where V is the volume of the particle, and ∆p is the radial pressure gradient.
Figure 7b shows static pressure distribution curves over a diameter line of Z = 15, 120, 21, 300, and

390 mm with different inlet velocities. The pressure value in Figure 7 refers to the relative pressure; that
is, the pressure relative to the hydrate reservoir pressure. It shows the static pressure distributions in a
“V” shape and also approximate symmetry in the radial direction. When the inlet velocity increases, the
pressure gradient increases. From Equation (5), the pressure gradient force is also greater. The NGH
particles need to be recovered from the overflow; that is, they need move to the center. Thus, the greater
the pressure gradient is, the better the recovery of NGH particles. Thus, to balance two-objectives of
NGH recovery efficiency and sand removal efficiency, the pressure gradient force needs to be controlled
appropriately. On the other hand, the static pressure increases at first, then decreases in the axial
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direction and reaches the maximum at inlet section. The main reason for this is due to the conversion of
static pressure energy into kinetic energy. Compared with the traditional hydrocyclone applied on the
land surface, although there is a negative pressure area in the central part of the NGH hydrocyclone, it
is not form an air core. This is mainly due to the fluid sealing at the outlet.
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From Figure 7, the most differential pressure was less than 0.6 MPa in the NGH hydrocyclone,
and it increases with an increase in inlet velocity. To sum up, it shows that the NGH hydrocyclone is
relatively high in energy consumption compared with the traditional hydrocyclone.

3.2.3. Tangential Velocity

The tangential velocity determines the centrifugal force that dominates the motion of particles
towards the outside wall.

Fc = Vρ
ut

2

r
(6)
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where ρ is the particle density, and V is the particle volume. Equation (6) shows that the centrifugal
force is proportional to the square of the tangential velocity.

Figure 8a presents the tangential velocity contours across the vertical plane with different inlet
velocities. The distribution curves of the tangential velocity over a diameter line of Z = 15, 120, 210, 300,
and 390 mm with different inlet velocities are shown in Figure 8b. It is easy to see that the tangential
velocity first increases and then decreases from center to wall, and its distribution shape is in the form
of “M”. Meanwhile, all tangential velocities can be taken as a Rankine vortex. Furthermore, the sand
particles need to be recovered from the underflow; that is, they need to be moved to the wall. Thus,
tangential velocity increases when inlet velocity increases, which is beneficial to the separation of
sand particles. To balance the two objectives of NGH recovery efficiency and sand removal efficiency,
the tangential velocity needs to be controlled appropriately. The inlet velocity can be increased in
order to increase the tangential velocity, which enhances the centrifugal force and improves separation
performance during the process of the purification of NGH slurry by sand removal.

Energies 2019, 11, x FOR PEER REVIEW  10 of 18 

 

The tangential velocity determines the centrifugal force that dominates the motion of particles 

towards the outside wall. 

2

c = tu
F V

r
  (6) 

where   is the particle density, and V  is the particle volume. Equation (6) shows that the 

centrifugal force is proportional to the square of the tangential velocity. 

Figure 8a presents the tangential velocity contours across the vertical plane with different inlet 

velocities. The distribution curves of the tangential velocity over a diameter line of Z = 15, 120, 210, 

300, and 390 mm with different inlet velocities are shown in Figure 8b. It is easy to see that the 

tangential velocity first increases and then decreases from center to wall, and its distribution shape 

is in the form of “M”. Meanwhile, all tangential velocities can be taken as a Rankine vortex. 

Furthermore, the sand particles need to be recovered from the underflow; that is, they need to be 

moved to the wall. Thus, tangential velocity increases when inlet velocity increases, which is 

beneficial to the separation of sand particles. To balance the two objectives of NGH recovery 

efficiency and sand removal efficiency, the tangential velocity needs to be controlled appropriately. 

The inlet velocity can be increased in order to increase the tangential velocity, which enhances the 

centrifugal force and improves separation performance during the process of the purification of 

NGH slurry by sand removal. 

 
(a) 

 
(b) 

Figure 8. The tangential velocity across the vertical plane with different inlet velocities. (a) The
tangential velocity contours across the vertical plane with different inlet velocities. (b) The distribution
curves of tangential velocities over a diameter line of Z = 15, 120, 210, 300, and 390 mm with different
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3.2.4. Axial Velocity

NGH particles are expected to enter the upward flow to be recovered, and the sand particles are
expected to enter the downward flow to be removed. The axial velocity divides the flow field inside the
hydrocyclone into up flow and down flow and determines the flow ratio. Therefore, axial velocity is a
decisive factor in balancing the two objectives of NGH recovery efficiency and sand removal efficiency.

The axial velocity contours across the vertical plane with the different inlet velocities presented in
Figure 9a. The axial velocity is divided into two regions by the zero axial velocity vectors (LZVVs) in
the radial direction. In addition, there is a short circuit flow and a circulating flow near and below
the vortex finder, respectively. The short circuit flow drives particles away from the separation area
and directly into the upward flow, which can play a positive role in the recovery of NGH, but plays a
negative role in the removal of sand particles. The circulating flow can separate the particles that have
not entered the separation area into the separation area, which is beneficial to improve the separation
efficiency. The pressure gradient force acting on NGH particles is greater than the sum of centrifugal
force and fluid resistance. Therefore, NGH particles tend to move towards the center, then enter the
upward flow through the axial zero velocity plane and eventually are recycled from the vortex finder.
The centrifugal force acting on sand particles is greater than the sum of the pressure gradient force
and fluid resistance. So, the sand particles have a tendency to move towards the wall, then move
through the axial zero velocity surface into the downward flow, and finally are removed from the
spigot. Furthermore, as the inlet velocity increases, the phenomenon of circulating flow and short
circuit flow is more obvious. Therefore, a suitable inlet velocity value could control circulating flow
and short circuit flow, ultimately maintaining the good performance of the NGH hydrocyclone.

The distribution curves of axial velocity over a diameter line of Z = 15, 120, 210, 300, and 390 mm
with different inlet velocities are presented in Figure 9b. Here, axial velocity distribution along the
radial and axial directions can be shown in more detail. Figure 9b shows that the values of axial
velocity increase in both the positive region and negative region, and the short circuit flow increases
when the inlet velocity increases. This demonstrates that there is more flow out of upward flow when
the inlet velocity increases. It can be seen that the direction of the axial velocity changes, indicating
that there is a certain backflow at the vortex finder and underflow.

3.2.5. Radial Velocity

The radial velocity contours across vertical plane with different inlet velocities, as shown in
Figure 10a. The negative values are radially inward, and the positive values are radially outward in this
figure. It can be seen that, numerically, the tangential velocity and the axial velocity are much larger
than the radial velocity. In the inner region, there is positive distribution on one side and negative
distribution on the other, forming a schema of circulating flow. The main reason for this is that there is
negative pressure on the upper and lower outlet, causing instability in the inner flow field. This is
shown more clearly in Figure 10b, with distribution curves of the radial velocity over a diameter line of
Z = 15, 120, 210, 300, and 390 mm with different inlet velocities. With increasing inlet velocity, the radial
velocity increases. Furthermore, the instability trend of radial velocity is consistent with the turbulence
distribution contours in Figure 6. The change in the radial velocity will have a certain influence on the
separation of the particles, thus affecting the separation performance of NGH hydrocyclones.
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3.3. Separation Performance

3.3.1. Solid Volume Fraction Distribution

Because the distribution of particle size is proportional, the characteristic particle size is usually
used to represent the particle size distribution characteristics of the component. Especially in separation
technology, generally speaking, the separation efficiency increases with the increase in particle size.
The smaller the particle size, the lower the separation efficiency. The particle content of the maximum
particle size is very small. Further, to understand the separation behaviors, the distribution of the solid
volume fraction with a characteristic particle size of 2, 10, and 30 µm in the NGH hydrocyclone was
investigated. Figure 11 shows the distributions of solid volume fraction contours across the vertical
plane with different inlet velocities and different particle diameters, respectively.
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The NGH solid volume fraction contours across the vertical plane with different inlet velocities
and different particle diameters, as presented in Figure 11a. With the increase in particle diameter, the
NGH volume fraction of enrichment along the center improves. The main reason for this is that the
density of seawater is greater than that of NGH, so the pressure gradient force dominates the movement
of NGH particles to the center. When NGH particle diameter increases, the pressure gradient force
increases, which increases the probability of NGH particles moving to the center. The NGH volume
fraction of enrichment along the center improves when the inlet velocity increases. The one reason for
this is that the pressure gradient force increases, and the other reason is the strengthened short circuit
flow, which is consistent with Figure 9.

The sand solid volume fraction contours across the vertical plane with different inlet velocities and
different particle diameters, as presented in Figure 11b. Here, the sand solid volume fraction near the
wall increases with an increase in particle diameter. The main reason for this is that the sand particles
are dominated mainly by the centrifugal force toward the wall and then spiral up to the underflow.
This shows that the hydrocyclone has good performance when the sand particle diameter is larger
than 10 µm.
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Generally, with the increase in inlet velocity, the volume fraction of sand particles near the wall
increases, and the volume fraction of NGH particles near the center increases, which indicates that the
NGH recovery efficiency and sand removal efficiency can be increased by increasing inlet velocity.

3.3.2. Separation Efficiency

Separation efficiency is one of the most important criterions to estimate the performance of the
hydrocyclone. It is given by the following formula:

E =
mu

mi
× 100% (7)

where mu and mi refer to the inlet and outlet mass flow rates of a hydrocyclone (kg/s), respectively.
Specifically, the NGH recovery efficiency is the ratio of the NGH mass flow rate between the overflow
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outlet and the inlet. The sand removal efficiency is the ratio of the sand mass flow rate between the
underflow outlet and the inlet.

The distribution curves of separation efficiency with different inlet velocities are presented in
Figure 12, which indicates that when particle diameter increases, the separation efficiency firstly
increases and then remains steady. The separation efficiency firstly increases continuously with an
increase in inlet velocity, which is consistent with the solid phase distribution shown in Figure 11.
The main reason for this is that with the increase in the inlet velocity, the pressure gradient and the
tangential velocity obviously increase. Meanwhile the centrifugal force and the pressure gradient
force are enhanced, and the movement of the particles is strengthened. In addition, the cut size of
the NGH particle was less than 2 µm, and the cut size of the sand particle was approximately 5 µm.
The cut size decreases with increasing inlet velocity. This shows that for fine particles, the separation
performance of NGH is better than sand. Therefore, the maximum recovery of NGH can be achieved
when sand particles are removed as much as possible. Besides, the separation efficiencies were greater
than 80% when the particle diameter was over 15 µm. It is indicated that the NGH hydrocyclone has
good performance, and is suitable for the purification of NGH slurry.
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4. Conclusions

(1) The distributions of static pressure, tangential velocity, axial velocity and radial velocity in the
NGH hydrocyclone are the same as those in traditional hydrocyclones. However, unlike in the
traditional hydrocyclone, the turbulence is more intense, and the larger value appears in the
middle of the cone section in NGH hydrocyclone. Further, it is found that the short circuit flow
contributed to the recovery of NGH.

(2) To balance the two objectives of NGH recovery efficiency and sand removal efficiency, it is
suggested that the the static pressure, and tangential velocity are controlled reasonably to govern
NGH and sand particle movement. In addition, it is suggested that the axial velocity is used to
control the split ratio of upward and downward flow.

(3) With the increase in particle diameter and inlet velocity, the volume fraction of the NGH solid near
the center of the hydrocyclone increases, and the volume fraction of the sand solid near the wall of
hydrocyclone increases. The separation efficiency increases first and is then stable. Furthermore,
most separation efficiencies were over 80%, and the differential pressure was less than 0.6 MPa.
Overall, the results show that this NGH hydrocyclone can balance the two objectives of NGH
recovery efficiency and sand removal efficiency and have good separation performance for NGH
separation. The separation efficiency can be improved by changing the inlet velocity.

(4) In this paper, the effects of phase change and particle shape on the NGH separation process are
not considered. However, research on these effects is significant, and will be carried out in the
later research.
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