
energies

Article

A Different Voltage-Source Power Inverter with
Carrier Based SPWM for Open-End Connection Loads

Suroso 1,*, Daru Tri Nugroho 1 and Toshihiko Noguchi 2

1 Department of Electrical Engineering, Jenderal Soedirman University, Purwokerto 53112, Indonesia
2 Department of Electrical and Electronics Engineering, Shizuoka University, Hamamatsu 432-8011, Japan
* Correspondence: suroso.te@unsoed.ac.id

Received: 29 July 2019; Accepted: 17 August 2019; Published: 23 August 2019
����������
�������

Abstract: This paper presents a new configuration of voltage source inverter with a simplified
circuit for generating five-level pulse width modulation (PWM) voltage waveform. Compared with
conventional inverter configuration, this circuit is drastically able to simplify the structure and reduce
the required number of active switch components. The new inverter circuit is very suitable for the use
of open-end connection loads such as open-end winding ac motor drive application. Instead of using
separated dc power sources, the new inverter circuit configuration is also possible to utilize only one
dc voltage source, so the power supply circuits can be made simpler. Furthermore, to reduce ripples of
dc capacitor voltages, the voltage stabilizing circuit of capacitors at the input side was proposed and
applied. The stabilizing circuit is capable to work reducing the size of dc capacitors, and maintaining
voltage stability of capacitors through charging and discharging operation modes. The working
principles of inverter circuit were evaluated and examined by means of computer simulations using
PSIM software. In addition, experimental test results of the prototype were also provided. Test results
proved that the new five-level PWM inverter operated well generating five-level output waveform
with smaller distortion and less voltage ripples of dc capacitors.
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1. Introduction

A multilevel inverter is a type of inverter working to produce ac voltage or ac current waveforms
with three or more level numbers of waveforms [1–3]. When the input source is a dc voltage, the
inverter is categorized as a voltage source inverter. However, if the input is in the form of dc current
source, the inverter circuit is included as the current source inverter type [4]. In a regular two-level
voltage source inverter, output voltage before the filter circuit is a discrete ac voltage waveform with a
large dv/dt value, whereas in the two-level current source inverter, the output current wave before the
filter is a discrete ac current wave with a large di/dt value.

Multilevel inverters are able to work generating ac output voltages or currents with a smaller
distortion value, smaller filter size, smaller dv/dt or di/dt value, and the ability to work at a greater
power capacity [5,6]. Multilevel inverters are very suitable for use in a medium and large variable
speed ac motor drive. The three popular multilevel inverter configurations are the cascaded H-bridge
inverter, diode clamped inverter and flying capacitor inverter [7–11]. Each configuration has its own
disadvantages and advantages. The first topology connects some H-bridge inverters in a series to
synthesize multilevel voltage waveform. Each inverter uses an isolated dc power source. As a result,
more complex dc power source circuits are required when the power sources are rectifier systems.
However, when the dc sources are batteries of renewable power generations, the inverter system is very
suitable. The diode clamped multilevel inverter needs additional diodes in addition to the controlled
power switches, hence conduction losses of diodes will append the total losses of inverter circuits.
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The third topology is the flying capacitor multilevel inverter. In this inverter circuit, the voltage balance
and their control complexity are the main issues causing other constraints of its application [12,13].

In an ac motor drive system, the conventional winding configurations of wound rotor type
induction motor coils are the star and delta winding connections. In addition to these two types of
entanglement, there is another winding connection, namely open-end connection winding ac motor.
This type of motor drive has some merits compared to the conventional delta and star connections.
Using open-end connection loads, the phase current of each phase can be controlled independently.
When using multi sources of inverter system, the capacity of inverter can be smaller than the motor
rating [14–17].

In a practical manner, the open-end winding connection of an ac motor can be obtained facilely by
opening the neutral motor windings. There is no need to change or modify the mechanical structure of
the motor. This kind of motor drive has been started to be developed by researchers and industries for
various possible applications, such as pumping systems and electric car systems [18–21]. An important
aspect in the development of open-end connection winding ac motor drive is the development of
inverter systems which are different with the inverter circuits for common delta and star connection
loads [22–26]. Figure 1 displays a conventional circuit of a three-level inverter used for the driving
of open-end winding ac motors [14,24]. To get a more level number of voltage wave with smaller
waveform distortion and higher power capacity, Figure 2 presents the conventional structure of a
five-level inverter presented in Reference [27] used for open-end connection loads. This inverter circuit
needs 24 controlled power switches in total to construct the inverter where each controlled switch such
as IGBT, thyristor or power MOSFET needs individual gate drive circuit. Hence, the more controlled
switches used, the more complex the gate drive system will be required to be. In the multilevel inverter
circuits, power device number and circuit complexity are some problems that need to be addressed.
Simplifying the inverter circuit is a good way to make multilevel inverter circuits more interesting to be
applied because of their features. The aim of this work is to develop a novel configuration of five-level
voltage source inverter with simpler circuit configuration for open-end connection load application.
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Figure 1. Conventional three-phase three-level inverter circuit for open-end connection winding ac
motor [14].

In this manuscript, a different circuit of five-level PWM inverter for open-end connection loads is
proposed and discussed. The newly recommended inverter circuit has a main merit in simplifying
the inverter circuit configuration by reducing the required controlled switches number and their gate
drive circuits. The possibility of using a single dc power source with smaller dc capacitors is another
advantage of this new inverter. The basic operations of the proposed five-level inverter were explored
and tested using computer simulations and experiments in laboratory.
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2. Proposed New Inverter Circuit

2.1. Proposed Inverter Circuit Configuration with Two DC Sources

Figure 3 presents the circuit configuration of the proposed five-level inverter with two dc power
sources. In this inverter circuit, the two dc power sources can make use of rectifiers or the battery
system. The dc input power sources have the same voltage of V. This inverter circuit needs 18 controlled
switches in total to result in a five-level three-phase output voltage waveform. Compared to the
conventional circuit presented in Reference [28], a total of six power switches can be reduced. Moreover,
the gate drive circuits are also much simpler. A comparison table outlining the merits of the proposed
five-level inverter and conventional circuit is presented in Table 1. The proposed inverter is feasible to
operate with one dc power source as will be discussed later.
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Table 1. Comparison of conventional and proposed inverter circuits.

Components Conventional 5-Level Inverter Proposed 5-Level Inverter

Controlled switch number 24 18
Isolated gate drive power supply 14 11

Driving circuits 24 18
DC input power 2 2 or 1
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Table 2 lists the switching combinations to yield five-level voltage waveform of phase R from
two dc input power sources. The inverter is connected to a three-phase open-end connection load.
The inverter circuit generates a five-level voltage waveform, i.e., +2V, +V, 0, −V, −2V level voltages as
shown in Table 2. The output voltages of the other two phases are similar, but differ in phase 1200 for
each phase.

Table 2. Switching states of phase R voltage generation.

Q1 Q2 Q3 Q4 Q13 Q14 VOut

ON OFF ON OFF OFF ON +2V
OFF ON ON OFF OFF ON +V
OFF OFF OFF ON OFF ON 0
OFF OFF ON OFF ON OFF 0
OFF ON OFF ON ON OFF −V
ON OFF OFF ON ON OFF −2V

2.2. Proposed Inverter Circuit Configuration with Single DC Power Source

In order to simplify the input dc power source number, Figure 4 presents the proposed three-phase
five-level PWM inverter with only one dc voltage source. A simple stabilizing circuit was connected
across the dc capacitors C1 and C2 to keep stable voltage across capacitors, reduce ripples, and minimize
the capacitor size. The operation modes of the stabilizing circuit are presented in Figures 5 and 6.
In this stabilizing circuit, the power switch Qc will regulate the charging and discharging states of
inductor Lc, and capacitors C1 and C2. The minimum inductor size of Lc for continuous current mode
can be determined as follows:

Lc ≥
(1−D)

2 fQc
R (1)

where Lc is the stabilizing inductor, D is the duty cycle of control signal of switch Qc, fQc is the switching
frequency of switch Qc, and R is the resistance of power load.

The dc capacitor C1 experiences charging state when the switch Qc is turned-on, while capacitor
C2 is in discharging state. Discharging mode of capacitor C1 occurred when the switch Qc is turned-off,
whilst capacitor C2 is in charging mode, as depicted in the figures. The ripple factor (r) of capacitor
voltage can be calculated as follows:

r =
(1−D)

8LcC f 2
Qc

(2)
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Figure 7 acquaints the control diagram of dc capacitors with the stabilizing circuit [27]. The system
needs only one voltage sensor placed at the capacitor terminal C1. The voltage of capacitor C1 will be
determined by the setting command value (VC-Ref) of proportional integral (PI) controller as indicated
in the figure, while the voltage of capacitor C2 is the dc input voltage subtracted by the voltage VC1 in
capacitor C1.
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2.3. PWM Modulation Strategy

Ideally, an ac power load draws sinusoidal current to supply its electric power. Power inverter is
a static converter converting dc input power into ac power in addition to the ac generator machine
working as rotating converter in a power generation system. The ideal ac waveform is a sinusoidal
current or voltage waveform. However, in many practical cases the ac power generations do not
generate sinusoidal voltage or current perfectly. The voltage drops in electrical components or the
imperfect operation of machines or controllers will contribute to this waveform distortion phenomenon.



Energies 2019, 12, 3251 6 of 14

In a power inverter, the PWM switching pattern is applied to generate PWM voltage or current
waveform. This PWM voltage will have smaller distortion compared to the square wave operation
of voltage or current. Many modulation strategies have been introduced, presented and used in the
inverter circuits commercially available or the inverter circuits which are still under development.
Carrier based sinusoidal pulse width modulation (SPWM) technique is one of the modulation techniques
that alternatively can be applied to generate PWM voltage or PWM current waveform. This modulation
is able to reduce distortion of the ac current and voltage. Furthermore, this method can be handily
implemented by using analog or digital circuits for a higher level number waveform. In this method,
saw-tooth or triangular signals are compared with sinusoidal waves to generate PWM patterns of
inverter’s gating signals as shown in Figure 8. The switching frequency can be regulated by adjusting
the frequency of triangular carriers, and the fundamental frequency is controlled by the modulating
signal [29,30].
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This paper applied multi carrier waveforms with different offset values but with the same
frequency as depicted in Figure 9. The carrier signals are Vcr1, Vcr2, Vcr3 and Vcr4. They have the same
amplitude and frequency. In case of a three-phase inverter system, the modulating signals are Vmr, Vms

and Vmt. The modulation index (Mi) can be determined by the equation below:

Mi =
Vm

Vcr
(3)

where Vm and Vcr are the amplitudes of modulating and carrier signals, respectively. The amplitude of
fundamental voltage is proportional to the modulation index. The switching harmonics component
and its sideband are normally located centered at:

hsw = k. fcr (4)

where hsw is the switching harmonics component, k is an integer and fcr is the triangular frequency.
This modulation method can be easily extended for higher level number of voltage waveform by
adding more carriers with appropriate offset values.
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3. Test Results and Discussion

3.1. Computer Simulation Examinations

To explore and verify the accuracy of the principle and the performance of the proposed inverter,
computer simulations of the circuit were conducted using PSIM software. The inverter circuit equipped
with the balancing circuit of Figure 4 was tested. Parameters of inverter are detailed in Table 3. A 100 V
dc voltage source was applied to the input side of the inverter. An open-end connection power
load system, i.e., resistor 20 Ω, and inductor 5 mH was connected to the each phase output terminal
of inverter circuit. The inverter switches were operated at 22 kHz. It was high enough to avoid
audible noise during switching operation. The fundamental frequency of output current and voltage
waveforms was set as 50 Hz. The modulating signal of PWM circuits can be adjusted to change the
modulation index.

Table 3. Experiment parameters.

DC Input Voltage 100 V
Switching frequency of power switches 22 kHz

Inductor of stabilizing circuit, Lc 100-µH
Modulation index 0.975

Load R = 20 Ω, L = 5 mH
Basic frequency of voltage 50 Hz

Figure 10 presents inverter’s output waveforms when the modulation index was 0.975. From the
measured waveforms, it can be viewed that a five-level PWM voltage waveform of phase voltage
was properly produced by the developed inverter. Furthermore, perfect three-phase sinusoidal load
currents were generated to the loads. Figures 11 and 12 present the harmonics profiles of the produced
five-level PWM voltage wave for frequency range 0–30 kHz and 0–2400 Hz, respectively. The five-level
PWM voltage waveform contained switching harmonics components around 22 kHz and its multiples.
The amplitude of the 3rd harmonics component is about 1.5% which is much lower according to the
standard IEEE 519.
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Furthermore, the enlarged current waveforms of capacitors during the charging and discharging
modes of the 100 µF dc capacitors C1 and C2 are presented in Figure 13. These currents were the
currents flowing through the capacitors. The controller worked regulating the capacitor’s states,
i.e., charging and discharging modes to maintain stable voltage of the capacitors C1 and C2. Figure 14
is the voltage waveform of dc capacitors C1 and C2. The measured ripple of the capacitor voltages
was 1.1%. Even with small capacitors used, the ripple of capacitors was relatively small. The current
waveforms flowing through the inverter’s power switches are shown in Figure 15. The magnitudes
of these currents are the same. They have PWM patterns associated with the switching frequency of
inverter switches.
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We can improve the output power and power rating by increasing the dc input voltage, and
choose the appropriate power switches to meet the power load requirement. Figure 16 presents the
simulation results when the dc input voltage is 1000 V, with power load resistor 1 Ω, inductor 5 mH.
The peak load current is about 600 A. There was no problem for higher power and low power factor
operation of the proposed inverter.
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3.2. Experimental Examinations

Using a 100 V dc power source obtained from a dc voltage regulator, the proposed inverter was
tested experimentally. The inverter power switches were constructed by power diode DSEI120, and
power MOSFETs FK30SM-6 as shown in Figure 17, with switching frequency 22 kHz. The size of
stabilizing inductor was chosen as 100 µH. The voltage sensor was realized by using resistor divider
circuits 33 kΩ and 5.6 kΩ as shown in Figure 18. To ensure the inverter operates properly, a 2 µs
dead-time was inserted to the gating signals of inverter circuits. Realization of dead-time circuits is
shown in Figure 19. The inverter circuit applied TLP250 as gate drive circuits of inverter’s MOSFET as
shown in Figure 20. The TLP250 circuits were supplied by using DCP020515. The inverter circuit was
connected to 20 Ω resistors in series with 5 mH power inductors as in simulation test. The measured
output waveforms of voltage and current for phase R are shown in Figure 21. Five-level voltage and
sinusoidal current were confirmed experimentally. The results give more opportunity for further
application of the newly developed inverter. The measured harmonics components including the
switching harmonics are presented in Figure 22.
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4. Conclusions

In this research paper, a new variant of three-phase five-level voltage source power inverter with
minimized component number was proposed and discussed. The new inverter circuit can reduce
six power switches, three isolated gate drive circuits and six gate drive circuits compared with a
conventional inverter. The new inverter circuit is suitable for open-end connection load. Results of
computer simulation and laboratory experimental tests confirmed that five-level voltage waveforms
were properly produced by the proposed inverter. Furthermore, when single dc power source was
employed to the inverter, the stabilizing circuit worked well maintaining stable dc voltage of capacitors,
even when the small sized capacitors were used. Small ripple 1.1% of capacitor voltages were also
confirmed with 100 µF dc capacitors. From the harmonics analysis results of the PWM voltage
waveform, it can be viewed that most of low harmonic amplitudes were less than 2% compared to the
fundamental component.
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