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Abstract: With a large number of distributed generators (DGs) and electrical vehicles (EVs) integrated
into the power distribution system, the complexity of distribution system operation is increased,
which arises to higher requirements for online reactive power optimization. This paper proposes two
methods for online reactive power optimization, a scene-matching method based on Random Matrix
(RM) features and a deep learning method based on Deep Belief Network (DBN). Firstly, utilizing the
operation and ambient Big Data (BD) of the distribution system, we construct the high-dimension
Random Matrices and extract 57 state features for the subsequent scene-matching and DBN training.
Secondly, the feature-based scene-matching method is proposed. Furtherly, to effectively deal with
the uncertainty of DGs and to avoid the performance deterioration of the scene-matching method
under a new unknown scene, the DBN-based model is constructed and trained, with the former
features as the inputs and the conventional reactive power control solutions as the outputs. This
DBN model can learn the nonlinear complicated relationship between the system features and the
reactive power control solutions. Finally, the comprehensive case studies have been conducted
on the modified IEEE-37 nodes active distribution system, and the performances of the proposed
two methods are compared with the conventional method. The results show that the DBN-based
method possesses the better performance than the others, and it can reduce the network losses and
node voltage deviations obviously, even under the new unknown and unmatched scenes. It does
not depend on the distribution system model and parameters anymore and can provide online
decision-making more quickly. The discussions of the two methods under different DG penetrations
and the historical data volume were given, verifying the adaptability, robustness and generalization
ability of the DBN-based method.

Keywords: Deep Belief Network (DBN); scene matching; Random Matrix (RM); active distribution
network; reactive power optimization; data-driven; deep learning

1. Introduction

The reactive power optimization of the distribution network can reduce the power losses and
improve the voltage quality and the economical operation of a distribution network [1–4]. By regulating
the reactive power compensation equipment such as fixed shunt capacitor banks, online tap changing
transformers and SVCs (static VAR compensators), etc. [5,6], the reactive power optimization can
realize reasonable distribution of reactive power in the distribution network and reduce the power
losses and node voltage deviations. The algorithm is a key issue of the reactive power optimization of
the distribution network [7]. The nonlinear characteristic is prominent in reactive power optimization
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and is composed of multivariate, multi-constraint, discrete variables and continuous variables. The
conventional optimization methods are dependent on the model and parameters of the distribution
network, which have obvious disadvantages of poor convergence and stability. And in practical
application, the optimization computational cost is large and the decision-making time is long, so it
becomes more difficult to apply these methods to the real-time control requirements of the complicated
active distribution system [8,9]. In recent years, some of the heuristic intelligent algorithms have been
widely developed for reactive power optimization [10–13], and although these methods can process
the discrete variables accurately, the initial values of these algorithms are adopted randomly, which
may extend the computation time, and tend to fall into local minima.

Recently, distributed generators (DG) and electric vehicles (EV) are widely being used, although
the power flow of the distribution network is affected by the intermittency and randomness of DGs
and EVs, which increased the difficulty of reactive power optimization of distribution networks [14,15].
Most of the existing literature dealt with the aspects of model simplification and optimization method
improvement [16]. In [17], Zheng et al. presented a fully distributed reactive power optimization
algorithm that can obtain the global optimum solution of nonconvex problems for distribution
networks without requiring a central coordinator. In [18], considering the uncertain fluctuation
of the PV output and the load power, a robust optimal allocation of decentralized reactive power
compensation devices model for a three-phase four-wire low voltage distribution network (LVDN)
was proposed. Although the computational efficiency and convergence of reactive power optimization
were improved, the limitations of conventional algorithms still existed. It is important to explore the
reactive power optimization method of the distribution network which is not dependent on the models
and parameters to ensure the stability and quality of distribution system operation.

Meanwhile, with the improvements of power system sensing and communication, mass operation
information can be accessed through various measurement sensors, which brings an opportunity to
the innovation of reactive power optimization methods. It is true that data mining and analysis is
the key technology. Nowadays, data mining technology is applied to power systems, e.g., Liu et al.
introduced a distributed load forecasting method based on local weather information [19], Ouyang
et al. proposed a data-driven deep learning framework to forecast the short-term power load [20], and
Zhu et al. employed four featured deep learning approaches in forecasting the EVs charging load from
the charging station perspective [21].

Although data-driven methods are mainly used in the field of load forecasting as above, relevant
studies have confirmed the possibility of applying it to reactive power optimization. In [22], Sheng et al.
put forward a big data modeling method for the reactive power optimization based on the theory of
the large dimensional random matrix. In [23], Ji et al. proposed a reactive power optimization method
based on load distribution matching and the entropy weight method. They matched load scenarios
from the historical database that are similar to the current optimization time and selected the optimal
control scheme from the historical optimization scheme by entropy weight method. In [24], Cao et al.
conducted a study of transient voltage stability analysis based on convolutional neural networks and
proposed a reactive power compensation decision optimization algorithm via a deep reinforcement
learning approach. In [25], Salles et al. investigated the application of support vector machines (SVMs)
to minimize system losses and to maintain an acceptable voltage profile of distribution systems. They
used voltage/current measurements provided by active and reactive monitors to control reactive power
compensation equipment without the need to perform retraining or repeat optimization simulations.

Reactive power optimization is a complex high-dimensional nonlinear problem. In recent years,
thanks to the developments on Big Data (BD) and Artificial Intelligence (AI) technologies, represented
by deep learning (DL), data-driven AI-based online decision-making becomes possible [26]. Useful
information can be found out by the AI analysis method based on data driven from the historical
data and analyzing the implicit rules between the inputs and outputs directly [27,28]. Random Matrix
(RM) theory is a universal method for BD analysis, and does not require detailed physical models [29].
Based on the overall consideration of historical data and real-time data, this method has advantages in
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interpreting the complex system from a high-dimensional point-of-view [30]. The Deep Belief Network
(DBN) possesses the benefits of a strong feature extraction ability, simple model structure, being easy to
train and a fast convergence speed [31,32]. It is considered as an effective method to solve the complex
high-dimensional nonlinear mapping problems [33].

The motivation of this paper is to propose the Big Data (BD) and AI-based distribution network
reactive power optimizing method, to take advantage of historical operation BD through Deep Learning,
and also to effectively deal with the uncertainty of DGs. Firstly, the high-dimension Random Matrices
are constructed, 57 state features are extracted, and the feature-based scene-matching method for
reactive power optimization is proposed. Furtherly, to effectively deal with the uncertainty of DGs
and to avoid performance deterioration under the new unknown scenes, the DBN-based model is
constructed and trained. Lastly, comprehensive case studies were conducted on the IEEE-37 test bed,
the performances of these two proposed methods and the conventional method are compared, and
the discussions about the influence of the historical data volume, and the adaptability under high DG
penetrations, are given.

The main contributions can be summarized as follows:

(1) Utilizing the operation data and ambient data of a distribution network, this paper proposed
two kinds of approaches to construct the high-dimensional Random Matrix and extracted 57
statistical features. These statistical state features of the current scene under optimization were
matched with those in the historical database, and the control solution of the matching scene was
applied to the current scene directly for reactive power control and voltage management.

(2) A Deep Belief Network (DBN) with one input layer, two hidden layers and one output layer
has been constructed and optimized, with the 57 statistical state features as inputs and the
conventional optimized control solutions as output. The historical data were used to train DBN
to learn the nonlinear relationship between system features and reactive power control solutions.

(3) Comprehensive case studies were carried out on the modified IEEE-37 active distribution network,
and the optimization effects of the scene-matching method and the data-driven DBN method were
compared with the conventional optimization method, and the effects under different historical
data volumes and different DG penetrations were also investigated, verifying the effectiveness
and excellent generalization ability of the proposed DBN-based model.

The rest of this paper is organized as follows: Section 2 introduces the related theory of RM and
DBN. Section 3 introduces the feature-based scene-matching method by constructing RM. Section 4
proposes the data-driven DBN-based method for reactive power optimization. The case studies are
given in Section 5. Section 6 discusses the effects of two methods under different historical data
volumes and different DG penetrations. Section 7 deduces the conclusions.

2. Related Theory and Work

2.1. Random Matrix Theory

The random matrix (RM) can process independent and identically distributed data. RM has
no prerequisites on the data distribution of the source data (such as the Hermitian matrix satisfying
the Gaussian distribution, etc.), and only requires a large-enough volume of data (not infinite) [29].
The empirical spectral distribution function of a random matrix has many excellent properties, such as
the Single Ring Law, Marchenko–Pastur Law and so on [30]. This paper is mainly based on the Single
Ring Law.

Let the random matrix X ∈ CN×M be an N ×M-dimensional complex matrix, and then the matrix
X shall be normalized and converted to the standard non-Hermitian matrix X̃ ∈ CN×M, where the
transformed row vectors have a mean of x̃i = 0 and a standard deviation of σ(̃xi) = 1. To obtain the
eigenvalues of the random matrix, for multiple standard non-Hermitian random matrices X̃i(I = 1,2,
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. . . , L), firstly we need to transform X̃ into a singular value equivalent matrix X̃u ∈ CN×N, then define
the matrix product as

Z =
L∏

i=1

X̃u,i, (1)

where X̃u,i is the singular value equivalent matrix of X̃i. The matrix product Z can be converted to the
standard matrix product Z̃. According to the Single Ring Law, the eigenvalues of Z̃ in the complex
plane will be roughly distributed between two rings. The outer ring radius is 1, and the inner ring
radius is (1− c)2/L, where c = N/M ∈ (0, 1]. The image of the Single Ring Law is shown in Figure 1,
where L = 1, N = 80, and M = 200.
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The linear eigenvalue statistic (LES) can reflect the distribution of eigenvalues of a random matrix.
For matrix Z̃, the linear eigenvalue statistic is defined as

ςN(ϕ) =
N∑

i=1

ϕ(λi), (2)

where λi(i = 1, 2, 3 . . . , N) are the eigenvalue of matrix Z̃ and ϕ(·) is the test function. Different linear
eigenvalue statistics can be obtained by selecting different test functions.

Each eigenvalue of the matrix product Z̃ is a complex function of the random matrix X. The
fluctuation of the eigenvalues can reflect the fluctuation of the matrix elements, and thus reflect the
operating state of the corresponding physical system.

2.2. Deep Belief Network (DBN)

The DBN is a deep learning network composed of a basic unit of the Restricted Boltzmann Machine
(RBM), which possesses powerful feature extraction capabilities.

2.2.1. Restricted Boltzmann Machine

RBM is a typical probability generation model which has strong unsupervised learning ability,
and its input layer neurons and hidden layer neurons are all binary variables. As illustrated in Figure 2,
RBM is a bi-level neural network which is composed of n visible nodes and m hidden nodes, with no
connection within the layer and full connection between the layers.
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RBM is a kind of probability model [34]. For a training sample set with the capacity s, S = {v1,
v2, . . . , vs}, the training goal of RBM is to adjust the parameters of RBM iteratively and maximally
fit a given training sample [35]. Based on the optimization theory, it is equivalent to maximize the
log-likelihood function L(θ) of RBN on the training set. Then the model parameter θ can be solved
as follows:

θ∗ = argmaxL(θ) = argmax
l∑

k=1

log P(vk
∣∣∣h,θ) . (3)

The training of RBM can be performed with the contrastive divergence (CD) algorithm, which
takes the first partial derivative of L(θ) with respect to θ and then seeks the optimal parameters
according to the stochastic gradient descent principle. The derivation process is based on the Gibbs
sampling method, which takes a training sample to initialize the visual layer nodes v and conducts
the Gibbs sampling k times alternatively, then uses the values of P(h

∣∣∣v(k)) , v(k) obtained by the k-th
sampling to approximate the partial derivative values of L(θ), then update the parameters according
to Equations (4)–(6) to complete the training of a single RBM.

w = ρw + η[p(Hi = 1
∣∣∣∣v(0)) · v(0)j − p(Hi = 1

∣∣∣∣v(k)) · v(k)j ], (4)

a = ρa + η(v(0) − v(k)), (5)

b = ρb + η[p(h = 1
∣∣∣v(0)) − p(h = 1

∣∣∣v(k))], (6)

where ρ is the momentum, η is the learning rate and k = 1 in this paper.

2.2.2. The Structure and Training Method of DBN

As illustrated in Figure 3, the DBN is composed of several layers of RBM and one layer of the BP
neural network in a stacked way. It is a probabilistic generation model, which is to enable the entire
neural network to generate data according to the maximum probability through training the weights
between neurons.

The training process of DBN is divided into two steps: Bottom-up unsupervised pre-training and
top-down supervised parameter fine-tuning [32]. Firstly, unsupervised pre-training is carried out from
the input layer to the top hidden layer. This process only needs to input features of the training set to
train the stacked RBM layer-by-layer and initialize the parameters of the entire DBN structure. Next,
all the RBMs are unfolded to synthesize a complete neural network with the output layer added to the
end sequentially. The error back propagation algorithm is used to adjust the parameters of the entire
DBN structure from top most to bottom. This process requires inputting label data, which is called
supervised fine-tuning. This two-stage training method initializes the network by an unsupervised
greedy learning algorithm, which effectively reduced the space of parameter optimization and the
training time for supervised fine-tuning.
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3. Scene-Matching Method Based on Random Matrix and Features

In the reactive power optimization of a distribution network, when the volume of the operating
data accumulated in the historical database becomes large enough, and the operating scenes are
sufficient, then the control solution corresponding to the current scene may always be included in the
historical database. Therefore, for the system scene under optimization, the optimal control solution
can be determined by matching the current scene with the historical database, and the control solution
of the most similar and matching scene can be used directly to the current scene.

The features of the distribution network scene are complicated, and this paper combines random
matrix theory to process and analyze these features. One of the key problems of reactive power
optimization based on RM is how to construct the high-dimensional random matrix and extract
state features. Therefore, based on the current data and historical data, this section calculated the
corresponding features, and then selected the scenes with similar features at the current time point
from the historical database to determine the reactive power optimization solution.

3.1. Distribution System Random Matrix Modeling

Combined with the time series features of various data in the distribution system, a random
matrix for scene-matching and reactive power optimization based on a time series can be constructed
as follows.

Firstly, by analyzing the data sources affecting reactive power optimization and voltage distribution,
four kinds of electric quantity state data (load power, photovoltaic (PV) power, wind turbine (WT)
power and charging power of EV) and three kinds of environmental data (temperature, solar radiation
intensity and wind speed) are selected to form the random data source of distribution network. Then an
N ×M dimension random matrix X is constructed by sampling data of various distribution networks
based on time series, where N is the number of state variables and M is the length of the time series.

For the different types of data sources, this section proposes two kinds of approaches to construct
Random Matrices.

1. Construction of the First Kind of Random Matrix

Taking the load random matrix as an example, this part introduced the construction method of
the first kind of random matrix. The load random matrix is a random matrix with the load power in
the grid as the elements. To satisfy the requirements of constructing RM, the column number (time
points) should be far greater than the row number (state variables), at least two times and more. The
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largest load RM in this paper has 30 loads, so we selected 60 time point data with a 1 min interval
before the time point under optimization, to construct the RM. If the interval is too long, the time span
became too long, and the features cannot reflect the current status of the distribution network, and if
the interval is too short, the features cannot depict the varying trends. Comprehensive experiments
have been done and found that 60 time point data with a 1 min interval are most appropriate, and data
within 1 h before the time point under optimization can not only reflect the current status, but also
depict the varying trends of the network. In the realistic distribution network, different data sources
have different sampling intervals, for example the smart meters of the loads and the EV charger upload
data every 15 min, but the DGs such as PVs upload data every minute or every five minutes. In order
to obtain every minutes’ data, we used the curve fitting and interpolation techniques.

Assuming that the number of load nodes in the distribution network is N, the active powers
of 60 min before sampling time t are chosen to represent the load within one hour before sampling
time, then the load change of load node i at sampling time t can be expressed as row vector Pit in
a time series:

Pit = (pt
i,1, pt

i,2, pt
i,3, · · ·, pt

i,60). (7)

For a power network with N load nodes, the load variation of all load nodes at sampling time t
can be expressed by a random matrix Pt ∈ CN×60:

Pt =


P1t
P2t

...
PNt


(N×60)

. (8)

2. Construction of the Second Kind of Random Matrix

Due to the small number of state variables such as DG, EV random load, temperature, solar
radiation intensity and wind speed, the random matrix model constructed by the first method will not
reflect the current scene features well, so the extended random matrix method is needed [29,30].

Taking the photovoltaic random matrix as an example, this part introduced the construction
method of the second kind of random matrix. Assuming that there are x photovoltaic power station
in the distribution system, the number of state variables that can be measured is x. The photovoltaic
power of 60 minutes before the sampling time t was selected to represent the output of photovoltaic
within one hour before the sampling time, and the matrix of PV can be constructed according to the
time series at the sampling time t. Then the matrix was extended. Firstly, the matrix Pvt is copied k
times to get the matrix PVt

′
∈ C(x×k)×60, as shown in Equation (9),

PVt
′ =


Pvt

Pvt
...

Pvt


(x×k)×60

, (9)

where k = [N/x], square brackets [ ] represents k is the largest integer that not exceeding the numerical
value in (N/x). By adjusting the ratio of rows to columns, it is found that when the number of columns
is M = 60 and the number of rows is adjusted to 20, a more accurate asymptotic convergence result can
be observed, so N is taken as 20 here.

To construct the random matrix and eliminate the correlation of repetitive data, random noise is
also introduced into matrix PVt

′. Each element of matrix PVt
′ is multiplied by random factors within

0.95–1.05 to reduce the interference of the correlation of matrix data on the results, and finally, the
random matrix PVt ∈ C(x×k)×60 is constructed. The results show that the influence of the random noise
on the eigenvalue distribution of the matrix can be neglected.
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Similarly, the random matrix construction method is the same for the electrical quantities such
as wind power generation, electric vehicle charging power and non-electrical quantities such as
temperature, solar radiation intensity and wind speed. Details of random matrix processing and the
eigenvalue distribution based on the Single Ring Law can be referred to [29,30].

3.2. Feature Extraction

The distribution of the eigenvalues of random matrices varies at different moments, which
will change with the operating state of the grid. Since the randomness of a single eigenvalue of
a matrix cannot reflect this characteristic, a linear eigenvalue statistic is introduced to reflect the
statistical characteristics of eigenvalues and, quantitatively, to describe the state features of a system at
a certain moment.

In this section, according to the Single Ring Law, the six statistical indices are defined as mean
spectral radius kMSR, maximum spectral radius Rmax, minimum spectral radius Rmin, outer eigenvalue
ratio P1, upper eigenvalue ratio P2 and inner eigenvalue ratio P3, where P1 to P3 are used to measure
the distribution features of eigenvalues of random matrices outer, on or inner to the dedicated Ring
belt (see Figure 1). In order to compare the size of the random matrix conveniently and reflect the
fluctuation of a sample, modulus d and the variance Var of random matrix X are also used.

Four electrical data sets (load power, photovoltaic output power, wind turbine output power and
EV charging power) and three environmental data sets (temperature, irradiation and wind speed) are
selected to construct random matrices, and their eight state features are calculated. Since the total load
of the system at current moment can better reflect the system operation, we added the total load as one
feature. So, a total of 7× 8 + 1 = 57 features are extracted at this time. The definitions of these features
are shown in Appendix A in detail.

3.3. Scene-Matching Method

The status of the distribution system can be better characterized by these features at that moment.
And scene matching is carried out by comparing the similarity of the 57 features. When we want
to find the most similar scene to the system under optimization from the historical database, it is
necessary to compare the overall deviation between these comprehensive features. The smaller the
overall deviation, the higher the similarity. Therefore, the overall deviation between the scene to be
optimized and the scene at time t in the historical database is defined as

Zt =

p∑
i=1

ki ×
(

fi − f bt
i
)2

, (10)

where, p is the number of features, fi is the i-th feature of the time to be optimized, f bt
i is the i-th

feature at the time of t in the history of distribution network, and ki is the weight corresponding to the
i-th feature. In this paper, the variance contribution rate of the i-th feature is defined as its weight.

According to Equation (10), the historical scene corresponding to the smallest deviation is the
most similar one to the scene under optimization, and the scene matching is realized. The reactive
power control solution of the most similar scene is utilized to the current scene directly to control the
reactive power and manage the voltages.

3.4. Scene-Matching Procedure

In summary, the reactive power optimization process of the distribution system based on random
matrix theory and the scene matching is shown in Figure 4.
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4. DBN-Based Model

In this section, the DBN-based reactive power optimization model is proposed. If the feature of
the distribution network system is V and the corresponding reactive power optimization solution is Y,
then the reactive power optimization problem of distribution network can be transformed into the
searching mapping of V→ Y . The DBN is especially suitable for fast and accurate solutions of this
kind of problems.

4.1. Construction of the Input Feature Set

One of the key issues of the optimization methods of the distribution network based on deep
learning is the construction of the input feature set.

This construction should meet three requirements: The physical meaning is clear, the system
dynamic characteristics are presented and the inputs are comprehensive and accessible. The DGs and
EV charging stations are affected by weather conditions, temperature and irradiation intensity, etc.,
so they have strong randomness which results in the operation data of the distribution networks change
periodically and present random distribution features. In this paper, 57 features extracted in Section 3.2
are used as the input feature set of DBN in the visible layer. The specific feature variables are shown in
Table A1 of Appendix A, which can better reflect the operation status of the distribution system.

4.2. Control Solution Coder–Decoder

Since each hidden layer and output layer of DBN are binary variables, it is necessary to conduct
binary coding for the historical reactive power optimization solution and take these variables as output
labels to participate in the reverse supervision training. It is also necessary to decode the output
binaries of the DBN model to the practical control solutions such as the tap changer position of the
transformer and VAR output of each reactive power device when the offline training and online
application are conducted.

The reactive power optimization devices used in the IEEE-37 benchmark model includes two
fixed parallel capacitor groups C1 and C2, one OLTC (online tap changer) transformer with ±8 tap
changers and one SVC with a capacitor of 300 kvar. The adjusted capacity of C1 and C2 are all 600 kvar
(in units of 100 kvar); that is, 0–6. There are 2 × 8 + 1 = 17 tap positions for the transformer, and the
SVC output is −300 to 300 kvar. These solutions correspond to 3, 3, 4, 9 bits of binary, and in total the
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19-bit binary can be used to represent all reactive power optimization solutions. The control solution
codec is actually the mapping of the actual policy and the 19-bit binary output unit of the DBN.

4.3. Modeling Processes

As illustrated in Figure 5, the construction processes of the reactive power optimization model
of the distribution network based on DBN is composed of two stages: The offline training and
online decision.
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On the offline training stage, the main task is learning the corresponding relation between the
features of distribution network and reactive power optimization solutions based on the historical
data, which is similar to imitating and learning the judgment thinking and experience of the
human-being dispatchers.

On the online application stage, it needs to extract high dimensional features quickly from a wide
range of measurement data and then input them to the trained DBN model to find out the optimal
reactive power control solutions.

Offline modeling processes are summarized as follows:

1. Sample the historical data set and preprocessing.

Firstly, sample the original data and extract the features from the historical database of the
distribution network and compose the feature data set with the random matrix. Meanwhile, code
the corresponding reactive power optimization solution and construct the output tag set. In order
to narrow the numerical difference of statistic features, the maximum and minimum normalization
method expressed in Equation (11) is adopted to normalize the sample data to keep them all in the
range of [0,1]. Then divide the normalized sample data set into a training set and test set.

Cinew =
Ci −Cmin

Cmax −Cmin
, (11)

where Ci and Cinew are the statistic features before and after normalization, respectively; and Cmax

and Cmin are the maximum and minimum values of a certain statistic feature in the sample data set,
respectively.

2. Determine the optimal structure of DBN. Determine the number of hidden nodes and hidden
layers of DBN network with the experimental method.

3. Train the DBN model. The training stage includes three steps as follows:
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(1) The unsupervised pre-training. Take the 57 dimensions feature vector of reactive power
optimization as inputs and train the RBM layer by layer from bottom-to-top.

(2) The supervised parameter fine-tuning. Take the statistic features of the trained set as
input and the coded reactive power optimization solutions as the corresponding labels.
Fine-tune the network parameters from top-to-bottom until reaching the preset number
of iterations.

(3) Training parameter of DBN.

Input the statistic features of the test set into the trained DBN, and then decode the output layer
binary data to obtain the actual adjustment solutions of test day. The control solution deviation ratio
(SDR) expressed in Equation (12) is taken as the index to measure the performance of DBN training
parameters. If the value of SDR is less than the set threshold value, the DBN training parameter will be
reset until the SDR is basically stable below the threshold value.

er = 0.25 · (
c1

r1
+

c2

r2
+

t
r3

+
s
r4
), (12)

where c1, c2, t and s represent the difference values between the input capacities of capacitor bank C1,
C2, the transformer tap position, input capacity of SVC and their corresponding values obtained by
conventional reactive power optimization solutions. r1, r2, r4 represent the maximum capacities of
SVC, and r3 denotes the transformer tap position. It has been demonstrated that the smaller the value
of er, the better the control effects of the control solutions obtained by the model.

4. Evaluate the performance of the DBN model.

Apply the control solutions obtained by the DBN model to the test bed, and test whether the
solutions can achieve the control effects in terms of network loss reducing and node voltage deviations.

5. Case Study

To demonstrate the effectiveness of the proposed method, the case studies were performed on
the modified IEEE-37 nodes distribution network through the combined Matlab and OpendDSS
software platform. The standard IEEE-37 nodes distribution network was modified moderately to
consider stochastic loads and DGs (PV, WT and EV), and the topology and parameters of the modified
distribution network are given in Appendix B in detail, see Figure A1 and Table A2.

5.1. Conventional Reactive Power Optimization Method

In order to demonstrate the performance of the proposed scene-matching method and DBN
model, the Particle Swarm Optimization (PSO) algorithm was selected as the conventional optimization
method for comparison, and optimized control solutions in the historical database were also obtained
by PSO. The objective of the conventional reactive power optimization in this paper is to minimize
the active power loss while satisfying various constraints, and voltage deviation is also considered as
small as possible by adding it as a penalty term to the objective function. Some key parameters of PSO
were set as follows: The population size is 30, the maximum number of iterations is 50, the inertia
factor ranges from 0.4 to 0.9 and the learning factor is 2.

5.2. Construction of Sample Data Set and Historical Database

The simulation model of the modified IEEE-37 nodes system is established based on the annual
(8760 hours) historical load data and the actual environment data such as temperature and wind speed.
The penetration of DGs including PV and WT is set to 10% (low penetration scenario). Because the
access to the historical database of the distribution network is limited, the time-series simulation and
calculation were performed in Matlab and OpenDSS software to obtain the original feature database
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and construct a high dimensional random matrix to extract features. Taking one year for example,
it constitutes 8760 hours of historical samples. The hourly reactive power optimization solutions were
obtained by PSO. These features and optimization solutions constitute the historical database for scene
matching. Meanwhile, these data were processed as the input features and output labels of DBN.
Then, the input and output were organized into a sample library to form a training set with 8760 valid
historical samples.

5.3. Determining the Structures of DBN

Too many hidden nodes will easily lead to over fitting and conversely will result in insufficient
learning ability, thus determining the structures of DBN is a key issue for training DBN. However, no
consensus has been reached about how to determine the optimal numbers of hidden layers and nodes.
In this paper, we propose the following test method to determine the optimal numbers of hidden layers
and nodes.

Firstly, set the network to contain only one hidden layer, and set the number of nodes to 100–600
by the step size of 100 to carry out DBN training, respectively. If the training effects satisfy the following
optimal conditions, the corresponding node number is the optimal.

Optimal conditions: The maximum solution deviation rate Mer is the minimal; the above-threshold
ratio Rer (the ratio of the hours that er > 0.5 to 24 hours) is the minimal. The definition of er is shown in
Equation (12).

Secondly, fix the node number of the first layer, add a second hidden layer and set different node
numbers to continue training to select the optimal node number of this layer.

And so on, until the variable values of the optimal condition will no longer decrease.
From the test results, it is found that there is a certain relationship between the training effects

and the numbers of hidden layers and nodes, which are shown in Figures 6 and 7.
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From Figures 6 and 7, we can see that the values of Mer and Rer are minimal when the hidden
layer number is 2 and node number is 500 and 200. As the hidden layer increases to 3 layers, the
values of Rer and Mer increases significantly. Therefore, the optimal structure of this DBN model is
(57,500,200,19), as shown in Figure 8. Then, adjust the training parameters continuously to build the
DBN model with er less than the threshold.
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5.4. Results

In this section, we randomly select an actual typical day (24 h) in one year of the distribution
network as the day to be optimized, utilize the above method to obtain the hourly features, and form
a test data set with 24 under-optimization samples for RM scene-matching and DBN model effect
comparison. The optimization results of this day can basically represent the statistical rules of many
other days under optimization. These methods have also been applied to every day in a half of a year,
and the statistical results of the performance comparison are given in Section 6.

5.4.1. Comparative Analysis

In this paper, the indices of loss reduction ratio and the voltage deviation are chosen to evaluate
the reactive power optimization effects.

The active power loss reduction ratio is defined as

fLR =
P0 − ∆P

P0
× 100%, (13)

where, P0 is the line loss of the distribution network without reactive power control at that time, and
∆P is the line loss after reactive power optimization at that time. The larger the loss reduction ratio is,
the better the control performance is.

The system voltage deviation is defined as

∆U =

√√
1
n

n∑
i=1

(
Ui −UiN

UiN
)

2
× 100%, (14)

where Ui is the actual voltage of i-th node, UiN denotes the nominal voltage and n is the node number.
The less the voltage deviation is, the better the control performance is.
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The results of loss reduction ratio and voltage deviation are shown in Figures 9 and 10.
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Figure 9. Comparison of the loss reduction ratio of three methods.

Energies 2019, 12, x FOR PEER REVIEW 14 of 24 

 

0

0

100%LR
P P

f
P
− Δ

= × , (13) 

where, 0P  is the line loss of the distribution network without reactive power control at that time, 
and PΔ  is the line loss after reactive power optimization at that time. The larger the loss reduction 
ratio is, the better the control performance is. 

The system voltage deviation is defined as 

2

1

1 ( ) 100%
n

i iN

i iN

U UU
n U=

−
Δ = × , (14) 

where iU  is the actual voltage of i-th node, iNU  denotes the nominal voltage and n is the node 
number. The less the voltage deviation is, the better the control performance is. 

The results of loss reduction ratio and voltage deviation are shown in Figures 9 and 10. 

 
Figure 9. Comparison of the loss reduction ratio of three methods. 

 
Figure 10. Comparison of the voltage deviation of three methods. 

Comparing the scene-matching method with the conventional method, it can be seen that the 
loss reduction performance is similar for the two methods, and the voltage deviation index of the 
scene matching is slightly larger than the conventional method. Since the scene-matching method can 
only match similar scenarios in the historical database, it may not be applicable to the current system 
states. 

Besides, the comparisons of the three methods show that the reactive power optimization model 
based on the DBN had a good performance in reducing power loss and decreasing the voltage 
deviation. Especially the performance in decreasing voltage deviation is even better than the 
conventional method. 

The solutions obtained by the DBN model are effective and reasonable, which has learned the 
mapping relation between the operation state of the distribution network and the conventional 

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Lo
ss

 R
ed

uc
tio

n 
Ra

te
 (%

)

Time (h)

Conventional Method
Scene Matching
DBN

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

V
ol

ta
ge

 D
ev

ia
tio

n 
(%

)

Time (h)

Conventional Method
Scene Matching
DBN

Figure 10. Comparison of the voltage deviation of three methods.

Comparing the scene-matching method with the conventional method, it can be seen that the loss
reduction performance is similar for the two methods, and the voltage deviation index of the scene
matching is slightly larger than the conventional method. Since the scene-matching method can only
match similar scenarios in the historical database, it may not be applicable to the current system states.

Besides, the comparisons of the three methods show that the reactive power optimization model
based on the DBN had a good performance in reducing power loss and decreasing the voltage deviation.
Especially the performance in decreasing voltage deviation is even better than the conventional method.

The solutions obtained by the DBN model are effective and reasonable, which has learned
the mapping relation between the operation state of the distribution network and the conventional
optimization solutions. Under the guidance of the mined mapping rules, the DBN method can provide
control solutions superior to the conventional method.

To further compare the three methods’ performance, we compared the data processing and
optimizing time. Firstly, the scene-matching method in this paper for building history matching
database need to calculate all kinds of random matrix features of one year’s history data (8760 samples),
which costs 37.2 min. Meanwhile, DNB needs to conduct offline model training, and one year’s sample
data is utilized, which costs about 26.1 min (DBN network parameter training only needs 0.332 s, and
the rest of the time is for input feature data processing).

Once the historical database is built, and the DBN model is trained, we can use three methods to
optimize the same scene online and measure the optimization run time of three methods, as shown in
Table 1. All simulations were conducted under the test environment of MATLAB (Version R2016b) and
OpenDss (Version 7.6.5.64), where the PC CPU was a Pentium(R)Dual-Core E5500 @2.80 GHz, and the
RAM was 4 GB.
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Table 1. Run time of the three methods.

Method Conventional Method Scene Matching DBN
Run Time 54.33 s 1.32 s 0.78 s

It can be seen that, compared with the conventional methods, the optimization of the two methods
proposed in this paper is very fast, satisfying the requirements of the online reactive power optimization.
It should be worth mentioning that the scene-matching and DBN-based approach do not depend on
the distribution system model and parameters anymore, the only thing they use is the data generated
by the distribution network; they are purely data-driven. And they can make the decisions more
quickly than ever before because they do not need to perform the online optimizing calculations like
conventional methods.

5.4.2. Under Higher DG Penetration

Most of the optimization methods based on being data-driven have limitations, such as they
cannot properly analyze the scenes that have not occurred in the historical database, and they also
show poor robustness. Meanwhile, due to the high penetration of grid-connected DGs, the node
voltage and network loss of the distribution network are gradually increased [36]. Therefore, a more
adaptive reactive power optimization method is needed to adjust the system operation states.

To verify the robustness of the methods proposed in this paper, the penetration of DGs (PV and
WT) is increased from 10% to 20%. The results of the loss reduction ratio and voltage deviation are
shown in Figures 11 and 12.
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Figure 11. Comparison of the loss reduction ratio between three methods under 20% distributed
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Figure 12. Comparison of voltage deviation between three methods under 20% DG penetration.
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The results show that the DBN model trained and obtained under the low DG penetration is still
available for the reactive power optimization demands in the higher DG penetration scenario. Besides,
the performance of loss reducing of the DBN method is similar to the conventional method, and the
voltage deviation index of the DBN method is better than the conventional method. However, for the
scene-matching method, the performances for loss-reducing and voltage deviation are deteriorated,
especially during the noon period when the DG output power increases significantly. That is because it
is hard to find out the matching scenarios from the historical database, and the control effects become
worse as the matching degree goes down.

Meanwhile, as an innovative data-driven reactive power optimization method, the DBN-based
method can learn the nonlinear complicated relationships between system statistic features and reactive
power optimization control solutions, which breaks through the bottleneck of the scene-matching
methods. It can still provide appropriate reactive power control solutions directly and quickly, even for
some new unknown scenes that have not appeared in the historical database. From this perspective,
the DBN-based method possesses excellent adaptability and robustness, which can provide a feasible
solution to the problem of reactive power optimization of the large-scale grid-connections of DGs.

6. Discussion

In order to exclude the influence of stochastic factors as far as possible, we still take 8760 h of the
above year as the historical data, and select another half year (4,344 under-optimization moments) as
the test data. That is to say, to expend the tests and verifications in Section 5 from one day (24 h) to half
of a year (4344 h). In this section, the conventional method is used as the comparison benchmark, and
we mainly compare the differences between the methods proposed in this paper and the conventional
method. Therefore, two comparative indicators, network loss acceptability and voltage deviation
acceptability are defined as follows:

LW =
∆PD − ∆PCN

∆PCN
× 100%, (15)

where LW is the network loss acceptability at a certain time, ∆PD is the network loss at that time when
the system adopts reactive power optimization solution by methods in this paper (RM scene-matching
and DBN model), and ∆PCN is the network loss at that time when the system adopts conventional PSO
reactive power optimization.

UW = ∆UD − ∆UCN, (16)

where UW is the voltage deviation acceptability of system at a certain time, ∆UD is the system voltage
deviation at that time when the system adopts method proposed in this paper, and ∆UCN is the system
voltage deviation at that time when the system adopts the conventional PSO method.

According to the definition of voltage deviation acceptability UW and network loss acceptability
LW, the smaller their values are, the better the optimization performance is. Specifically, when the
UW or LW is less than 0, it means that the voltage deviation or the network loss is smaller than the
conventional one, that is, the optimization effect is better.

Considering that there are a large number of test samples (4344) to be optimized, in order to
compare the optimization effect of the methods more intuitively and comprehensively, we choose
the distribution probability of these two indicators in 4344 samples as the statistical indicator of the
optimization effect. We define the Excellence-Ratio and Qualified-Ratio as follows:

Re =
N1

4344
× 100%, where Lw < 0, Uw < 0, (17)

Rq =
N2

4344
× 100%, where Lw < 5%, Uw < 1%. (18)
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Among them, the Excellence-Ratio Re is expressed as the proportion of the excellent performance
cases among 4344 test moments in half a year, where N1 is the number of test samples when the
Network Loss Acceptability LW is less than 0 and the Voltage Deviation Acceptability UW is also less
than 0 at the same time, indicating that the optimization effect at this time is comprehensively better
than the optimization effect of conventional methods.

The Qualified-Ratio Rq is expressed the proportion of the qualified performance cases among
4344 test moments, where N2 is the number of test samples when the LW is less than 5% and the UW is
less than 1%, indicating that the optimization effect at this time is either better than the conventional
optimization effect, or slightly lower than the conventional effect but close to it. It is in the acceptable
range, and it can meet the current reactive power optimization requirements of the distribution network.

6.1. The Influence of Historical Data Volumes on Optimization Results

In order to further study the influence of each methods on the reactive power optimization effect
under different historical data volumes, this section composes 12 data sets with different data volumes
from 8760 historical data samples of a year, and increases the data volumes by one month as a unit to
form data sets containing historical samples of 1, 2, 3, . . . , 12 months, respectively, for scene matching
and DBN model training. Another half of one year (4344 h) samples of the distribution system are also
selected as the test scene to be optimized. The optimization results of various methods under different
data volumes are shown in Table 2 and Figure 13.

Table 2. Comparison of reactive power optimization effect of the two methods under different
data volumes.

Data Volumes
(Month)

Scene-Matching Method DBN-Based Method

Qualified-Ratio
Rq

Excellence-Ratio
Re

Qualified-Ratio
Rq

Excellence-Ratio
Re

1 46.71% 11.83% 48.83% 16.69%
2 75.51% 27.74% 92.15% 51.70%
3 77.65% 31.95% 98.37% 67.73%
4 86.60% 40.88% 98.64% 66.74%
5 84.78% 36.90% 91.94% 49.37%
6 84.76% 35.54% 93.67% 47.65%
7 81.49% 38.47% 95.07% 49.98%
8 81.95% 38.31% 95.67% 48.60%
9 82.55% 38.24% 93.28% 47.30%
10 84.12% 37.41% 95.56% 46.82%
11 86.10% 36.79% 95.76% 47.28%
12 89.13% 35.34% 97.28% 49.15%Energies 2019, 12, x FOR PEER REVIEW 18 of 24 
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It can be seen from the above charts that both the Qualified-Ratio Rq and the Excellence-Ratio Re
are increased with the data volume. After four or six months, these changes stop, and Rq and Re start
to fluctuate randomly in a certain range.

According to the comprehensive analysis of two methods, when the amount of historical data is
small, the performances of both the scene matching and DBN-based methods are poor. However, with
the increase of historical data volume, DBN only needs just more than two months of training samples
to ensure the reactive power optimization effect of the model, and the Rq and the Re are very high. The
scene matching requires up to four months data to ensure a stable Rq between 80%–90%, and both the
Re and Rq are lower than the DBN method. It indicated that the overall reactive power optimization
performance of DBN is relatively higher, and the DBN model has significant advantages beyond other
methods even in the case of fewer training historical data.

6.2. The Influence of Different DG Penetration on Optimization Results

In order to further study the influence of different DG penetration scenarios on the reactive
power optimization of each method, this section will increase the DG penetration. The original DG
penetration is 10%, and there are five different test scenarios with the DG penetration of the simulation
model are set to 10%, 20%, 30%, 40% and 50%.

We selected the data sample for another half year (4344 h) under the five penetration scenario as the
test set to be optimized. For RM scene matching, the original 10% low-penetration historical database
is still used to match the high penetration scenarios. For DNB optimization, 10% low-penetration
training samples were still used to optimize the higher penetration scenario, and the results are shown
in Table 3 and Figure 14.

Table 3. Comparison of reactive power optimization effect of the two methods under different
DG penetration.

Penetration

Scene-Matching Method DBN-Based Method

Qualified-Ratio
Rq

Excellence-Ratio
Re

Qualified-Ratio
Rq

Excellence-Ratio
Re

10% 89.13% 35.34% 97.28% 49.15%
20% 80.06% 19.01% 92.79% 46.39%
30% 63.42% 13.33% 85.59% 36.28%
40% 54.72% 13.51% 82.04% 35.77%
50% 49.65% 9.12% 75.21% 35.52%Energies 2019, 12, x FOR PEER REVIEW 19 of 24 
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Table 3 shows that with the increase in DG penetration, the Qualified-Ratio Rq and the
Excellence-Ratio Re of each method decline to different degrees, and the changing trend is consistent.

Under the scenarios with different penetration, we can see that the solutions generated by the
DBN model have better reactive power optimization effect than the scene-matching method, and the
Rq and the Re tend to decrease more slowly with the increase of penetration.
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The scene-matching method is greatly affected by penetration changes, especially when the
penetration exceeds 20%, the optimization effect decreases and the performance gets worse. This is
because with the increase of the DG penetration, it becomes harder to find out the most similar and
most matching scene from the original historical database.

When the penetration is less than 40%, the Rq and the Re of the DBN-based method are less
affected by the high penetration scene of DG, and the effects are still acceptable. The Rq can stay above
80%, the Re remain above 35% and the Rq is only slightly worse when the penetration reaches 50%. This
result also indicates that the DBN-based model trained and established under the condition of only
10% penetration is still feasible to the high-penetration scenarios of 20% to 40%, furtherly verifying the
robustness and generalization of the proposed DBN-based approach.

7. Conclusions

To take advantages of the Big Data of the huge historical operation data, this paper proposed
two data-driven methods for the reactive power optimization of the active distribution network, the
feature-based scene-matching method and DBN-based method. The comprehensive case studies were
conducted on the modified IEEE-37 active distribution network, and the reactive power optimization
effects of the proposed approaches were investigated and compared with the conventional method.
The influences of the historical data volume and the adaptability under higher DG penetrations were
also discussed. We can derive the following conclusions:

(1) Combining the random matrix theory with the time-series method, this paper suggested two ways
to construct the random matrix and extracted 57 statistical features to represent the operating
characteristics of the distribution network. These features can be utilized in the scene-matching
method and DBN training for reactive power optimization effectively.

(2) The data-driven scene-matching method and the DBN-based deep learning method of reactive
power optimization are proposed in this paper, as both of them can achieve a similar performance
to the conventional method or even better with more than four months historical operation data.
The merits of these two data-driven methods are that they do not depend on the distribution
system models and parameters anymore and are purely data-driven. The only thing they used
were the data generated by the distribution network. They can make the on-line decisions more
quickly and satisfy the online optimization requirements of the distribution network operation.

(3) The DBN-based deep learning method always possesses better performance than the
scene-matching approach, even under the unknown higher DG penetration cases, verifying the
adaptability, robustness and generalization ability. This paper provided a new and innovative
way for the application of Big Data and Artificial Intelligence in reactive power optimization of
the distribution network.
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Appendix A. Features by Random Matrix

For six statistical features according to the Single Ring Law, the mean spectral radius describes
the average distribution of all eigenvalues on the complex plane, which can be used to measure the
overall statistical features of a matrix; the maximum/minimum spectral radius, which describes the
farthest/nearest point of all eigenvalues of a random matrix from the center of the spectral distribution,
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can be used to measure the extreme value of the eigenvalue distribution of a matrix; the ratio of
eigenvalues outside the ring/on the ring/inside the ring describes the distribution of all eigenvalues on
a single ring, which can be used to measure the degree of dispersion/concentration of the eigenvalue
distribution of a matrix. The specific calculation formulas are shown in Equations (A1)–(A6).

kMSR =
1
N

N∑
i=1

|λi|, (A1)

Rmax = max
1≤i≤N

|λi|, (A2)

Rmin = min
1≤i≤N

|λi|, (A3)

P1 =
M1

N
× 100%, (A4)

P2 =
M2

N
× 100%, (A5)

P3 =
M3

N
× 100%, (A6)

where, λi is the matrix eigenvalue; N is the total eigenvalue number; |λi| is the distance between
the eigenvalue and the center of the spectral distribution, that is the radius of the eigenvalue; M1,
M2 and M3 are the number of eigenvalues distributed outside the ring, on the ring, or inside the
ring respectively.

In order to compare the size of random matrix conveniently, the expression of modulus d of
random matrix X is defined in Equation (A7),

d =

√
tr(X ·XT), (A7)

where superscript T represents transposition and tr(X) represents trace of the matrix.
In multivariate statistical analysis, discrete indicators can reflect the personality and dispersion

of a homogeneous population. To study the distribution characteristics of a population, the discrete
trend is an important aspect. Sample variance is a kind of discrete trend indicator, which measures
the fluctuation of a sample. Therefore, the analysis of the discrete trend of random variables is often
converted into the analysis of sample variance. In this paper, the matrix is processed in the way of
dealing with vectors, and the “variance” Var of random matrix X is still a numerical value, shown in
Equation (A8):

Var(X) =
1

N ·M

N∑
i=1

M∑
j=1

(xi j − x)2, (A8)

where matrix X is the random matrix of N ×M dimension, x represents the mean values of all elements

of matrix X, and satisfy x = 1
N·M

N∑
i=1

M∑
j=1

xi j.

The final 57 feature indicators are shown in Table A1.
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Table A1. 57 features extracted from random matrix.

Index Features Index Features

1 Mean spectral radius of load matrix 30 The ratio of eigenvalues of load matrix in the
small circle

2 Mean spectral radius of ev matrix 31 The ratio of eigenvalues of ev matrix in the
small circle

3 Mean spectral radius of pv matrix 32 The ratio of eigenvalues of pv matrix in the
small circle

4 Mean spectral radius of wind matrix 33 The ratio of eigenvalues of wind matrix in the
small circle

5 Mean spectral radius of light intensity matrix 34 The ratio of eigenvalues of light intensity matrix in
the small circle

6 Mean spectral radius of temperature matrix 35 The ratio of eigenvalues of temperature matrix in
the small circle

7 Mean spectral radius of wind speed matrix 36 The ratio of eigenvalues of wind speed matrix in
the small circle

8 Variance of load matrix 37 The ratio of eigenvalues of load matrix outside the
large circle

9 Variance of ev matrix 38 The ratio of eigenvalues of ev matrix outside the
large circle

10 Variance of pv matrix 39 The ratio of eigenvalues of pv matrix outside the
large circle

11 Variance of wind matrix 40 The ratio of eigenvalues of wind matrix outside the
large circle

12 Variance of light intensity matrix 41 The ratio of eigenvalues of light intensity matrix
outside the large circle

13 Variance of temperature matrix 42 The ratio of eigenvalues of temperature matrix
outside the large circle

14 Variance of wind speed matrix 43 The ratio of eigenvalues of wind speed matrix
outside the large circle

15 Total load power 44 Maximum spectral radius of load matrix
16 Norm of load matrix 45 Maximum spectral radius of ev matrix
17 Norm of ev matrix 46 Maximum spectral radius of pv matrix
18 Norm of pv matrix 47 Maximum spectral radius of wind matrix
19 Norm of wind matrix 48 Maximum spectral radius of light intensity matrix
20 Norm of light intensity matrix 49 Maximum spectral radius of temperature matrix
21 Norm of temperature matrix 50 Maximum spectral radius of wind speed matrix
22 Norm of wind speed matrix 51 Minimum spectral radius of load matrix

23 The ratio of eigenvalues of load matrix
between two circles 52 Minimum spectral radius of ev matrix

24 The ratio of eigenvalues of ev matrix between
two circles 53 Minimum spectral radius of pv matrix

25 The ratio of eigenvalues of pv matrix between
two circles 54 Minimum spectral radius of wind matrix

26 The ratio of eigenvalues of wind matrix
between two circles 55 Minimum spectral radius of light intensity matrix

27 The ratio of eigenvalues of light intensity
matrix between two circles 56 Minimum spectral radius of temperature matrix

28 The ratio of eigenvalues of temperature
matrix between two circles 57 Minimum spectral radius of wind speed matrix

29 The ratio of eigenvalues of wind speed matrix
between two circles

Appendix B. Modified IEEE-37 Distribution System

The IEEE-37 node distribution network is chosen for simulation, which includes 37 nodes,
35 branch lines. The input normal voltage is 230 kV which is reduced to 4.8 kV through the bus
transformer installed at node 799. The voltage of node 775 is 0.48 kV and the voltages of other nodes
are all 4.8 kV. The distribution system is modified by accommodating PV, WT, EV charging station.
Besides, the reactive-load compensation equipment such as voltage regular, capacitor tank and SVC
are also added. The specific topology of the modified distribution network is illustrated in Figure A1.
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Figure B1. Improved IEEE37 node topology. Figure A1. Improved IEEE37 node topology.

Where the OLTC transformer is connected between node 799 and 701, its tap position is ±8, and
the adjustable voltage range is 0.95–1.05; the capacitor tanks are connected to node 708(C1) and 737(C2),
the capacity of C1 and C2 is 600 kvar which is composed 6 capacitors with capacity of 100 kvar; The
SVC is connected to node 711 and its capacity is 300 kvar.

The information of PV, WT and EV charging station is given in Table A2.

Table A2. Information of PV, EV and wind generator.

Connected Device Position Capacity

PV1 741 75 kVA
PV2 740 100 kVA
PV3 724 100 kVA
PV4 736 75 kVA
WT 728 300 kW
EV1 725 120 kW (Maximum power)
EV2 735 240 kW (Maximum power)
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