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Abstract: Multi-agent systems are well-known for their expressiveness to explore interactions and 
knowledge representation in complex systems. Multi-agent systems have been applied in the energy 
domain since the 1990s. As more applications of multi-agent systems in the energy domain for 
advanced functions, the interoperability raises challenge raises to an increasing requirement for data 
and information exchange between systems. Therefore, the application of ontology in multi-agent 
systems needs to be emphasized and a systematic approach for the application needs to be 
developed. This study aims to investigate literature on the application of ontology in multi-agent 
systems within the energy domain and map the key concepts underpinning these research areas. A 
scoping review of the existing literature on ontology for multi-agent systems in the energy domain 
is conducted. This paper presents an overview of the application of multi-agent systems (MAS) and 
ontologies in the energy domain with five aspects of the definition of agent and MAS; MAS applied 
in the energy domain, defined ontologies in the energy domain, MAS design methodology, and 
architectures, and the application of ontology in the MAS development. Furthermore, this paper 
provides a recommendation list for the ontology-driven multi-agent system development with the 
aspects of 1) ontology development process in MAS design, 2) detail design process and realization 
of ontology-driven MAS development, 3) open standard implementation and adoption, 4) inter-
domain MAS development, and 5) agent listing approach. 
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1. Introduction 

The energy sector is facing a new paradigm shift following the large-scale integration of 
renewable energy sources (RES) [1]. The significant use of fossil resources is one of the major concerns 
of today’s society. Climate changes, environmental impacts, and the scarcity of resources have led to 
the need for RES. RES reduce greenhouse gas emission while contributing to an increase in life quality 
and sustainable development [2]. The inclusion of RES is a highly complex task. The demand and 
supply need to be balanced due to the unpredictable behavior of RES. This influences not only the 
electricity system but also heating and cooling systems due to the considerable linkage between 
subdomains. 

In order to solve these problems, multiple stakeholders need to work together and provide 
solutions. Models of such solutions are essential to explore the interactions between consumption, 
production, and transportation as well as economic, environmental and technical phenomena. Multi-
agent systems (MAS) can contribute to explore and develop such solutions since MAS can simulate 
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how multiple stakeholders work, interact, and influence each other. The MAS simulations make it 
possible to simulate systems which consist of agents with different or conflicting objectives. 

Agents often collaborate towards a specific goal and need to communicate and share results. 
Different languages and vocabularies are domain-specific, and often cause problems for the agents 
in a system. It requires a common language to ensure that messages are interpreted correctly between 
agents [3]. Therefore, ontology can be applied to establish effective communication between agents. 
Ontology can specify terms that are used for communication within a specific context and enable 
agents to make declarations or ask queries that are understood by all other agents in the system [4]. 
It is an important tool for the development of an intelligent multi-agent energy system, e.g. for the 
knowledge sharing and knowledge reuse [5]. 

As more applications of multi-agent systems in the energy domain for advanced functions, the 
interoperability challenge raises due to an increasing requirement for data and information exchange 
between systems. Meanwhile, the energy system is strongly connected with other domains.  
Therefore, the application of ontology in multi-agent systems needs to be emphasized and a 
systematic approach for the application needs to be developed. 

Although some review papers have investigated agent-based modeling and tools for the 
electricity domain (e.g., [6]), very few studies have investigated the MAS design and the applications 
of ontology in MAS for the energy domain. Moreover, many studies focus on specific subdomains 
and how to solve one specific problem. Hence, investigation and analysis of more complex systems 
and problems, integration of subdomains, including different agents and ontologies, is needed. 
Meanwhile, it is important to highlight the relevant literature and map the key concepts 
underpinning the research area [7]. The scoping review can provide the means that identify, 
characterize, and summarise existing literature regarding the state of research activities. Moreover, 
the review result can identify gaps in the literature. 

This paper conducts a scoping review to investigate the existing studies on the application of 
ontologies in the MAS for the energy domain. Based on the results of the literature analysis, this paper 
proposes a recommendation list for the ontology-driven MAS development for the energy domain. 
This recommendation aims to address certain aspects that are missing in the literature or need more 
emphasis in future work. 

The paper is organized as follows: Section 2 describes the methodology and the research process. 
Section 3 presents the literature analysis results, and Section 4 discusses the findings followed by 
section 5 that concludes. The conclusion section also states the recommendation for future work and 
the limitations of this study. 

2. Method 

The study is designed to compile the relevant contributions from previous publications and to 
analyze their results in relation to multi-agent modeling design for the energy domain. This study 
firstly conducts a literature search of ontologies and multi-agent systems for the energy domain. The 
literature search was performed during the first quarter of 2019. To retrieve the relevant articles for 
this literature study, four online databases are selected that are relevant in the fields of energy, and 
MAS and ontologies: ACM digital library, IEEE Xplore, Web of Science, ScienceDirect. The review 
covers books, conference proceedings, academic journal articles, research articles, and review articles. 
Other forms of publications, such as newspapers, posters, etc., were not considered since their 
publication forms are not for scientific research purposes. There was no limitation on the publication 
years for the literature search. 

The data collection was divided into three rounds with relevant keywords. The keyword search 
was only applied to titles due to a large number of the literature in the fields and the concerns of the 
relevance in the selected domains. The first round focused on the multi-agent systems in the energy 
domain. To avoid excluding any relevant study, the search strings were:  

(‘multi-agent’ OR ‘multiagent’) AND (‘energy’ OR ‘electricity’ OR ‘heating’ OR ‘grid’ OR 
‘electric’ OR ‘power’ OR ‘wind’) 



Energies 2019, 12, 3200 3 of 31 

 

The strings, in the first round, resulted in 1433 publications. The result from each database is 
shown in Table 1. All these 1433 publications were imported to the reference management software- 
Endnote (https://endnote.com/). 

Table 1. Results in the first round search. 

Database Result 
Web of Science 355 

IEEE 822 
ScienceDirect 58 

ACM 198 
Total 1433 

 
To dismiss the duplicated publications, i.e., articles which were obtained through multiple 

databases or strings, 856 articles were removed by this criterion. The remaining 577 articles were 
selected for further analysis. This study searched the remaining articles with ‘ontology’ OR 
‘ontologies’ in titles, abstracts, and keywords, and resulted in 24 articles with full-text. 

Based on the text mining in the analysis software NVivo 
(https://www.qsrinternational.com/nvivo/home) and careful review, the 24 articles were separated 
into six sub-domains (shown in Table 2). Majority of the selected articles only address one sub-
domain, and one article [8] addresses three sub-domains (energy management, microgrid, and 
buildings), and another article [9] addresses two sub-domains (power system and microgrid). The 
publications show that the application of ontologies in the field of MAS for the energy domain was 
mainly conducted after the year 2004, with focus on the sub-domain of grid control between 2004 to 
2014, and expanded into the sub-domain of electricity market since 2014. A list of the 24 articles in 
the Appendix A shows the focused aspects in the energy domain, ontology, and MAS design. 

Table 2. Six addressed sub-domains by the selected articles. 

Grid 
Control 

Power 
System 

Energy Management 
System 

microg
rid 

Buildings/ 
Demand Side 

Electricity 
Market 

8 3 2 3 5 6 

3. Results 

This study reviews and analyses the selected 24 articles to investigate the current research on 
the application of ontologies in MAS for the energy domain, and the main discussion in the 24 articles 
can be divided into five categories: 1) definition of agent MAS, 2) MAS applied in energy domains 3) 
defined ontologies in the energy domain, 4) MAS Design and architectures, and 5) Ontology in the 
MAS development. 

3.1. Definition of Agent and MAS  

3.1.1. Agent and Agent-Based Modeling 

An agent is defined as an entity that reacts to changes in its environment through a reasoning 
process [10]. The attributes of an agent are autonomy, sociability, reactivity, pro-activeness, 
adaptiveness, interactivity, rationality, and interactivity, etc. [11]. Russell [12] defines an intelligent 
agent as an autonomous entity which has the following properties: 

• It has the ability to communicate and interact with its environment;  
• It is able to perceive the (local) environment;  
• It is guided by basic objectives; 
• It has feedback behavior. 
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An agent structure shows: (1) a set of modules that the agent is decomposed in to, (2) the 
interaction between these modules and the environment and other agents (shown in Figure 1), and 
generally, there are three types of agent structures: deliberative architecture, reactive architecture and 
hybrid architecture [13]. 

Agent-based modeling is a model of a system with the description of agents and agents’ 
interactions [14]. Agent-based modeling usually models part of the system rather than a whole 
system due to the complexity of the system.  

 
Figure 1. Agent structure [13]. 

3.1.2. Multi-Agent Systems 

Multi-agent System (MAS) is a complex system that is composed by more than one distributed 
agents and these agents communicate to deal with problems which usually can't be solved by a single 
agent [14,15]. According to [16], a MAS is characterized by: 

• Large numbers of actors are able to interact, in competition or in cooperation;  
• Local agents focusing on local interests and negotiating with more global agents;  
• Implementation of distributed decision making, through negotiation processes between 

different local or global agents; 
• Communication between actors is minimized to generic information exchange between agents: 

only the information necessary for their functioning is sent between agents. 

MAS is based on the divide-and-conquer mechanism [17]. In a MAS, each agent has limited 
knowledge about its environment, and work individually towards a certain goal based on their local 
knowledge and their behavioral algorithms and interact in a cooperative or competitive manner with 
other agents [18]. 

The idea of using MAS is to divide a complex system into smaller and more related objectives 
and construct agents for these sub-objectives [17]. MAS can simulate and control large complex 
decentralized systems that can cope with the dynamics of the system, reduce the complexity, and 
increase flexibility [19]. One of the most important benefits of MAS is its fault tolerance, based on 
multiple agents can provide the same services [17]. 

3.2. MAS Applied in Energy Domains 

The energy sector is becoming more complex and consists of multiple hybrid systems, which 
includes various interactions and amounts of knowledge. MAS is being studied in many areas of 
power engineering including diagnostics, condition monitoring, power system restoration, market 
simulation, network control and automation, and hierarchical decision making, as smart grid (SG) 
and microgrids (MG) [18,20]. The development of simulation platforms based on MAS is increasing 
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as a good option to simulate real systems in which stakeholders have different and often conflicting 
objectives [21]. 

3.2.1. MAS for Grid Control 

According to [18], research on using MAS in power engineering mainly focuses on distributed 
control architectures and simulation. MAS is a decentralized scheme that utilizes distributed 
controllers for energy management and optimization, and it is an alternative approach for smart 
system optimizers (SSOs) implementation within a typically integrated energy system (IESs) [22]. 
MAS is an obvious and promising choice for the smart grid control system because MASs can 
overcome the threat of SPOFs (single-point-of-failure) due to their distributed characteristic [23]. 
Meanwhile, Considering the agent properties, the variety of components used in power transformer 
and the huge amounts of data involved, MAS provides the best possible choice for the purpose of 
monitoring, automating, controlling and diagnosing the power transformer components [24]. MAS 
has proven to be suitable for addressing the demands of SGs both theoretically and practically [25]. 

Most of the research work in this area have focused on hierarchical control, optimization, and 
power restoration using MAS. For instance, [21] proposes a MAS-based optimal energy management 
solution for the optimization problem of the interactive operation of generation units and DR [26]. 
Similarly, introduces a decentralized agent-based approach for optimal residential demand planning 
[27]. A MAS is used in [28] to restore power in case of failure, and [29] introduces a flexible and 
versatile MAS for fault isolation and power restoration. Meanwhile, [30] presents a MAS automated 
management and analysis of SCADA and Digital Fault Recorder Data. Furthermore, a multi-agent 
system is used to control the voltage of the power system with co-ordination in [31]. 

Other distributed MAS-based solutions to grid control are also presented microgrids, islanded 
microgrids, and multiple microgrids [8]. The applications of MAS in a microgrid is similar to the 
smart grid control, e.g., Microgrid control, optimal energy exchange, and multi-level management, 
but also link to buildings or demand-side management. For instance, [32] presents a MAS for 
Microgrid control and a classical distributed algorithm. [33] proposes a MAS microgrid system for 
optimal energy exchange between the production units of the Microgrid and local loads. based on 
MAS, [34] proposes an Intelligent Distributed Autonomous Power System (IDAPS) to increase the 
reliability of the critical loads. [35] proposes a multi-level management and control scheme for 
microgrid systems taking into account the interaction among agents at different levels. [36] presents 
a consumption scheduling framework in small residential areas. 

3.2.2. MAS for Electricity Markets 

MAS of the electricity markets concern market players and markets modeling, strategic bidding 
and decision support [37]. Multi-agent-based simulation of the electricity markets usually combines 
with artificial intelligence techniques and game theories and is not only simulation platforms but also 
provides opportunities for the scenario comparison, future evolution study and sensitive analysis 
[38]. 

Several studies have applied MASs to model and simulate electricity markets [14]. For instance, 
Li et al. [39] discuss the potential for developing Open Source Software (OSS) for power market 
research. The Agent-based Modelling of Electricity Systems (AMES) is an agent-based OSS 
laboratory, specifically designed for the experimental study of reconstructed wholesale power 
markets. The AMES simulation includes an independent system operator, load-serving entities, and 
generation companies distributed across the transmission grid. 

Another electricity market model is the Electricity Market Complex Adaptive System (EMCAS) 
model [40] utilized by Koritarov [1]. The model is used to capture and investigate the complex 
interactions between the physical infrastructures (generation, transmission, and distribution) and the 
economic behavior of market participants [41]. Furthermore, the model applies an agent-based 
approach where agents’ strategies are based on learning and adaption. This approach enables 
simulations in different time periods, from real-time to decades including both pools and bilateral 
contract markets. This approach also makes it possible to see the evolution of an electricity market 
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over time and stakeholders’ reaction towards changes in economy, finance, and regulation. The study 
describes two methods of how the agents learn: observation-based and exploration-based learning. 
In observation-based learning, the learning process is based on a structured process of past market 
performance evaluation, future market status prediction, and investigation of other agents’ actions. 
Agents decide either to keep or adjust their current market strategy or use a new strategy. Agents 
based on exploration-based learning explore new market strategies, and these strategies are 
simulated in a simulation tool. The results are observed, and the strategies are either accepted or 
rejected based on the results and the agents’ goals. 

Praca el al. [42] develop the Multi-Agent Simulation of Competitive Electricity Markets 
(MASCEM) [43]. The model is developed to study the behavior and evolution of an electricity market. 
The MASCEM is a modeling and simulation tool aiming to study the operation of complex and 
competitive electricity markets [44]. The agents in the system represent the market entities, such as 
generators and customers. The MASCEM allows agents to establish their own decision rules and 
adapt their strategies as the simulation progresses based on previous events. As a decision-
supporting tool, the simulator includes different possibilities regarding electricity market 
negotiations [45,46]. The MASCEM is a flexible tool which makes it easy for users to define models 
including strategies, types of agents and market types. For example, this flexibility is utilized by 
Santos et al. [3,47,48] for modeling and simulating the EPEX (central European electricity market) 
and Nord Pool spot market (Scandinavian electricity market). The MASCEM can also be used for 
modeling and simulation of other electricity markets such as MIBEL (the Iberian electricity market), 
GME (the Italian electricity market), and even markets outside Europe [48]. 

3.2.3. MAS for Demand-Side and Building Systems 

MAS provides a flexible and reliable solution to manage and optimal loads at demand-side with 
the consideration of energy cost minimization and user’s comfort maximizations [49,50]. MAS has 
been applied in automated building management systems (BMS) for energy-related building research 
[16,51–53]. 

The automated BMS research in energy-related building systems mainly focuses on control 
mechanisms of building loads and investigate possibilities and potentials of energy efficiency and 
flexibility in buildings [54,55], and especially much equipment in buildings can be controlled and 
deliver demand flexibility, e.g., lighting and HVAC, and can respond to the grid signals [56]. 
Although complex control systems are important in building systems, these processes need to be 
optimal, flexible, and automated. 

Multi-agent-based modeling techniques have been used to integrate real-time intelligent 
decision-making in building control. For instance, an indoor environment that actively supports its 
inhabitants can be created with these techniques [57]. These modeling techniques also include 
unpredictable user-behavior, fluctuating weather conditions, and grid imbalances [52,58]. For 
instance, the study by Anvari-Moghaddam et al. [52] demonstrates how MAS is used to optimize 
management strategies for a building through computer simulations in combination with third-party 
software such as MATLAB and GAMS. Hence, studies show that energy consumption can be reduced 
without compromising the inhabitants' comfort level in residential buildings. 

In the study [52], a smart grid is simulated with several residential buildings, conventional and 
RES. The residential buildings include underfloor heating, heat pumps, and energy storages. The 
simulation incorporates meteorological data for the examined location together with technical data, 
to estimate the power production from RES. The simulation result shows that it is possible to reduce 
domestic energy consumption and meet the system’s objectives and constraints at the same time. 
However, the study does not take fault-tolerant and uncertainty handling capabilities into account. 

The study by Zeiler and Boxem [16] analyses how smart grid and building optimization can 
work together and presents an ontology of a software system which acts as a bridge between BMS 
and a smart grid. Several experiments are conducted in this study to test a HVAC system in a building 
environment, including the interaction with a smart grid. The study also includes the dynamic 
behavior of the occupants towards the systems in combination with an overall goal of energy 
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efficiency. The study finds that different elements depend on each other, e.g. changes in required 
heating affect the available energy. The automated equipment, controlled and managed by the 
building, responds to demand response requests from the grid to balance the grid condition [59]. The 
experiment also shows that the comfort level increases while the energy consumption decreases in 
their MAS modeling. 

Meanwhile, the study by Mousavi et al. [53] includes the unpredictable nature of the business 
process in an office building in a simple model with only a few devices to control. This study does 
not include a response to the grid conditions. Instead, the study investigates an energy automatic 
model for office buildings to reduce energy consumption and increase the indoor comfort level. The 
model is a MAS with the ontology based on the standard IEC 61499 (automation system standard) 
[60]. The goal of this study is to optimize the energy consumption in an office building where the 
ontology provides the communication logic and allows agents in the model to share knowledge and 
data [61]. In the MAS model, agents communicate and collaborate towards a common goal. The 
method has been applied to an office meeting room, where meeting activities and equipment can be 
automatically controlled, including measurements of energy consumption. Based on the data 
gathered as a result of the simulation, the study shows that it is possible to reduce 50 % of the room’s 
monthly energy consumption by controlling the operation and preparation of the room 
automatically. The duration of the meeting room simulation is 20 working days (1 working month). 
The simulated BMS automatically acknowledges the meeting schedules and needs for shading, 
screen, and blackboard usage, etc. The business process is combined with automated processes to 
overcome the inefficient use of energy in buildings and lower the number of system failures. 

3.2.4. MAS Tools for the Energy Domain 

In a MAS of the energy system, agents can represent market players, network components, or 
part of/a whole system [9]. Therefore, the multi-agent architecture of energy and power systems is 
designed for dealing with the system complexity [9,23]. Meanwhile, multi-agent simulations allow 
investigating the statics and changes of the physical systems, electricity market and market players’ 
behaviors. There are multi-agent simulators in the various domain for different purposes, e.g., CoABS 
(https://www.cs.cmu.edu/~softagents/project_grants_coabs.html) grid [62]. The selected literature 
shows that the multi-agent simulators in the energy system can be divided into three main areas:  
1. Multi-agent simulators for smart grid: 

• Mosaik（https://mosaik.offis.de/）: [49,50] is a flexible smart grid co-simulation framework, and 
allows to reuse and combine existing simulation models and simulators to create large-scale 
smart grid scenarios [63]  

• MASGriP (Multi-Agents Smart Grid Simulation Platform): models the internal operation of a 
smart grid with the consideration of all involved players [21]. 

2. Multi-agent simulators for the grid communication, monitoring, and control: 

• Electric Power and Communication Synchronizing Simulator (EPOCHS)
（ http://www.cs.cornell.edu/hopkik/epochs.htm ） : aims to solve network communication 
problems and avoid potential costs and damages by the combination of the results of several 
simulators [64]. 

• Global Event-Driven Co-Simulation framework (GECO): models and simulates the control, 
monitoring, and protection of the power systems and communication network [65].  

3. Multi-agent simulators for electricity markets: 

• Multi-Agent Simulator for Electricity Markets (MASCEM)
（http://www.mascem.gecad.isep.ipp.pt/overview.php/）: can simulate many market models 
and player types, and enable decision-support [21]. 

• Agent-based Modeling of Electricity Systems (AMES)
（http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm）: simulates wholesale power 
market operation including load, market participants, grid [66]. 



Energies 2019, 12, 3200 8 of 31 

 

• Power Trading Agent Competition (Power TAC) (https://powertac.org/): is an open-source 
platform that simulates future electricity market including broker types of energy retailers, 
commercial or municipal utilities, or cooperatives [67].  

• Electricity Market Complex Adaptive System (EMCAS) 
(https://ceeesa.es.anl.gov/projects/emcas.html): simulates diverse participants’ strategies and 
behaviors in the electricity market [68] 

• Multi-Agent Negotiation and Risk Management in Electricity Markets (MAN-REM): simulates 
electricity markets, and emphases the bilateral contracting and risk management [37]. 

• Adaptive Learning strategic Bidding System (ALBidS): aims to integrate market strategies, 
evaluate performances under different contexts of negotiation, and provides decision support to 
electricity markets negotiating players [69].  

3.3. Ontology and Defined Ontologies in the Energy Domain 

3.3.1. Definition of Ontology 

The term ‘ontology’ is originally introduced by the Greek philosopher Aristotle [70] as a theory 
about the nature of existence. Since the beginning of the 1990s, ontology has been adopted by 
information scientists in the field of artificial intelligence and web and system modeling [71]. In 
computer science, the ontology is defined as: “a formal, explicit specification of a shared 
conceptualization.” [72]. This explicit formal specification is domain-specific [73]. Ontology provides 
a model to support the process in agreement with all parties that all parties commonly agree to refer 
to the ‘specification’ of a conceptualization [74]. Uschold [75] identified different categories of 
ontologies:  

• Communication between people. Here, an unambiguous but informal ontology may be 
sufficient.  

• Inter-operability among systems achieved by translating between different modeling methods, 
paradigms, languages and software tools; 

In the Artificial Intelligence community, ontologies describe entities and their properties, 
relationships, constraints and behavior that are not only machine-readable but also machine-
understandable [14,24]. According to [13], the functions of ontology are:  

• Communication: ontology can provide common glossaries to communication among different 
individuals. 

• Interoperation: ontology can freely interpret and map among various modeling methods, 
languages and software tools. 

• Reuse: the ontology's analyses clarify the structure of the field's knowledge in order to lay a good 
foundation for knowledge representation. Ontology can be reused, so the repetitious knowledge 
analyses can be avoided. 

• Knowledge acquisition and sharing: to construct the system based on knowledge, the available 
ontology can be used as origination and foundation to supervise the acquisition of knowledge, 
which can improve its velocity and reliability. 

To build an ontology, knowledge engineers need to talk with domain experts to analyze the 
system and to make everything explicit, e.g., concept description with existing defined concepts and 
the knowledge rules (i.e., the decision-making rules) in these formalized concepts [76]. There are 
seven recommended steps to design an appropriate ontology. The developed ontologies provide the 
means to exchange information that can be interpreted by software agents, knowledge representation 
and sharing among the software agents [38]. Ontologies are also useful for sharing between modelers, 
domain, experts, and users [14]. Meanwhile, ontologies also enable to infer knowledge from the 
gathered information using a reasoner [38]. 

Many languages have been developed to build an ontology for different purposes. The Ontology 
Web Language (OWL)(https://www.w3.org/OWL/) by W3C is one of the most popular standard 
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ontology languages. It possible to use OWL in a variety of applications such as knowledge sharing 
and representation [77], semantic web [78], information system [79], ontology-based reasoning [80], 
etc. An important requirement for the system interoperability is to reuse existing ontologies. There 
are some libraries of reusable ontologies available online, such as Ontolingua 
(http://www.ksl.stanford.edu/software/ontolingua/) and DAML ontology libraries 
(http://www.daml.org/ontologies/) [48]. 

3.3.2. Defined Ontologies in the Energy Domain 

There are some ontologies already developed for specific energy domains [81,82]. For instance, 
Kofler et al developed an ontology that focuses on energy consumption and energy provision [83]. 
[84] proposes 6 basal ontologies for energy management system: 
• Cognitive ontology: the activity that agents analyze power systems. 
• Physical entity ontology: the equipment that is used for transmitting electric energy and its 

connecting topology. 
• Data ontology: the magnitude that cognitive agent has apperceived to respond to physical 

entities. 
• State ontology: the generalization of the current operation mode in an electric power grid. 
• Event ontology: all aspects that create changes of state. 
• Operation Ontology: the combination of all actual actions that a cognitive agent does on physical 

entities. 
The well-described ontologies in the energy domain are mainly found in the electricity market 

domain. For instance, [85] develops an ontology for the electricity market named Electricity Market 
Ontology (ELMO). It provides a shared, common understanding of concepts and procedures in the 
electricity market operation. The ELMO ontology uses a multi-layered architecture divided into 
highly maintainable, extendible, and reusable modules that can be used by organizations such as the 
Hellenic Transmission System Operator (HTSO). The ontology is primarily developed specifically for 
the electricity market of Greece, and the adaptation to other markets are thereby difficult.  

Other examples are the studies of Santos et al. [3,47,48] that develop an Electricity Market 
Ontology (EMO). The EMO is an upper ontology for the electricity market, from which other low-
level ontologies can be extended. It defines the main concepts of the electricity market, and the 
specific ontologies extended from the EMO define requests, responses, and notifications. Ontologies 
for the EPEX [3] and Nord Pool spot market [47] are developed as extensions of EMO. The research 
in [48] states that the aims of EMO are to be extendable and reusable in the development of other 
low-level ontologies for specific markets, such as MIBEL or IPEX (The Belgian and Dutch electricity 
market). 

3.3.3. Ontology Design 

Gruber provides five design principles [86] for the development of ontologies: clarity, coherence, 
extendibility, minimal encoding bias, and minimal ontological commitment. For ontology design, it 
is necessary to consider the ontology representation languages including tools to create and manage 
ontologies. Some standard ontology languages have been established with stable tools for the 
Semantic Web community, e.g., the Resource Description Framework (RDF) [87], RDF schema 
(RDFS) [88] and the Web Ontology Language (OWL) [88]. 

Several features of the Semantic Web languages are important for the ontology development, 
e.g., Open World Assumption (OWA), Description Logics (DL), and service representation. OWA 
assumes that knowledge is always incomplete. It is very important because incomplete information 
is common, and fragments of knowledge are often distributed within multiple ontologies [89]. 
Comparatively, the Closed World Assumption (CWA) assumes that if a statement cannot be proved 
to be true then it is false. DLs are formal languages designed for knowledge description and standard 
reasoning and provide the underlying formal framework for OWL and RDF [90]. DLs are known as 
the basis for ontology languages and are used to define, integrate, and maintain ontologies [89]. DLs 
are discussed in [48,24,91]. 
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Together with the introduction of the ontology design. Semantic web services are an integral 
part of the Semantic Web and aim to be automatically discovered and invoked by computer programs 
[92]. Therefore, semantic web services must be able to describe the provided information and how 
this information can be retrieved [93]. A number of languages are available to describe services, e.g., 
OWL-S [94], Web Service Modeling Ontology (WSMO) [95], WSDL-S [96], and FLOW [97]. 
• Categories of ontologies 

Ontologies can be categorized into three levels: upper ontologies, domain ontologies, and 
application ontology (shown in Figure 2) [98]. Upper ontologies provide common and consistent 
concepts that are referenced by other ontologies. Several upper ontologies exist, e.g. Suggested Upper 
Merged Ontology (SUMO) [99] and DOLCE [98]. Domain ontologies reuse or specialize concepts 
from the upper ontologies, and specify terms, relationships that are relevant in a particular domain. 
For instance, the domain ontology in [15] describes the concepts of the process dynamics, control, 
automation and the services provided by the agents, and defines relevant classes of entities and 
relations between entities. Application ontologies re-use and extend terms from one or more domain 
ontologies to apply for a specific application, and generally cannot be reused for other applications. 

In the energy domain, ontologies for complex systems are often separated into a hierarchy 
consisting of an upper ontology that is connected to several lower-level ontologies representing 
specific subdomains [100]. The three MASs (MASCEM, ALBidS, and MASGriP) developed by Santos 
et al. [21,101,102]. Are all framed by an upper ontology, which allows communication between the 
simulations. However, this approach requires universal acceptance from all entities involved, and 
the low-level ontology for each layer still needs to be extended. Dam, Nikolic, and Lukszo [103] 
propose the generic ontology and the case-specific ontology, where the case-specific ontology is a 
specialization of the generic one and the generic ontology is a generalization of all underlying case-
specific classes shown in Figure 3. Dam, Nikolic, and Lukszo [103] also suggest how to decide on the 
borders of the generic and domain-specific class in ontology. In [85], the ontology is divided into 
smaller building blocks, which makes it easier to modify and reuse in other models. [16] proposes a 
hierarchical ontology for the energy supply structure of buildings (shown in Figure 4). This proposed 
hierarchical ontology aims to investigate the interaction between energy flows on different 
aggregation levels within a building. 

 
Figure 2. Three ontology levels [98]. 
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Figure 3. The border between generic and domain-specific class in an ontology [103]. 

 
 

 
Figure 4. A hierarchical ontology for the energy supply structure of buildings [16]. 

• Ontology mapping 
MASs are usually developed independently and may not use the same upper ontologies. 

Therefore, ontology mapping is needed when an application requires access to multiple individually 
created ontologies. The mapping between ontologies can take much work [104], and there are several 
ontology mapping tools available [105]. Among the selected literature, ontology mapping is 
discussed and presented in [9,21,49,91]. 
• Ontology development tools 

There are many tools for developing ontologies [106], e.g., Protégé 
(https://protege.stanford.edu/) and SWOOP [107]. Protege is well established and used by a large 
user community. For instance, Protege is used in the selected literature [23,24,48,50]. 
• Ontology development process 
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Ontology development processes is a relatively new field of study, including ontology life 
cycles, methods, and methodologies for building ontologies [89]. [108] introduces a methodology for 
ontology development including three phases: specification, conceptualization, and implementation. 
Noy and McGuinness [76] propose a more detail and practical ontology development process with 
seven steps which have been popularly used: 

Step 1. Determine the domain and scope of the ontology 
Step 2. Consider reusing existing ontologies 
Step 3. Enumerate important terms in the ontology 
Step 4. Define the classes and the class hierarchy 
Step 5. Define the properties of classes—slots 
Step 6. Define the facets of the slots 
Step 7. Create instances 

3.4. MAS Design and Architectures 

3.4.1 MAS Design Methodologies 

According to [109], the MAS design usually consists of 

(1) A conceptualization phase where the problem to be solved is specified; 
(2) An analysis phase;  
(3) A design phase that uses the results of the analysis phase to produce agent designs of varying 

detail 

Although the majority of the selected literature not specifically present their phases of the MAS 
design methodology, the introduction of the MAS architecture/structure in their cases is more or less 
according to the Gaia methodology (shown in Figure 5). The Gaia methodology is popularly adopted 
for the analysis and design of the agent-based system, it is used in [23,24,50]. Some other similar 
methodologies are also used for the agent-based system design, e.g., High-Level and Intermediate 
Models for Agent-oriented Methodology (HLIM), Modelling Agents and their environment (AUML), 
MASE [24]. 

Another MAS design methodology proposed by the IEEE PES MAS working 
group(http://sites.ieee.org/pes-mas/agent-technology/design/) is mentioned in [17]. This MAS design 
methodology is proposed by [110] with six stages, and each stage of the methodology produces 
material that is input to the next stage (shown in Figure 6): 

• Requirements and knowledge capture stage: the MAS design usually begins with a particular 
problem. To solve this problem, this stage specifies the system requirements and capture the 
knowledge needed to fulfill those requirements. The system requirements and captured 
knowledge is the input to the next stage. 

• Task decomposition stage: it transforms the requirements specification and captured knowledge 
from the previous stage into a hierarchy of tasks and subtasks. These tasks may include the 
functions performed by legacy systems.  

• Ontology design 
• Agent modeling stage: based on the task hierarchy and ontology design, it identifies a group of 

autonomous agents performing the tasks in the task hierarchy. Each task in the hierarchy must 
be attributed to at least one agent and one agent can encapsulate one or more tasks. The outcome 
is a set of agent models that specify the tasks the agents perform. The tasks attributed to legacy 
systems and generated new codes are also identified at this stage. 

• Agent interaction modeling stage: it defines the interactions the identified agents support. The 
output usually is the interaction diagrams. 

• Specification of agent behaviors stage: it specifies the interaction functionality of the agent and 
the control functionality of the agent. 
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Figure 5. The conceptual framework of the Gaia methodology [111]. 

 

 

Figure 6. Agent design methodology stages and their output used during the design of the PEDA 
(Protection Engineering Diagnostic Agents) system [110]. 

Some MAS design also defines layers of the MAS architecture, e.g., [23] that the MAS system 
architecture includes two layers: the management layer and the subjacent execution layer. The 
management layer is responsible for functionalities that can be considered general in the frame and 
are covered by the agent control systems. The subjacent execution layer employs the automation 
agents’ tasks. 
• MAS Development environment  

The MAS development environment in the selected literature is usually performed using JADE 
(Java Agent Development Environment) [21], e.g., in [17,23,24]. JADE is one of the agent platforms 
compliant with FIPA standards. JADE provides services such as agent management system, directory 
facilitator, agent communication channel, etc., and supports the paradigm of avoiding SPOFs (Single 
Point of Failures). JADE has limited support for Semantic Web technologies. Therefore, some 
extensions are usually used to compensate for this issue. For instance, AgentOWL provides support 
for OWL ontologies using JADE agents [112] and AgentScape attempts to deal with scalability issues 
[113]. 
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3.4.2. MAS Architectures 

The MAS architectures (sometimes also called MAS structure, or MAS organizational structure) 
in the selected literature includes agent types and agent management framework/ system 
architecture, followed by the agent communication and ontology design that are usually introduced 
together, sometimes with agent interaction/activity diagrams. 
• Agent types 

The agent types are defined based on the system requirements, captured knowledge, and 
decomposed tasks. For example, agent types represent the devices and units in a power system, e.g. 
building management agent and RES (Renewable Energy Resources) agent [8], distributed voting 
agent and monitoring/resurrection agent [20], bus agent and switch agent [23]. In some MAS, the 
agents control the corresponding equipment according to their objectives, the measured and collected 
data, etc. 

Agent types represent market players that especially for the electricity market, e.g. user agents 
and energy market control agent [17], system operator agent and VPP (Virtual Power Player) agents 
[37]. Some agent types are also ontology related agents, e.g. translator agent and ontology Agent [53]. 
In [53], the translator agent communicates with the main controller function blocks, and the ontology 
agent extracts knowledge from the ontology-based on requests.  

Sometimes, the agent goals are also introduced together with the agent types. For instance, in 
[8], the agents act to achieve three goals of system load supplying, energy cost minimization, and 
residents’ comfort maintenance. 
• Agent management framework/ system architecture 

The structure of a MAS usually is illustrated in the agent management framework/ system 
architecture. For instance, the proposed agent management framework [8] including several 
components, e.g. the agent platform, agent container, and directory facilitator, etc. The system 
architecture also can visualize the multi-layered structure, e.g., [20], and the relations of agents and 
environment, e.g., [17], and relations of agents and physical systems, e.g., [23]. 

3.5. The Application of Ontology in MAS Development  

3.5.1. MAS Interoperability and Ontology 

In a MAS, it is important to set up a communication language for meaningful conversations 
between agents. The agents communicate through message exchange so-called Agent 
Communication Language (ACL). ACL is the existing interaction language standard for exchanging 
knowledge between agents. For a given Communication act «F(P)», the «F» part refers to the MAS 
and is regulated by the ACL standard, and the «P» refers to the domain knowledge. In our case, «P» 
refers to the «Energy Domain» or the «Energy Ontology» [114]. 

However, even an agent development environment supporting the same Agent Communication 
Language (ACL) and content language are implemented in two MASs, it does not mean that the 
agents in the two MASs can share any useful information because different ontologies are used in the 
two MASs [91]. 

As more applications of MAS in the energy domain for advanced functions and MASs are not 
expected to operate in isolation from each other, the interoperability challenge raises due to an 
increasing requirement for data and information exchange between systems. Therefore, there is a 
need for full interoperability and open standards for the MASs in the energy domain [91]. The 
interoperation issues of existing multi-agent systems have highlighted in the literature, particularly 
the issues of the use of different ontologies. Meanwhile, it is important to establish the same language, 
especially a common ontology for the communication between agents.  

3.5.2. Agent Communication and Ontology  

Agent communication in MAS can be accomplished in two ways: immediate communication 
among agents and interaction in a unitive environment [13]. MAS usually implements higher-level 
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communication and supports reasoning abilities based on the Agent Communication Language 
(ACL) and a common vocabulary defined in an ontology [115]. The agent communication and 
ontology design in the selected literature is similar to the combined stages of ontology design, agent 
modeling, agent interaction, and specification of agent behaviors stages proposed in [110], and 
usually consist of standards for agent communication, interoperability, and ontology design.  
• Standards for agent communication and interoperability 

A standard for the communication between agents has been proposed by the Foundation for the 
Intelligent Physical Agent (FIPA [116]. The FIPA standards have been popularly used by MAS 
developers in the computer science community and FIPA was formally accepted as a standards 
committee of the IEEE Computer Society In 2005 [109]. Such standardization promotes open 
specifications for the interoperability between agents and MAS [117]. The FIPA standards include 
specifications for the agent communication language, communicative acts, content languages, and 
message transport protocols. It also includes a standard that proscribes the agents that a MAS must 
implement to be FIPA compliant  

The FIPA-ACL specifies the syntax, the content of the message provides the semantics of the 
message including the content language and the ontology [118]. The messages built under the ACL 
structure allow the definition of various elements (e.g., performative, sender, receiver, content, 
language, and ontology, among others) and various communicative acts (e.g., agree, cancel, confirm, 
not-understood, etc.) [9]. Meanwhile, the correct interpretation of the meaning of the message is 
assured, the ambiguity is removed about the content [21]. The MASs in [3,47,48,52] all apply the FIPA-
ACL. There are other ACL investigated in the literature as well [119, 120], e.g., Open Agent 
Architecture (OAA) in the work of Praca et al. [42]. 

MASs developed by different platforms can interoperate with these FIPA standards, but it 
doesn’t mean that useful information can be shared between agents if the MASs employ different 
ontologies [21,91]. It requires MASs share a common vocabulary, so the messages may be interpreted 
correctly among agents [47]. Therefore, ontologies are used to enabling the standardization of 
communications and interpretation of concepts between MASs [48]. 

The IEEE standards committee has identified the challenge of interoperable protocols, data 
formats and meaning and stated that open communication between smart devices using common 
protocols is crucial to interoperability [121]. Some standards in the power systems promote 
interoperability between devices within substations and open interfaces between energy 
management systems [109,91]. The most widely applied standard in the power system is the IEC 
61970 Common Information Model (CIM), and its distribution management extension IEC 61968 
[122]. 

IEC 61970 Standard is proposed by the International Electrotechnical Commission (IEC) to 
discuss and plan a variety of electrician and electron standards in order to procure international 
cooperation. IEC 61970 Standard defines the application program interface (API) of the energy 
management system is promulgated by IEC No.57 technical commission (Group 13) [13]. There are 
five main parts in the IEC 61970 standard: introduction and basic request, glossary, common 
information model (CIM), and two levels of component interface specification (CIS). 

The CIM is a three-layer domain model, it defines a common vocabulary to describe the basic 
components used in electricity transportation and distribution [38], and CIM aims to facilitate power 
management processes (e.g., outage management, asset management, and customer information 
management) [50].  

To achieve coherent and advantageous cooperation between different power systems, some 
reference models and frameworks are also popular used, e.g., SGAM (https://sgam-toolbox.org/) (the 
Smart Grid Architectural Model), USEF (https://www.usef.energy/) (the Universal Smart Energy 
Framework), and SEAS knowledge model (https://www.the-smart-energy.com/) (Smart Energy 
Aware Systems). 

The Open Automated Demand Response (OpenADR) (https://www.openadr.org/) and 
energy@home (http://www.energy-home.it/SitePages/Home.aspx) models are also highly discussed 
in the literature. However, [50] states that ‘none of these standards cover the whole semantics 
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involved in a flexible urban energy network on its own, and they are not formally aligned with each 
other’. For example, the term ‘equipment’ could refer to transmission system equipment, or domestic 
appliance equipment [50]. 
• Ontology-based agent communication design 

According to FIPA [107], semantic MAS interaction can be specified with three dimensions: 1) 
Internal agent behavior: action selection and execution; 2) External (agent) interaction to exchange: 
a) content of the interaction including both information and tasks; b) context of the Interaction and 
its relation to an agent organization; 3) System, or platform, services: message transport, discovery, 
action execution, management, and inter-platform interaction. 

The FIPA (agent interaction) model (often referred to as the FIPA-ACL) is an Agent Interaction 
Protocol Suite (AIPS). The AIPS contains several distinct semantic protocols for agent communication 
including interaction process, communicative acts, content logic, and content ontologies (shown in 
Figure 7) [107].  

 

Figure 7. Foundation for the Intelligent Physical Agent (FIPA) specifies multi-agent systems (MAS) 
interaction using specifications for an Agent Interaction Protocol Suite (AIPS) and MAS platform 
[107]. 

The design of internal agent behavior and interaction in a MAS mainly concerns the agent 
communication models as in the majority of the selected literature. The design of agent 
communication usually includes messages (message content) and message exchange (protocol). 
Messages and protocol are usually described in the UML diagrams as class diagrams and sequence 
diagrams, e.g., in [20], the communication sequence and communication parameters are introduced. 
The content of a message comprises two parts: content language (provides the syntax or grammar of 
the content) and ontology (consists of the semantics or lexicon of a message) [91]. The ontology-based 
agent communication model can be shown in Figure 8. 

MAS developers usually use JADE to create agents because JADE agents communicate by 
exchanging message in compliance with the FIPA ACL. The FIPA Semantic Language (FIPA-SL) is 
popularly adopted as the standard content language [123]. In FIPA-SL, an ontology comprises a list 
of concepts, predicates, and actions specific to the domain of communication. However, the 
structures of ontologies in the selected literature are different. For instance, the ontology in [124] is 
defined in the form of EBNF and includes seven parts (policy, modality, trigger, subject, behavior, 
target, and constraint), and the ontology in [20] contains four parts (ID, type, parameter, and value). 

When designing a MAS, developers usually introduce the syntax and semantics of the domain 
ontologies and application-specific ontologies applied in the MAS and describe the purposes and 
functions of the ontologies. For instance, [124] applies a policy ontology in their MAS. In [124], the 
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policy ontology regulates behaviors of agents including application activity, authorization activity, 
monitoring activity, requesting-monitoring activity, discovery activity, and negotiation activity. This 
research designs a policy engine within each agent who is the subject of obligation policies or the 
target of authorization policies and the policy engine interprets and enforces the policy when the 
policy is enabled. 

 

Figure 8. The illustration of the ontology-based agent communication model [125]. 

The FIPA agent standards focus on specifying protocols for external interaction and platform 
services rather than on the internal agent behavior [111]. It is because the internal agent behavior is 
are often problem-specific or application specific, and not easily accessible and observable. In the 
FIPA Ontology Service, an ontology agent is recommended to provide a number of ontology-related 
services for solving the problem of using multiple ontologies [91]. 

However, this solution is difficult to be implemented due to challenges of the system integration 
including between-ontology mapping, translation mappings, etc. Therefore, [91] recommends 
defining a common upper ontology that represents the general concepts used in the domain of power 
system. Meanwhile, related common standards in a domain can serve as a foundation for an upper 
ontology, e.g., The power systems Common Information Model (CIM) [126]. The upper ontology for 
the MAS interoperability of the electricity markets and demand side is well discussed by Santos et al. 
[3,47,48]. 

4. Discussion 

The literature shows that there is an increase in MAS application in energy domain since the 
distributed nature of MAS allows the energy system design to deal with complex systems [127]. In a 
MAS, complete knowledge about the system is not required, but each agent in the system acts 
autonomously toward some predefined objectives to optimize the system performance [128]. 
Therefore, agents have possibilities to represent different market participants, network components, 
or systems [9]. The agents’ individual goals decide the agents’ behaviors, e.g. either cooperate or 
compete with other agents [127]. The behavior of the overall system is a result of the agents’ 
behaviors. 

MAS is not necessarily a simulation tool, but simulations may be important for the study of the 
energy domain, e.g. scenario comparisons, evolution studies, and sensitivity analyses. Several MAS 
studies are found in the literature dedicated to the energy domain. For instance, the study of 
Koritarov [1] demonstrates the application of the EMCAS in electricity markets. The model enables 
the investigation of the physical infrastructure and the economic behaviors of the market participants. 
The study of Li et al. [39] demonstrates the AMES simulation for the wholesale operations and market 
participates strategies. In the building sector, the simulations of electricity consumption in an office 
building are simulated by Mousavi et al. [53]. The study considers the unpredictable nature of 
business processes. Meanwhile, the research by Zeiler and Boxem [16] simulate the grid conditions 
in their study of building control. 

All these simulations aim to solve problems in specific domains and are limited to an existing 
system (do not allow for connections to external systems) or do not take advantage of the formal 
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exchange of knowledge. It is possible to solve problems that cover more complex domains if these 
systems can communicate and exchange knowledge with each other.  

The combination of different systems can simulate a complex system such as the energy system. 
In such a system, stakeholders work together, interact, and negotiate with each other, while the 
demand and supply of resources need to be managed. The heterogeneity among these systems makes 
the interoperability complex, and the system may have different domains, concepts definitions, 
programming languages, etc. In order for the MAS to be able to communicate with each other and 
overcome their individual limitations, a mechanism for communication is important. This 
mechanism should allow information and knowledge sharing. At the same time, the system should 
be flexible to deal with several processes. Therefore, a communication standard should be defined, 
ensuring that agents in the system use terms with the same meanings [129]. 

The FIPA is the de facto standard for agent development [9]. FIPA provides different 
interoperability standards, e.g., the standard agent communication language (FIPA-ACL), which 
make it possible to integrate different MASs [130]. However, it does not mean that agents belonging 
to different MASs can share any useful information if the MASs use different ontologies. The ACL 
provides a framework for the communication standardization between agents, but the standard only 
defines the structure of messages and interactions. Therefore, agents speak the same language but do 
not share the same vocabulary. 

In an ACL, the content of messages must be understood by agents for the messages to be 
meaningful. Catterson et al. [91] describe it as “…the structure and meaning of the content are in a 
format expected by the receiving agent so it can decode the sender's intentions”. Agents exchange 
information to achieve their goals and therefore must apply the same language to interact with each 
other. But it also needs a common representation of concepts for agents, which ontology can provide.  

The ontology describes the concepts and the relations among agents and therefore must be a 
part of each agents’ knowledge base [131]. Ontology is described as a form of knowledge 
representation of the world or some parts of it and “provides a shared vocabulary, which can be used 
to model a domain that is, the type of objects, and/or concepts that exist, and their properties and 
relations” [132]. Meanwhile, [131] states that “An ontology is used to represent knowledge that is 
shared between different entities. It provides terms and vocabulary used to represent knowledge so 
that both sender and receiver can understand” Several ontologies already exist in the energy field. In 
[16,52], the main goal of ontologies is to support the interactions between energy management of 
buildings and the smart grid.  

It is important to mention that the design of an ontology itself does not contribute to energy 
savings or energy-neutral building environments. However, it brings several benefits to the design 
of the software process of a MAS. First, it gives a deeper insight into the modeled domain and system 
functionality. Secondly, it reflects upon the data types and required communication between agents. 
These factors are useful when concepts are shared between different teams and systems, e.g. when 
different domains need to be connected to a smart grid. 

However, MASs in the energy domain are developed with their own ontology, which cannot be 
directly integrated into other systems. A standard to solve the problem of multiple ontologies would 
lower the cost and human effort when different systems need to be connected. In the literature [91], 
several solutions for MAS integration are investigated. The FIPA ontology services the integration of 
existing MASs by introducing an ontology agent. This agent provides ontology-related services, e.g., 
translating expressions between ontologies and identifying a common ontology to two agents [16]. 
However, ontology designers still need to identify the similarities and differences between ontologies 
manually to translate the ontologies. This likely introduces more complexity and potential errors.  

An upper ontology, as discussed in [21,103] could be an alternative to represent the general 
concepts of the domain. Such ontologies provide the framework in which the low-level ontologies 
can work. The upper ontology allows communication between different systems and each system 
with separated low-level ontologies. An upper ontology can be defined through multi-layered 
architecture or smaller reusable modules. The development and maintenance of MAS are easier and 
more efficient by composing a large-scale ontology out of smaller ones. This makes the ontologies 
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simpler to modify, e.g., if legislation changes. The independent parts of an ontology must be well 
defined and separated. Thus, it is possible to reuse the parts in similar applications. The layered 
architecture also makes the ontology easier to be extended for other application domains and not just 
the intended domain [91]. 

An upper ontology for the energy sector can serve as an open standard that can assist the 
development of multi-agent solutions. It should not be a standard for all applications, but a tool from 
which the low-level ontologies can be extracted. Upper ontologies for the electricity domain are found 
in the literature, but the integration with the entire energy sector is still missing. This integration is 
necessary to fully understand and control the energy sector because the energy sector becomes more 
complex and consists of multiple hybrid systems.  

The literature reviewed in this study presents different energy domains and includes different 
agents, data, and terms. This heterogeneity hinders the full adoption of these MASs and ontologies 
in a real scenario. Hence, there is a need for developing a unified ontology that represents all energy 
domains and provides a common terminology. In the literature, business models are separated from 
the MASs in the energy domain. For a deeper understanding of the domain and related agents, 
business models should be considered as part of MASs.  

The combination of MASs, ontologies, and business models will enable simulations of the energy 
sector for exploring the interplay of policy, economy, and technology. Furthermore, a standardization 
of communication between agent will provide better knowledge- and data exchange between agent 
and domains. However, better simulation tools which can be used for scenario comparison, 
prediction of future evolution and sensitivity analysis are important, and it will make simulations 
easier to predict future events, identify unmet needs and act deliberated to changes in the energy 
sector. 

5. Conclusions 

This study contributes a scoping review of literature on the application of ontology in the MAS 
for the energy domain. It is evident from the literature highlighted in this study that multi-agent 
ontology approaches are of emerging interests in the energy sector and that complex system 
modeling is an essential tool in assessing control strategies and new policies for designing more 
efficient systems. 

The selected publications show that the application of ontologies in the field of MAS for the 
energy domain was mainly conducted after the year 2004, focuses on the sub-domain of grid control 
between 2004 to 2014, and mushrooms into the sub-domain of electricity market since 2014. The 
discussion of ontology and MAS in the selected publications can be divided into five categories: 

• Definition of agent and MAS. The definitions of agent, intelligent agent and MAS and the 
introduction of an agent structure are given in some selected publication. However, some 
publications do not differentiate the agent-based system and multi-agent-based systems. 

• MAS applied energy domains. The applied energy domains include grid control (also, 
microgrids), electricity markets, demand-side and building systems. The applied MAS tools are 
also introduced in some selected publication.  

• Defined ontologies in the energy domain. Definition of ontology, functions of ontology and the 
defined ontologies in the energy domain are introduced. The ontology design is introduced 
usually together with the agent communication model. Although generic ontology and the case-
specific ontology, upper-level, and lower-level ontology, and ontology hierarchical are 
introduced, a systematic discussion on the categories of ontologies (upper ontologies, domain 
ontologies, and application ontology) is missing. Meanwhile, although ontology mapping for 
inter-MAS communication and ontology development tools are introduced, the ontology 
development process is not yet discussed in the selected literature.  

• MAS Design and architectures. The MAS design methodology-Gaia methodology is introduced 
and applied in some selected publication, and MAS design methodology proposed by the IEEE 
PES MAS working group is introduced but not well discussed or applied in the selected 
publication. The MAS Development environment, JADE, and its extensions are introduced but 
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the design detail with JADE is missing. The MAS architecture is commonly introduced with the 
description of agent types and agent management framework/ system architecture.  

• Ontology in the MAS development. The importance of ontology for the MAS interoperability is 
emphasized and the application of ontology in the agent communication design is well 
discussed in the majority of the selected publication. The standards for agent communication 
and interoperability are discussed with two dimensions: standards for domain-specific, e.g., the 
SGAM reference model, the power systems CIM and SEAS knowledge model in the energy 
domain are discussed; The FIPA-ACL is applied for almost all MAS design in the selected 
publication. 

5.1. Recommendation of the Ontology-Driven MAS Development for the Energy Domain 

Based on the review result, this paper finds out the following aspects in the ontology-driven 
MAS development for the energy domain should be further discussed, developed or emphasized: 
• The ontology development process in MAS design 

Although the importance of ontology in the energy domain has been emphasized, especially for 
the MAS interoperability. However, from the ontology engineering perspective, the ontology 
development process has not been addressed well in the MAS design, especially with the 
consideration of the ontology categories. This paper recommends the further work can combine the 
categories of ontology [98] and the ontology development process [76] into the MAS design with two 
aspects: multi-agent communication and MAS interoperability. 
• The detail design process and realization of the ontology-driven MAS development 

The selected publications well discuss the ‘what’ and ‘why’ of their designed/developed MASs. 
However, the ‘how’ is missing in the majority of the selected publication. Therefore, it is difficult for 
readers to re-produce their methodologies of MAS development. Therefore, this paper recommends 
the further work can focus on this aspect, and it is especially important for the MAS interoperability.  
• Open standard implementation and adoption 

Open standards for both MAS design, agent communication and energy domain are discussed 
in the selected publication, especially regarding the MAS interoperability. This paper finds that the 
MAS interoperability issue is not solely due to the inter-MAS communication barriers, and upper 
ontology design cannot solve this issue if the designed upper ontology or the selected open standard 
is not adopted by other MASs. Therefore, further work on the open standard implementation and 
adoption for the ontology-driven MAS development is recommended. 
• Higher intelligent MAS development 

The MAS interoperability is important for the distributed energy systems, and ontology 
improvement (upper ontology or generic ontology) seems like the only solution in the majority of the 
selected publications. This paper recommends the future work can consider developing higher 
intelligent MASs that allow the ‘fuzzy communication’ between MASs.  
• Inter-domain MAS development 

Although this paper tries to search literature in the energy domain for both electricity and 
heating. However, the search result only shows in the electricity domain, and the literature on MAS 
and ontologies for the heating sector is missing. Heating is an important subdomain in the energy 
sector and is also strongly connected to the electricity sector through combined heat and power 
generation, and electrical heating. Hence, heating should be equally addressed in the studies of MAS 
and ontologies for the entire energy sector. The priority for future work in this field should focus on 
the interoperability with further external systems and cover the simulation of other areas in the 
energy system, including heating. However, the inter-domain ontology design will be more complex 
and difficult compared to only under the electricity-related domain.  
• Agent listing 

Agent types, roles, and interactions are well introduced in the selected publication. Meanwhile, 
the domain analysis in the MAS design methodologies is introduced. Some studies have done 
illustrations of agents in smaller scales, e.g., [3, 47,48,52]. However, a systematic approach to list all 
related agents with a clear MAS boundary is missing. In a MAS, agents are specialized to perform 
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tasks based on their individual goals [133]. Meanwhile, a MAS with stakeholder listing can give a 
good overview of the whole system. The literature shows that there are different ways to illustrate 
the identified agents together with their relationships. Some authors [53,81] introduce agents with 
descriptions, and others [18,52] use diagrams to graphically present agents. One example of the 
graphical illustration is the Harmonised Electricity Market Role Model by ENTSO-E [134]. This 
Harmonised Electricity Market Role Model represents agents, their roles, and information flow 
between them. This role model provides a common definition of roles and domains employed in the 
electricity market. It enables a common language in the development of information interchange.  

Another way to present and describe stakeholders is by using business models. The research by 
Xia et al. [135] investigates the Swedish mobile phone business ecosystem. The stakeholder listing is 
represented by the Osterwalder and Pigneur business model canvas. An overview of the agents, their 
interrelations, and information flows can be illustrated in the business model canvas. The 
homogenous setup provided by the business model canvas highlights and organizes the identified 
information. This simplifies the information search. Furthermore, the business model canvas can 
easily be extended with new stakeholders by following the canvas approach. Both stakeholder listing 
by diagrams and the business model canvas provide well-organized information about complex 
systems. The canvas approach makes it possible to include supplementary information about the 
stakeholders. 

5.2. Limitations and Future Work 

This paper applies a transparent scoping review methodology through the entire process. To 
ensure a broad search of the literature, the search strategy includes four online databases, resulting 
in over 1400 articles. However, the search result may still not identify all relevant articles in the 
literature despite this paper attempts to be as comprehensive as possible. Ontology is a recently 
established word in information science [71], therefore, an extension of the literature search including 
the terms “domain knowledge” and “knowledge representation” may result in additional literature 
in the field of MAS and ontology. 

Furthermore, the fields of organizational theory and business ecosystem are not included in this 
paper because the literature search only focuses on the energy domain. The energy domain consists 
of multiple agents and can be considered as an ecosystem in which a community of organisms 
interacts with each other and the surrounding inorganic environment. This biological definition of 
an ecosystem is first introduced in [136] and is later adopted in the business domain [137–141]. A 
business ecosystem is a network of players that are bound together through collective activities to 
produce an entity that offers value for customers and meet their requirements. MAS in the smart 
energy domain is similar to this since all types of stakeholders, e.g. electricity traders, building 
managers, and commercial heat pump providers are connected and interact with each other to offer 
value for the entire system. Meanwhile, the economic globalization, increasing number of 
transnational organizations, and rapidly information technology changes increase the complexity of 
the energy domain, and computational models provide opportunities to understand and respond to 
these changes [142]. Therefore, a review of the organizational research and business ecosystem in the 
MAS-orientated energy domain should be considered for future work. 
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Appendix A 

Table A1. Selected publication and their focus aspects. 

Year Title Reference 
Focused aspect 

Energy Domain Ontology MAS Design 

2004 
A policy-driven multi-agent system for OGSA-

compliant grid control 
[124] Grid control 

Policy ontology 
Application-specific 

ontology 

Agent type 
Agent logics 

2005 
Issues in integrating existing multi-agent systems for 

power engineering applications [91] Grid control 
Upper ontology 

Ontology mapping 

Inter-MAS 
communication, 
Interoperability 

2006 
Modeling energy and transport infrastructures as a 

multi-agent system using a generic ontology 
[14] Grid control 

Generic and case-specific 
ontologies 

ABM 

2007 Multi-agent architecture of energy management system 
based on IEC 61970 CIM 

[13] Management 
system 

IEC 61970 Standard 

Agent structure 
MAS architecture 

Multi-agent 
communication 

2009 
Multi-agents for energy efficient comfort agents for the 
energy infrastructure of the built environment: Flexergy [51] 

Buildings/demand 
side 

Ontology for the design 
process Agent type 

2011 
Intelligent multi-agent framework for power system 

control and protection 
[20] Grid control Ontology structure 

Agent type 
Agent logics 

MAS architecture 
UML diagrams 

2011 
Multi-agent system for self-optimizing power 

distribution grids [15] Grid control 
Domain ontology in the 

world model 
Agent type 

World model 

2013 
An architecture for a microgrid-based eco industrial 

park using a Multi-Agent System [17] Microgrid 
Ontology in the agent 

design process 

Agent types 
Agent logics 

MAS architecture, 
Negotiation methodology 

2013 Demonstration of a multi-agent-based control system 
for active electric power distribution grids 

[23] Grid control An ontology with four 
levels 

Agent type 
MAS architecture 
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2013 
Power transformer condition monitoring and fault 

diagnosis with multi-agent system based on ontology 
reasoning 

[24] Grid control Ontology reasoning MAS architecture 

2013 Upper ontology for multi-agent energy systems’ 
applications 

[21] Power system Upper ontology and 
standards 

Agent types 
MAS interoperability 

2013 
Smart grid - building energy management system: an 
ontology multi-agent approach to optimize comfort 

demand and energy supply 
[16] Buildings/demand 

side 
Ontology hierarchical Agent UML diagrams 

2014 
Energy efficient automation model for office buildings 

based on ontology, agents and IEC 61499 function 
blocks 

[53] 
Buildings/demand 

side 
Translator agent and 

ontology agent 
Agent type 

Agent logics 

2014 
Realistic multi-agent simulation of competitive 

electricity markets [37] Electricity market Upper ontology  
Agent types 

MAS interoperability 

2015 
Multi-agent simulation of competitive electricity 
markets: Autonomous systems cooperation for 

European market modeling 
[49] Electricity market Upper ontology  MAS interoperability and 

UML diagrams 

2016 
Optimal real-time dispatch for integrated energy 
systems: an ontology-based multi-agent approach [52] Grid control 

Ontology-based FIPA-
ACL  

Agent type 
Communication 

architecture 

2016 
Ontology-based demand-side flexibility management in 

smart grids using a multi-agent system 
[50] 

Buildings/demand 
side 

Standard of data models 
in the power system 

Gaia methodology 

2016 An ontology-driven approach for modeling a multi-
agent-based electricity market 

[81] Electricity market Ontology-Driven 
Conceptual Modelling  

Model-driven 
development 

MAS organizational 
structure 

2016 
Enabling communications in heterogeneous multi-

agent systems: electricity markets ontology 
[48] Electricity market 

Electricity Markets 
Ontology 

Description logic  
MAS interoperability 

2017 
A multi-agent-based energy management solution for 

integrated buildings and microgrid system [8] 
Management 

system 
Ontology for message 

content 

Agent types 
Agent goals, MAS 

architecture 
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Microgrid 
Buildings/demand 

side 

2017 EPEX ontology: enhancing agent-based electricity 
market simulation 

[3] Electricity market Lower ontology MAS interoperability  

2017 
Nord Pool ontology to enhance electricity markets 

simulation in MASCEM [47] Electricity market Lower ontology MAS interoperability  

2018 Power systems simulation using ontologies to enable 
the interoperability of multi-agent systems 

[38] Power system SEAS knowledge model  MAS interoperability  

2018 
Multi-agent decision support tool to enable 

interoperability among heterogeneous energy systems [9] 
Power system 

Microgrid 

Ontology in Tools Control 
Center (TOOCC) 

framework 
MAS interoperability  
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