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Abstract: Electricity load prediction is the primary basis on which power-related departments to 
make logical and effective generation plans and scientific scheduling plans for the most effective 
power utilization. The perpetual evolution of deep learning has recommended advanced and 
innovative concepts for short-term load prediction. Taking into consideration the time and 
nonlinear characteristics of power system load data and further considering the impact of historical 
and future information on the current state, this paper proposes a Seq2seq short-term load 
prediction model based on a long short-term memory network (LSTM). Firstly, the periodic 
fluctuation characteristics of users’ load data are analyzed, establishing a correlation of the load data 
so as to determine the model’s order in the time series. Secondly, the specifications of the Seq2seq 
model are given preference and a coalescence of the Residual mechanism (Residual) and the two 
Attention mechanisms (Attention) is developed. Then, comparing the predictive performance of the 
model under different types of Attention mechanism, this paper finally adopts the Seq2seq short-
term load prediction model of Residual LSTM and the Bahdanau Attention mechanism. Eventually, 
the prediction model obtains better results when merging the actual power system load data of a 
certain place. In order to validate the developed model, the Seq2seq was compared with recurrent 
neural network (RNN), LSTM, and gated recurrent unit (GRU) algorithms. Last but not least, the 
performance indices were calculated. when training and testing the model with power system load 
data, it was noted that the root mean square error (RMSE) of Seq2seq was decreased by 6.61%, 
16.95%, and 7.80% compared with RNN, LSTM, and GRU, respectively. In addition, a 
supplementary case study was carried out using data for a small power system considering different 
weather conditions and user behaviors in order to confirm the applicability and stability of the 
proposed model. The Seq2seq model for short-term load prediction can be reported to demonstrate 
superiority in all areas, exhibiting better prediction and stable performance. 

Keywords: Short-term load forecast; Seq2seq; LSTM; deep learning 
 

1. Introduction 

Short-term load forecasting has an important impact on major decisions, such as the day-to-day 
operation of the power grid and dispatch planning [1]. Many scholars have carried out numerous 
studies on power system load prediction, among which the traditional prediction methods include 
the time series method [2], the regression analysis method [3,4], trend extrapolation [5], etc. The 
implementation principle of these methods is simple, fast operation speeds that are suitable for 
processing data characteristics of a single and small data set. However, despite their nonlinear 
characteristics, large data volumes, lack of robustness, and poor adaptability, modern load prediction 
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methods mainly include gray mathematical theory [6,7], fuzzy prediction method [8], neural network 
method [9,10], and so on. In recent years, artificial intelligence has come to be widely used in image 
processing, speech recognition, power systems [11], and other fields. In the smart grid, artificial 
intelligence is widely used in power generation, transmission, power distribution, and the power 
market, while on the power side, accurate load prediction is carried out using the artificial intelligence 
algorithm [12], which effectively reduces the cost of power generation, making reasonable power 
generation plans for the power system. Through the real-time prediction of user-side power 
consumption, the power grid dispatch work is carried out in a punctual and appropriate manner, so 
as to maintain the safe and stable operation of the power grid. 

Deep learning algorithms exhibit a good ability to extract data characteristics when processing 
large amounts of power data, and power system load prediction is designed to extract typical features 
from complex and variable historical load data, so as to make accurate load predictions. The power 
system load data is typical time-series data. Therefore, the use of deep learning algorithms to process 
the load data achieves better results. The literature has put forward a time series decomposition 
model [13], which effectively reflects the factors that affect load prediction in order to achieve the 
accurate prediction of load data; however, it is easy to ignore the correlation between time periods, 
and the load prediction of some time periods is significantly biased. The paper proposes a time series 
prediction method based on the lifting of wavelets [14], which predicts the electricity consumption 
in residential areas by means of denoising the historical load data, exhibiting a stronger nonlinear 
feature extraction ability than the time series model deep learning algorithm. Studying the factors 
influencing load prediction, a load prediction model based on artificial neural network (ANN) was 
developed [15]; however, the model is easily caught in local extreme values and lacks the modeling 
of time factors during ANN training. By using an ant colony optimization algorithm to optimize the 
recurrent neural network (RNN) prediction model, the prediction accuracy of traditional RNN is 
improved [16], there is a problem of gradient disappearance and long-term dependence. To improve 
the accuracy of traditional RNN prediction, the problems of gradient disappearance and long-term 
dependence need to be solved, and the authors adopt the long-term and short-term memory network 
(LSTM) prediction model method, combined with the real-time electricity load data, in order to solve 
the problems of gradient disappearance and long-term dependence [17], but lacks consideration of 
the influence of historical information and future information on the current state. Self-encoders are 
unsupervised deep learning models with stronger feature extraction abilities, and a stack-based self-
encoder prediction model was introduced that extracts the characteristics of the input data in a 
comprehensive way [18], which has strong prediction accuracy and generalization ability. 

Based on our research into the above literature, and by observing the shortcomings of the above 
prediction methods, this paper proposes a short-term load prediction model of the Seq2seq codec 
based on LSTM and improves the performance of the multi-layer LSTM network by adopting the 
Residual mechanism. The introduction of the Attention mechanism into the decoding process 
achieves selective feature extraction of load prediction data, improves the correlation of input and 
output data, improves the accuracy of model prediction, and ultimately, comparison with other 
prediction methods indicates that the method proposed in this paper has better prediction effect. 

2. Motivation and Problem Statement  

At present, although the power industry is vigorously developing huge energy storage devices, 
because of the special nature of electricity, it is still difficult to implement large-scale storage at this 
stage. The prediction of electricity load is carried out so as to reasonably plan power generation and 
reduce power wastage, with each increase in load forecast accuracy of 1% saving about 0.1% to 0.3% 
in energy costs [19]. With the large-scale grid interconnection of new loads, such as renewable energy 
and flexible loads (such as electric vehicles), the components of user-involved load consumption are 
growing more complex every day. The uncertainty and nonlinearity of the electricity load are 
gradually increasing, and the relationship between the demand of the source and the load-side 
consumption is maintained, which is consistently increasing the accuracy of load prediction. 
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Improving the accuracy of user-side load prediction plays an important role in power grid power 
planning and power scheduling [20]. 

Increasing the load forecasting level saves coal and reduces power generation costs, helping to 
formulate reasonable power supply construction plans, which will then help in increasing the 
economic benefits of power systems and society [21,22]. 

A key area of investigation in power load forecasting is the means by which existing historical 
data can be used to establish suitable forecasting models to predict the load at a future time or in a 
given time period. Therefore, the reliability of historical load data and the choice of the predictive 
model are the main factors influencing precision. As the nonlinearity and uncertainty of the power 
dataset increase, the difficulty of obtaining accurate load forecasting results increases. The accuracy 
of the prediction results has always been a process that needs to be continuously improved, from the 
traditional regression prediction method to the current deep learning algorithm [23,24]. The 
prediction method is improving constantly. The deep learning algorithm has the characteristics of 
information memory, self-learning, optimization calculation, etc. It also has strong computing power, 
complex mapping ability, and various intelligent processing capabilities [25]. 

3. Seq2seq Codec  

The Seq2seq model is Google’s mainstream machine translation architecture. It was originally 
applied in the field of machine translation [26], which is suitable for sequence-to-sequence 
applications. Seq2seq consists of two parts, an encoder and a decoder, which effectively extracts the 
features of the input data. The users’ power system load data has typical time-series characteristics. 
Load prediction using the Seq2seq model achieves better results. Therefore, this paper proposes using 
the Seq2seq model in order to calculate the electricity consumption of residents. 

3.1. LSTM  

The RNN has many advantages with respect to the processing of sequence data, but it is more 
prone to gradient disappearance and gradient explosion. LSTM is an algorithm developed on the 
basis of RNN to solve the gradient vanishing problems faced by RNN, and has an advantage over 
RNN with respect to handling complex long-term data.  

Figure 1 shows the typical structure of LSTM, consisting of three main gate structures: forget 
gate, input gate, and output gate. Here, tx  denotes the input data, th  denotes the hidden state, tc  

is defined as cell state, tf  denotes the output state of the updated forgotten gate, ti  and c  are the 

updated input gate and output state respectively, and to  is the output state of the updated output 
gate. The calculated equations for each state are as follows [27]: 

 
Figure 1. Typical structure of LSTM. 
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where, W  and V  correspond to the weight matrix, b  is the bias coefficient, σ  and tanh  are 
the activation function.  

3.2. Seq2seq Codec Principle 

Seq2seq places no limit on the length of the input sequence or the output sequence. Recently, the 
Seq2seq model has been widely used in the field of machine translation [26,28,29]. The structure of 
Seq2seq is shown in Figure 2. 

 

Figure 2. The structure of Seq2seq. 

As shown in Figure 2, the Seq2seq codec consists of an encoder, an intermediate vector c , and 
a decoder. Codecs are typically multi-layer RNN or LSTM structures, wherein the intermediate vector 
c  incorporates the sequence of 1 2, ... mx x x  encoding information. For time t , the output of the 

previous moment 1ty − , the hidden layer state of the previous moment 1−ts , and c  are fed as input 

into the decoder. Finally, the decoder’s hidden layer state ts  is obtained, which predicts the output 
value. 

4. A Short-Term Load Prediction Model Based on Seq2seq Codec Structure 

4.1. Attention Mechanism 

In this paper, the Seq2seq codec structure is used as the load prediction model, in which the 
LSTM structure is used by the encoder and the decoder. The encoding end outputs the variable-
length sequence as a fixed-length sequence. As the input sequence is lengthy, it is difficult for the 
decoding end to obtain effective information. Therefore, the output of the LSTM encoder to the input 
sequence is preserved by introducing the Attention mechanism. Then, the model is trained to 
selectively learn these inputs, associating the output sequence with the model outputs. In turn, highly 
correlated useful features are extracted with the output sequence. The main equations that describe 
the Seq2seq codec structure model are as follows: 

The input and output sequences of the model are recorded as x and y: 

1y
……

2y ny

Encoder DecoderC

1x
……

2x mx
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),( 21 nyyyy =  (9)

The hidden layer status of the encoder section is recorded as th : 

),(LSTM 1enc −= ttt hxh  (10)

In the decoding process, the Attention mechanism is introduced, comparing the two attention 
mechanisms: Bahdanau Attention [30] and Luong Attention [31]. These two attention mechanisms 
are similar in structure, but their alignment functions are different in the decoding process. 

(1) Bahdanau Attention: During decoding, the first step is to generate the semantic vector for 
particular time: 


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where tc  is the semantic vector at time t, tie  is the degree of influence of the hidden state ih  of 

LSTM in the process of encoding, and of the hidden state ts  of LSTM in the process of decoding. 

tiα  is a normalized value given by the softmax function. V and W are the weight parameters of the 
model. 

The second step passes the hidden layer information: 

[ ]( )1 1tanh , ,t t t ts W s y c− −=  (14)

(2) Luong Attention: During decoding, the first step is to generate the semantic vector for time t: 
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[ ]( )1 1tanh ,t t ts W s y− −=  (17)
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The second step passes the hidden layer information: 

[ ]( )tanh ,t c t ts W s c=  (19)

Unlike the Bahdanau Attention mechanism, Luong Attention computes the initial state of the 
hidden layer ts  and then the hidden layer state of the decoder ts~ . 
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During the decoding process, the new weight vector of the decoder LSTM is obtained by the 
Attention mechanism, and the power system load is predicted using the trained LSTM. 

4.2. Residual Mechanism 

LSTM has an internal storage unit that enables LSTM to learn time series data for long-term 
dependence. Compared to RNN, LSTM avoids to some extent the gradient disappearance or gradient 
explosion problems associated with the increase in training number. However, with the increase in 
the data volume, the number of LSTM layers and the amount of training data leads to the model 
being overtrained. Therefore, this paper adopts Residual LSTM [32], modeled on the residual neural 
network ResNet, which was proposed by Kaiming He [33] to overcome this overtraining problem. 
Residual LSTM provides an additional low-space shortcut path, which uses the output layer to 
separate the fast path of space from the fast path of time when training multi-layer LSTM. Residual 
LSTM uses LSTM’s output projection matrix and output gate to control the spatial information flow, 
rather than the additional gate network. When the network reaches the optimal state, the network 
only retains the constant mapping value of the input vector, effectively reducing the network 
parameters and improving the network performance. A structural diagram of the Residual LSTM is 
illustrated in Figure 3. 

 
Figure 3. The structure of Residual LSTM. 

The residual network is calculated by a quick path, and since the identity map is always on, the 
function output only needs to learn the residual mapping, as shown in Equation (20): 

( ) xWxFy += ;  (20)

where y  is the output layer, x is the input layer, ( )WxF ;  is the mapping, and W  is the internal 
weight parameters of the network. In the absence of the shortcut path, ( )WxF ;  represents the output 
y  obtained by the input x , and when there is a constant map of input x, ( )WxF ;  only needs to 

learn the residual mapping xy − . When the model training is stable, no new mapping is required, 
and the network is transmitted directly by constant mapping ( )WxF ; , thus simplifying the training 
of deep networks. 

There was no change in the Residual LSTM type (1)–(5), and the update changes are as follows: 

( )tanht tr c=  (21)

tpt rWm ⋅=  (22)

( )thttt xWmoh +⋅=  (23)

Here, W  is the weight of the model. 

LSTM

+

x

)( wxF ；
Activation 
Function

x
identical  
mapping

y
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4.3. Short-Term Load Forecasting Model and Flowchart 

Figure 4 shows the load prediction model used in this paper. First of all, the electricity load data 
is obtained from the data center, then the data is pre-processed, and finally, a short-term load 
prediction is made through the intelligent algorithm presented in this paper. 

 
Figure 4. A short-term load forecasting model. 

In this paper, the Seq2seq model based on LSTM is used to realize the short-term load prediction 
model for users, and the specific implementation process is illustrated in Figure 5. Firstly, the raw 
data is collected and carried out with respect to the residents. Then, the historical electricity load data 
is passed through data cleaning and pre-processing, using mean value substitution for missing 
values, etc. The processed data is separated into a training data set and a test data set. The model is 
trained with the training data, the parameters of LSTM of the Seq2seq model, the Attention 
mechanism and the Residual mechanism are optimized, and the trained Seq2seq model is 
implemented by TensorFlow. The preservation and extraction of the model are realized by tf.train 
Saver, and the effectiveness of the model is verified using the test data set, from which it predicts the 
short-term user electricity load, and these prediction results are analyzed to determine any 
shortcomings and to continuously improve the model. 

 
Figure 5. Short-term load forecasting flowchart. 

In [34], Niu et al. analyzed the RNN structure using the numerical method of ordinary 
differential equations, and proposed an ODE theoretical framework to prove the training stability of 
the LSTM architecture. In [35], the residual neural network (ResNets) composition rules were 
mapped between hidden variables and the Euler discretization of continuous differential equations, 

Obtain history load data

Data cleaning and preprocessing

Training data Test data

Select model order

Construct model

Select the layer 
numbers of LSTM

Select Attention 
mechanism

Compare Residual 
mechanism

Train Seq2seq model

Seq2seq model

 
Persistence

Analysis experiment result

Train

Testing process
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thereby improving the training stability. Thus, the proposed model consists of a residual neural 
network and an Attention mechanism, showing better stability under a variety of conditions, as 
described in Section 5.4. 

5. Simulation Experiments 

5.1. Introduction to the Dataset 

This research study was carried out on a personal computer with a single CPU of 2.6 GHz and 
8 GB of memory. The simulation process was done using Python 3.6.8, and the TensorFlow deep 
learning framework developed by Google. 

In this paper, the New York State Power history power system load data, published by NYISO 
Corporation [36], was selected as input for the model training and testing process. Hourly data was 
selected as a load point, and a total of 8760 load data, of which 80% comprises the training data set 
and the remaining 20% comprises the test data set. The first 7008 load data were used as a single 
variable load prediction training data set, and the remaining 1752 load data were used as a single 
variable load prediction test data set. 

Figure 6 clearly shows that the load data fluctuates periodically, wherein the 168-h load data for 
a week are shown in Figure 7. 

 
Figure 6. The graph of a year of load data. 

 
Figure 7. The graph of a week of load data. 

The electricity load is a random process, in the study of random processes, the self-correlation 
coefficient shows whether the random process is stable and chooses the appropriate model order. 
Therefore, the self-correlation coefficient of the training data is calculated, as shown in Figure 8. 
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Figure 8. The autocorrelation of load data. 

Figure 7 shows the electricity load in a particular area, showing periodic fluctuations, and Figure 
8 shows, with the increase in latency, that the correlation coefficient begins to decrease in the early 
stage, and with the increase of lag time, when the lag time is 24 h, the maximum peak is 0.87439. 
Therefore, the selected time series model order is 24, i.e., the historical load data of the first 24 hours 
of data is used as the characteristic vector rolling prediction. Hence, it is proved that the model is 
more applicable when using only single-dimensional data to build the model. 

5.2. Performance Indices 

For the performance evaluation of the proposed model, this paper uses Mean Square Error 
(MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute 
Percentage Error (MAPE). The measures of error are expressed as follows: 
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(24)

Here, ˆiy  represents the true value, iy  represents the predicted value, and m  represents the 
dimension of the data. 

The MSE represents the expectation of the difference between the estimated values and the true 
values. In addition, RMSE is the square root of MSE, describing the magnitude of the errors in terms 
of making decision making more convenient for users. MAE is the average of the absolute errors 
between the estimated values and the true values, reflecting the true estimated value error. Moreover, 
MAPE expresses the percentage error accuracy between error and true values. The lower values of 
MSE, RMSE, MAE, and MAPE shows better prediction characteristics.  

5.3. Seq2seq Preferred Model Parameters  

In this paper, the Seq2seq codec structure is used to predict the electricity load, with both 
encoding and decoding using the LSTM structure, followed by the number of LSTM layers to 
optimize the number of layers in the model. 
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The initial learning rate of the experiment was set to 0.01, the attenuation rate was set to 0.5, the 
number of hidden layer nodes was set to 100, and after 100 trainings, the training error and test error 
obtained by the model under the selection of different layers are shown in Figure 9 and Figure 10, 
respectively. 

 
Figure 9. The training error under different layers. 

 
Figure 10. The test error under different layers. 

Figure 8 shows that the training error of using quintuple layered LSTM structure is large, and 
the test errors after single layer, double layer, and triple layer training are comparatively lower. From 
Figure 10, the test error of the Seq2seq model with single layer, double layer and quintuple layer 
LSTM structures are highly volatile. Therefore, the combined comparison of Figures 9 and 10 suggests 
the selection of the three-tier LSTM structure model, as the error is minimal. 

In deep learning, the model learns the “universal law” of all samples from the training sample 
through training, which tends to cause overfitting and underfitting. By increasing the amount of 
model training iterations, it is possible to overcome the phenomenon of underfitting. By increasing 
the data set and introducing the formal approach, it is possible to overcome the overfitting 
phenomenon. This paper adopts Dropout [37] on this basis of the nerve unit, which is temporarily 
removed from the network with a probability of 0.5 during training, and the Attention mechanism 
and Residual mechanism are introduced. 

By selecting the coalescence of the Residual mechanism and the two Attention mechanisms for 
simulation verification in Figure 11, the training error, test error and training time of the model are 
compared, and the results are shown in Table 1. 
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Figure 11. The errors of different mechanisms. 

Table 1. The algorithm performance comparison between the Residual mechanism and the different 
Attention mechanisms. 

Residual Attention 
Train Test 

MSE RMSE MSE RMSE 

False 
False 0.000711 0.027 0.000124 0.011 

Bahdanau 0.000297 0.017 0.000169 0.013 
Luong 0.000317 0.018 0.000198 0.014 

True 
False 0.000091 0.0095 0.000106 0.01 

Bahdanau 0.000083 0.0091 0.000104 0.01 
Luong 0.000112 0.0105 0.000155 0.012 

In Table 1, true and false represent whether the model uses corresponding Residual or Attention 
mechanisms, respectively, and Table 1 shows that when the model adopts the Residual mechanism, 
the training error and test error of the model are significantly reduced. It is shown that the addition 
of the Residual mechanism improves the predictive performance of the model, compared with two 
different Attention mechanisms, the model adopts the Residual mechanism and the Bahdanau 
mechanism adopts the model with better performance, and the training error and test error value are 
minimal. Therefore, the Seq2seq model used for short-term load prediction adopts the combination 
of Residual mechanism and Bahdanau mechanism, as shown in Figure 12. 
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Figure 12. The short-term load forecasting model of Seq2seq. 

When the Seq2seq model is trained, an iterative prediction is used, and the accuracy of the 
experimental results is obtained by adjusting and selecting the parameters of the model in order to 
achieve the desired results. The model parameters are set as shown in Table 2. 

Table 2. Setting of model parameters. 

Parameter Parameter Setting Parameter 
Parameter 

Setting 
Training data 7008 Test data 1752 
Length input 24 Length output 1 
Learning rate 0.01 Decay rate of learning rate 0.5 

Node in hidden layer 100 Decay steps 200 
Number of trainings 300 Batch 200 

Optimization algorithm Adam Gradient value 5.0 

Based on the large power system dataset, 80% of the data are used for training the model and 
remaining are used for testing of the model. The input length of the data is set to 24, and the output 
length of the data is set to 1, with a learning rate of 0.01 and a decay rate of 0.5. The hidden neurons 
of the Residual LSTM are set as 100, with 200 decay steps. The model is trained for up to 300 iterations 
with a batch size of 200. The Adam optimizer is used to minimize the loss function and the 
disturbance optimization. The gradient value is set to 5.0.  

5.4. Experimental Results and Analysis 

After the model training, the test data set is predicted. The test set data is used as input to the 
model once it has been trained, and the input data is computed by the model to obtain the predicted 
values, and the forecast results obtained by the load prediction model are compared with the real 
values. It can be seen in Figure 13 that the predicted value and the true value basically coincide with 
each other. 
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Figure 13. The comparison of real data and forecast data. 

In this paper, the performance shows that the load prediction model with Seq2seq has stronger 
optimization capabilities. To demonstrate the superiority of the proposed method, compared with 
the optimal results, the initial and optimal fitness of the Seq2seq model was significantly superior to 
the results of the RNN, LSTM, and GRU models. The comparison graph is shown in Figure 14. 

Figure 14. Forecast comparison chart under different methods. 

In Figure 14, it can be observed that, compared to RNN, LSTM, and GRU, the short-term load 
forecasting using Seq2seq model is better. The prediction results obtained by the Seq2seq model 
proposed in this paper are smooth, and the fitting effect is good. The error between the prediction 
result and the real value obtained by the RNN, LSTM, and GRU algorithms is large. The errors under 
different algorithms are shown in Tables 3 and 4. 

Table 3. The comparison of prediction errors of normalized data under different algorithms. 

Different Method 
Error of Normalized Data  

MSE RMSE MAE MAPE 
Seq2seq 0.000083 0.0091 0.0076 5.20% 

RNN 0.00019 0.0138 0.01015 7.35% 
LSTM 0.00039 0.01964 0.0158 14.04% 
GRU 0.0002 0.01449 0.01066 8.29% 
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Table 4. The comparison of the prediction errors of the raw data under different algorithms. 

Different Method 
Error of Raw Data 

MSE RMSE MAE MAPE 
Seq2seq 0.0319 0.1787 0.1347 0.8262% 

RNN 0.0599 0.2448 0.1799 1.1143% 
LSTM 0.1212 0.3482 0.2809 1.7847% 
GRU 0.0659 0.2567 0.1890 1.1760% 

It can be observed from the above table that short-term load prediction is used by the algorithm 
of this paper, and the errors are comparatively smaller than for the RNN, LSTM and GRU algorithms, 
showing that it has a better prediction effect. 

5.5. Supplementary Experiment 

To illustrate that this experiment shows better prediction results for the load forecasting of small 
power grids, this paper uses the data of a small power grid as the experimental data set, and uses the 
Seq2seq proposed in this paper to carry out load forecasting. In [38], the authors considered the 
impact of different types of day, which is important for load prediction. In the forecasting process, 
the weather (temperature, holidays, and humidity, etc.) data were also used as input variables. The 
detailed input data types are shown in Table 5. In addition, the experimental results with a 
comparatively minimized error were obtained, as shown in Figures 15 and 16. 

Table 5. The specific meaning of input data. 

Type of Data Specific Meaning 
F_day1 Load value one day before the date to be tested 
F_week The load value of the day of the previous week 

Day of week Which day of the week 
Workday Whether it is working day or not 
Holiday Whether it is a holiday or not 

Tem_max Maximum temperature 
Tem_min Minimum temperature 
RH_max Maximum humidity 
RH_min Minimum humidity 

 
Figure 15. Forecast comparison chart under different types of input data. 
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Figure 16. The error of different types of input data. 

It can be observed from Figures 15 and 16, that for load forecasting, if more parameters such as 
date and weather are selected under the same model training parameters, it will improve the model 
learning. With the same training times, if other relevant features are introduced, the learning 
performance of the model will be much higher than that of the pure load data training, and the 
accuracy of the model is improved when the training data is small, also improving the overall model 
prediction accuracy. In terms of training the model with large and small power system data, the 
proposed model exhibits smooth behavior, as seen in Figure 15, and thus the model can be considered 
to be more stable. 

6. Conclusions 

The outcomes of load forecasting are conducive to determining the power that needs to be 
generated in the coming days, the installation of new generator sets in the future, the determination 
of the size, location and time of the installed capacity, the determination of capacity expansion and 
reconstruction of the power grid, and the determination of the construction and development of the 
power grid. Moreover, it assists in the stable operation of the power system by predicting the 
demand. Therefore, the accuracy of load forecasting directly affects the stable and efficient operation 
of the power grid. This paper proposes a novel Seq2seq model for more precise power system load 
forecasting.  

The main contributions of this paper are as follows: 

(1) The progressive application of the Seq2seq model for load forecasting. Initially, the model was 
widely used in the field of machine translation, and it has been used for load forecasting to obtain 
better load forecasting results. 

(2) According to the periodic characteristics of historical load data, the correlation coefficient 
method is used to determine the order of the input historical load, and the accuracy of data 
feature extraction is improved. 

(3) The coalescence of Residual and Attention mechanisms is used to optimize the Seq2seq model, 
which overcomes shortcomings, such as model instability and lower precision, ensuring the 
effectiveness of power load forecasting. 

(4) To demonstrate the robustness and the stability of the proposed model, the electricity dataset of 
the small power grid is used for prediction, also considering different weather conditions and 
user behaviors.  

In this paper, the short-term load prediction model based on LSTM’s Seq2seq algorithm is 
developed by the coalescence of the Residual and Attention mechanism, and the effective 
characteristics of historical load data are extracted using the model. This reduces the error of short-
term load prediction, eventually improving the prediction performance of the model and presenting 
a new method for short-term load prediction. By constantly optimizing the performance of various 
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deep learning algorithm to improve the prediction accuracy, it will be possible to further develop a 
more advanced, faster and more accurate model for load prediction. 

In the future, we look forward to studying the method’s applicability for long-term forecasting. 
Moreover, price prediction with respect to load forecasting can be studied comparatively. 
Furthermore, efficiency and prediction accuracy of load forecasting may be improved by combining 
various forecasting methods in order to develop a robust and stable forecasting model. 
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Nomenclature 

The following nomenclatures are used in this manuscript: 

ANN Artificial neural network 

GRU Gated recurrent unit 

LSTM Long short-term memory network 

MAE Mean Absolute Error 

MAPE Mean Absolute Percent Error 

MSE Mean squared error 

RMSE Root Mean Square Error 

RNN Recurrent neural network 

tf  The output state of the updated forgotten gate 

σ  Activation function 

W and V Weight Matrices 

h  The hidden state 

b  Bias coefficient  

ti  The updated input gate 

c  The output state 

tanh  Activation function 

x  Input sequences of the model 

y  Output sequences of the model 

e  The degree of influence of the hidden state 

s  The hidden state of the encoder 

m  The dimension of the data 

ˆiy  True value 

iy  Predicted value 
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