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Abstract: Nighttime light data are often used to estimate some socioeconomic indicators, such as
energy consumption, GDP, population, etc. However, whether there is a causal relationship between
them needs further study. In this paper, we propose a causal-effect inference method to test whether
nighttime light data are suitable for estimating socioeconomic indicators. Data on electric power
consumption and nighttime light intensity in 77 countries were used for the empirical research.
The main conclusions are as follows: First, nighttime light data are more appropriate for estimating
electric power consumption in developing countries, such as China, India, and others. Second,
more latent factors need to be added into the model when estimating the power consumption of
developed countries using nighttime light data. Third, the light spillover effect is relatively strong,
which is not suitable for estimating socioeconomic indicators in the contiguous regions between
developed countries and developing countries, such as Spain, Turkey, and others. Finally, we suggest
that more attention should be paid in the future to the intrinsic logical relationship between nighttime
light data and socioeconomic indicators.

Keywords: electric power consumption; nighttime light data; panel econometrics; panel Granger
causality

1. Introduction

In the field of the social sciences, we often use secondhand data released by the government
or research institutions. When studying smaller administrative units, data are often not available.
Meanwhile, data are often not timely, and their time span is often large [1]. Croft discovered that
nighttime light data can be used as an indicator of human activities [2]. Recently, scientists began to
use remote sensing data to estimate the data of social activities. Among these, the nighttime lighting
data released by the U.S. National Oceanic and Atmospheric Administration (NOAA) is the most
used. The data were collected by the Operational Linescan System (OLS) flown by the U.S. Air Force
Defense Meteorological Satellite Program (DMSP) from 1992 to 2012. In 2013, Visible Infrared Imaging
Radiometer Suite (VIIRS) data products replacing the DMSP and OLS appeared, with higher resolution
and grayscale, effectively avoiding pixel mutation and saturation, and eliminating the interference of
stray light, lightning, moonlight, and cloud cover [3].
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Nighttime light data are an important symbol of human activity, and they are also the most direct
feature of the urbanization of human society in the spatial dimension. The multidimensional and
multiscale study of global and regional nighttime light data is helpful to understand the connection
between global environmental change and the human environment. In recent years, nighttime light
data have been increasingly used to aid the rapid assessment and comprehensive spatial analysis of
key elements of urbanization, such as urban land cover, population estimates, and economic activity
at global or regional scales [4]. Because of their global extent and standardized production and the
relative ease with which DMSP nighttime light data can be accessed, they have been widely used as a
proxy for other more difficult means of measuring these economic and social indicators [5]. The logic is
that urban processes are highly correlated with each other [6]; if one process or activity can be measured
well, it can be used to make reasonable estimates of others. In the existing research, the methods of
estimation are linear regression, logic regression, and power regression. Finally, these models can
achieve a very high coefficient of determination or coefficient of correlation. Some of them can reach
99%. However, this is also a signal of spurious regression in econometrics. Therefore, we want to know
whether there is a causal relationship between nighttime light data and these social indexes, from the
perspective of econometrics.

In this paper, we propose a causal-effect inference method to test whether nighttime light data is
suitable to estimate socioeconomic indicators and select electric power consumption as the research
object, and use econometric methods to test the relationship between nighttime light data and electric
power consumption on a country level. First, in Section 2 we summarize the research results of
estimating electric power consumption using light data. Then we introduce data resources and research
objects, including countries and time span. The testing process is described in Section 3. The empirical
results are shown in Section 4. In Section 5, we discuss the empirical results. Finally, the conclusions
and suggestions are made in Section 6.

2. An Overview of the Literature

Nighttime lights have been used to map economic activity [7–11], energy production [12,13],
energy consumption [14–22], carbon emissions [23–27], stocks of metals [28–33], and PM2.5 [34].
Research areas include the world, a particular region, or a specific country. Spatial scales include
national, provincial, municipal, or even smaller ones. Estimation methods include linear regression,
logical regression, and power regression [35]. These papers are summarized in Table 1.

Nighttime light intensity data were first used to estimate population, GDP, and electric power
consumption [4,36,37]. It is important to test a regression model based on some information criteria,
such as AIC, BIC, and so on. However, they did not care about these information criteria in existing
papers except R Square. They made the prediction based on a high adjusted R Square. An adjusted
R Square is the most important criterion. It is safe to interpret night lights as an indication of
anthropogenic activity specifically attributable to the use of electric lighting. In previous years, due
to the lack of statistical data, some scholars used light data to estimate energy consumption in poor
countries and regions [4,12,13]. With the improvement of statistical data at the national level, scholars
began to use light data to estimate the energy consumption of city-level or smaller units, mainly
electric power consumption [8,14,20,22]. According to the existing literature, the relationship between
nighttime light intensity and electric power consumption is the earliest and most studied. Therefore,
we choose electric power consumption as the research object of this paper. The research process
proposed in this paper can be used to test other objects, such as GDP, metal stocks, carbon emissions,
and so on.
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Table 1. Summary of nighttime light data application.

Authors Objects Region Scale Methods

Henderson et al. [9] GDP World Country Linear regression

Shi et al. [8] GDP and electric
power consumption China Province Linear regression

Zhang and Seto [10] Urbanization
India, China,

Japan, and the
United States

Country Linear regression

Ma et al. [11] Urbanization China City Linear regression
Elvidge et al. [12] Energy production World Country Linear regression

Do et al. [13] Energy production Islamic State Country Linear regression

Letu et al. [21] Energy production 13 Asian
countries Country and city Cubic regression

Xiao et al. [14] Energy consumption China Province
Spatiotemporal
Geographically

weighted regression

Shi et al. [16] Energy consumption the Belt and
Road countries Country Power regression

He et al. [22] Energy consumption China Province Linear regression
Meng et al. [27] Carbon emissions China City Linear regression

Shi et al. [23] Carbon emissions China Province Panel econometrics
Shi et al. [25] Carbon emissions China Country Linear regression

Takahashi et al. [33] Metal stock Asian countries Country Linear regression
Hattori et al. [30] Metal stock World Country Linear regression
Liang et al. [28] Metal stock China Province Logistic regression
Liang et al. [29] Metal stock World Country Linear regression

Ji et al. [34] PM 2.5 China Province Linear regression

3. Materials and Methods

3.1. Method

A causal-effect inference method is proposed, and three kinds of econometric and statistical
analysis will be performed, namely correlation analysis, cluster analysis, and causality analysis. First,
we conducted correlation analyses on the time and space dimensions. Meanwhile, based on the
results of the spatial dimension correlation analysis, a clustering analysis of samples was carried out.
Then, we selected three kinds of panel data analysis methods: A panel unit root test [37–40], a panel
cointegration test [40,41], and a panel causality test [42–44]. The test process can be seen in Figure 1
and contains seven steps in total. The software of the test process is mainly R and ArcGIS in this paper.

Step 1: First of all, we collected data of socioeconomic indicators from released statistical databases.
Meanwhile, nighttime light data were downloaded from the NOAA website. According to the spatial
scale of the socioeconomic indicators, the pre-processing of the nighttime light data was carried out.
For example, if we all collect national annual data, the lighting data should also be aggregated into the
national annual level (Equation (1)):

Nightlightyear =
n∑

i=1

nightlighti (1)

Step 2: We calculated the correlation coefficient and tested spatial dependence between the two
series. First, we calculated the annual correlation coefficient by using annual data from countries
(Equation (2)). Then we used annual data from each country to calculate the country’s own correlation
coefficient (Equation (3)). Then, the correlation results were analyzed.

Rt(Xt, Yt) =
Cov(Xt, Yt)√

Var[Xt]Var[Yt]
(2)
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Ri(Xi, Yi) =
Cov(Xi, Yi)√

Var[Xi]Var[Yi]
(3)

where in Equations (2) and (3), Cov and Var represent the covariance matrix and the variance,
respectively; Rt denotes the correlation coefficient between X and Y at time t; Xt denotes the data set
vector of variable X at time t; Yt denotes the data set vector of variable Y at time t; Ri denotes the
correlation coefficient of the i-th country; Xi denotes the data set vector of the i-th country’s variable X;
and Yt denotes the data set vector of the i-th country’s variable Y.Energies 2019, 12, x FOR PEER REVIEW 4 of 15 

 

 

Figure 1. Analysis flow chart. 

Step 2: We calculated the correlation coefficient and tested spatial dependence between the two 

series. First, we calculated the annual correlation coefficient by using annual data from countries 

(Equation 2). Then we used annual data from each country to calculate the country’s own correlation 

coefficient (Equation 3). Then, the correlation results were analyzed. 

𝑅𝑡(𝑋𝑡 , 𝑌𝑡) =
𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡)

√𝑉𝑎𝑟[𝑋𝑡]𝑉𝑎𝑟[𝑌𝑡]
 (2) 

𝑅𝑖(𝑋𝑖 , 𝑌𝑖) =
𝐶𝑜𝑣(𝑋𝑖 , 𝑌𝑖)

√𝑉𝑎𝑟[𝑋𝑖]𝑉𝑎𝑟[𝑌𝑖]
 (3) 

where in Equations 2 and 3, Cov and Var represent the covariance matrix and the variance, 

respectively; Rt denotes the correlation coefficient between X and Y at time t; Xt denotes the data set 

vector of variable X at time t; Yt denotes the data set vector of variable Y at time t; Ri denotes the 

correlation coefficient of the i-th country; Xi denotes the data set vector of the i-th country’s variable 

X; and Yt denotes the data set vector of the i-th country’s variable Y. 

Step 3: Meanwhile, we firstly tested the spatial dependence of the correlation coefficients based 

on spatial statistic methods [45]. The method for spatial dependence testing was GW statistics in this 

paper [46]. This step was optional. If it was independent of the spatial dimension, we jumped to Step 

4. If there was spatial dependence, we needed to classify them. There are many methods of spatial 

Unit Root Test Cointegration Test

Granger Causality Test

Stationarity
Conintergation

YES

NO
Causality

H0: Causality
H1: No

Causality

Hypothesis

YES

NO

NO

Causality Analysis

Correlation Analysis
Correlation 

Coefficient

Time Space

Data Preprocessing

Cluster Analysis Group 1 Group 2 ···· Group n

Spatial

Dependence

Figure 1. Analysis flow chart.

Step 3: Meanwhile, we firstly tested the spatial dependence of the correlation coefficients based
on spatial statistic methods [45]. The method for spatial dependence testing was GW statistics in this
paper [46]. This step was optional. If it was independent of the spatial dimension, we jumped to Step
4. If there was spatial dependence, we needed to classify them. There are many methods of spatial
clustering analysis. Which method to choose depended on the results of the correlation analysis. In this
paper, we conducted a cluster analysis of the spatial dimension using a natural breaks classification
method based on the GW correlation coefficient [46,47]. The number of clusters was determined by the
algorithm itself. In all the next steps, we examined the whole sample and each cluster separately.



Energies 2019, 12, 3154 5 of 14

Step 4: Stationarity or cointegration is necessary for a causality test [44]. In the test process of
non-stationarity panel data, Levin and Lin found that the limit distribution of these estimators must
obey a Gaussian distribution. These results were also applied to heterogeneous panel data, and an
early version of the panel unit root test was established. Later, after improvements by Levin et al.,
the Levin Lin and Chu (LLC) method of checking the unit root of the panel was put forward [39]. Levin
et al. pointed out that this method allows for different intercepts and time trends, heteroscedasticity,
and high-order series correlation, and is suitable for a panel unit root test for medium dimensions (time
series between 25 and 250, cross-sectional numbers between 10 and 250). Lm et al. also proposed the
Im Pesran and Shin (IPS) method to test the unit root of the panel [40], but Breitung found that the IPS
method was very sensitive to the setting of restrictive trend, and proposed the Breitung method to test
the unit root of the panel [48]. Maddala and Wu also proposed the unit root test method for ADF-Fisher
and PP-Fisher panels [49]. So, which test method to choose depends on the panel data structure. After
completing the stationarity test, the next step is shown in Table 2. When both X and Y were stationarity,
we chose to go directly to Step 6. When both X and Y were not stationarity, we chose to proceed to
Step 5. When either X or Y was stationarity, there was no causal relationship between them.

Table 2. Step selection rules.

Y
X

Stationarity No Stationarity

Stationarity Step 6 End

No Stationarity End Step 5

Step 5: If there is a cointegration relationship between two non-stationarity series, a causality
test can still be carried out between them. Since Pedroni proposed the panel cointegration test [40],
there have been plentiful research results using it. At present, Pedroni’s, Kao’s, and Johansen’s tests
are the main methods of balancing panel data. In this paper, we chose three methods. If there was
a cointegration relationship between X and Y, the next step was to proceed to Step 6. If there was
no cointegration relationship between X and Y, we did not think there was a causal relationship
between them.

Step 6: How to decide causality between two related variables is a difficult and important issue
for economists [44]. Granger pointed out that the past and present may cause the future, but the
future cannot cause the past [50]. Because the data in this paper are panel data, a panel Granger
causality test method was adopted. Dumitrescu and Hurlin proposed a test of Granger noncausality
for heterogeneous panel data models [43]. Lopez and Weber implemented a procedure proposed by
Dumitrescu and Hurlin for detecting Granger causality in panel data sets [42]. In this paper, we chose
this method to test causality between electric power consumption and nighttime light data. The original
hypothesis and alternative hypothesis are as follows:

Original Hypothesis: There is no causal relationship between X and Y.

Alternative Hypothesis: There is causal relationship between X and Y.

The test equation is shown as Equations (4) and (5). For simplicity, the individual effects αi. are
supposed to be fixed in the time dimension. Both individual processes nightlighti,t. and socioeconomici,t.
are given and observable. We assume that lag orders k are identical for all cross-section units of
the panel and the panel is balanced. Besides, we allow the autoregressive parameters γ(k)i and the

regression coefficients slopes β(k)i to differ across groups.

nightlighti,t = αi +
K∑

k=1

γ
(k)
i nightlighti,t−k +

K∑
k=1

β
(k)
i socioeconomici,t−k + εi,t (4)



Energies 2019, 12, 3154 6 of 14

socioeconomici,t = αi +
K∑

k=1

γ
(k)
i socioeconomici,t−k +

K∑
k=1

β
(k)
i nightlighti,t−k + εi,t (5)

Step 7: By analyzing the empirical results, we made a judgment on the relationship between X
and Y. The cause of noncausal judgment needs further analysis. At the same time, the results of this
study provide some direction and reference for other studies.

3.2. Data

There have been some studies on the relationship between energy consumption and nighttime
light data at the national level, provincial level, and city level [4,8,16–18,21]. Because there is a strong
correlation between nighttime light and electric power consumption, these studies mainly use light
data to estimate energy consumption. We want to evaluate the causal relationship between them.
So, we must use statistical data. However, electric power consumption data are often available only
at the national level. Statistical objects tend to be large-scale administrative units, such as countries,
provinces, etc. Reliable statistics serve as the foundation and starting point for social science research
of any country [1]. Considering the availability of data, we chose the national level as the test object.
Based on the data released by BP [36], we finally selected 77 countries as samples. These 77 countries
are the world’s major countries regarding electric power consumption, accounting for more than 90%
of the world’s total consumption [36].

Meanwhile, nighttime light data is available on the NOAA website. In this paper, we use DMSP
stable light data, obtained by averaging the annual visible and gray values after eliminating the impact
of accidental noise, such as clouds and fire. With increased satellite lifetimes, sensor aging will occur,
so old satellite sensors will be replaced every few years. Nighttime lighting data in this paper obtained
from 1992 to 2012 were extracted from different satellites. Because of the replacement of old with new
sensors, the data collected by the two satellites for one year were collected at the same time in some
years. Because of different sensor settings, the data collected by different satellites in the same year are
not always comparable. Therefore, we got nighttime light data from multiple satellites by different
aging sensors in the same year. Such problems make it impossible for us to directly use unprocessed
light data. The nighttime light data correction method proposed by Elvidge et al. was used to correct
the light data [3]. Since the annual data are used in the electric power consumption data, the annual
nighttime light sum was also used in the lighting data (Equation (1)).

4. Results

4.1. Correlation Analysis

We used annual data from 77 countries to calculate the correlation between global nighttime light
intensity and electric power consumption. In the global results, there was indeed a high correlation
between them. In the time dimension, the correlation coefficient between nighttime light intensity
and electric power consumption decreased year by year (Figure 2). The correlation decreased from
0.98 in 1992 to 0.88 in 2012. From 1992 to 2005, the correlation decreased slightly, and increased in
1997 and 1999. After 2005, the correlation between global nighttime light intensity and electric power
consumption decreased faster.

In the spatial dimension, the correlation between them also had spatial heterogeneity. In Southeast
Asia, Africa, the Middle East, and South America, the relationship between them was positive.
However, in North America and Europe, the relationship between them was negative. The correlation
coefficients of developing countries were generally positive and high; China had the highest, at 0.9915.
But developed countries were generally low or showed a negative correlation; Canada had the largest
negative correlation, at −0.7919; Nordic countries were close to 0; and some European countries near
Africa had higher correlation coefficients, such as Spain and Greece (Table 3). Using to the spatial
classification method [45], we divided the whole sample into seven groups. The results are shown in
Figure 3.
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Figure 2. Correlation coefficients over time. Note: Correlation coefficients were calculated by 77
countries every year.

Table 3. Correlation coefficients of every country.

Country Value Group Country Value Group Country Value Group

China 0.9915 *** 1 Thailand 0.8035 *** 3 Romania 0.2108 * 5
Oman 0.9872 *** 1 Portugal 0.7689 *** 3 Belarus 0.2089 * 5

Morocco 0.9727 *** 1 Turkey 0.7447 *** 4 Bulgaria 0.1552 * 5
Egypt 0.9713 *** 1 Austria 0.7446 *** 4 Colombia 0.0855 5
Iran 0.9676 *** 1 South Africa 0.7339 *** 4 Sweden 0.0844 5

Qatar 0.9676 *** 1 Ireland 0.7324 *** 4 Hungary 0.0685 5
United Arab

Emirates 0.9666 *** 1 Latvia 0.6990 *** 4 Luxembourg 0.0511 5

Vietnam 0.9599 *** 1 Kuwait 0.6969 *** 4 Denmark 0.0448 5
Malaysia 0.9549 *** 1 Ukraine 0.6908 *** 4 Norway −0.0050 6

Cyprus 0.9439 *** 1 Croatia 0.6857 *** 4 Czech
Republic −0.0433 6

Greece 0.9402 *** 1 Iraq 0.6783 *** 4 Finland −0.0636 6
Chile 0.9262 *** 2 Poland 0.6620 *** 4 Azerbaijan −0.1328 * 6

Algeria 0.9229 *** 2 South Korea 0.6594 *** 4 Germany −0.1357 * 6
Saudi Arabia 0.9206 *** 2 Mexico 0.6534 *** 4 Singapore −0.1991 * 6

Argentina 0.9046 *** 2 Philippines 0.6467 *** 4 Slovakia −0.2504 * 6
Trinidad &

Tobago 0.9016 *** 2 France 0.5083 *** 5 Russian
Federation −0.3437 ** 7

Spain 0.8933 *** 2 Kazakhstan 0.4710 ** 5 Belgium −0.3663 *** 7
India 0.8915 *** 2 Pakistan 0.4366 *** 5 New Zealand −0.3758 ** 7
Brazil 0.8905 *** 2 Venezuela 0.4212 *** 5 Netherlands −0.4543 *** 7
Peru 0.8744 *** 2 Slovenia 0.3952 *** 5 Uzbekistan −0.5882 ** 7

Indonesia 0.8595 *** 3 Iceland 0.3653 *** 5 Lithuania −0.6020 *** 7

Sri Lanka 0.8578 *** 3 Estonia 0.3219 ** 5 United
Kingdom −0.6173 *** 7

Ecuador 0.8574 *** 3 Macedonia 0.3163 ** 5 Japan −0.6320 *** 7
Turkmenistan 0.8281 *** 3 Switzerland 0.2871 * 5 United States −0.6602 *** 7

Israel 0.8139 *** 3 Australia 0.2566 ** 5 Canada −0.7919 *** 7
Italy 0.8125 *** 3 Bangladesh 0.2298 ** 5

Note: * Denotes rejection of null hypothesis at 10% significance levels; ** Denotes rejection of null hypothesis at 5%
significance levels; *** Denotes rejection of null hypothesis at 1% significance levels.
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The mean correlation coefficient of the whole sample was 0.4290; by analogy, Group 1 was 0.9658,
Group 2 was 0.9028, Group 3 was 0.8252, Group 4 was 0.6945, Group 5 was 0.2589, Group 6 was
−0.1186, and Group 7 was −0.5432 (Table 4). The highest was China and the lowest was Canada.
The standard deviations of groups with a larger mean were smaller, such as Groups 1 and 2; those with
smaller means were larger, such as Groups 5 and 7.

Table 4. Descriptive statistics of correlation results.

Statistics All Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Number of samples 77 11 9 8 13 19 7 10
Mean 0.4290 0.9658 0.9028 0.8252 0.6945 0.2589 −0.1186 −0.5432
Max 0.9915 0.9915 0.9262 0.8595 0.7447 0.5083 −0.0050 −0.3437
Min −0.7919 0.9402 0.8744 0.7689 0.6467 0.0448 −0.2504 −0.7919

Standard deviation 0.5148 0.0158 0.0175 0.0321 0.0349 0.1500 0.0875 0.1496
Coefficient of variation 1.2 0.0164 0.0194 0.0389 0.0503 0.5794 −0.7378 −0.2754

4.2. Stationarity Test

Three methods (the HT, LLC, and ADF tests) were used in this study. If the cross-sectional
dimension of panel data is large and the time dimension is small, it is called short panel, and vice versa.
The whole sample group is short panel, which is tested by the HT and the ADF methods. From Group
1 to Group 7, all groups are long panel, which are tested by the LLC and the ADF methods. The results
are shown in Table 5. Following the principle of majority, when the test results show that the series is
stationarity many times, it means that the series is stationarity, and vice versa. In the nighttime light
intensity series, the whole sample group, Group 4, Group 5, Group 6, and Group 7 were stationarity;
Group 1, Group 2, and Group3 were non-stationarity. In the electric power consumption series, Group
3, Group 5, Group 6, and Group 7 were stationarity; the whole sample group, Group 1, Group 2, and
Group 4 were non-stationarity.

Based on the stationarity test results, Groups 5, 6, and 7 could be used for the causality test.
Groups 1 and 2 needed to use the cointegration test (Table 6). The test process for Group 3 and Group
4 did not go on to the next step, as there was no causal relationship between nighttime light intensity
and electric power consumption in the whole sample group, Group 3, and Group 4.
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Table 5. Stationarity test. (a). HT and LLC tests; (b). ADF test.

(a)
Nighttime Light

Statistics All Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Number of
samples 77 11 9 8 13 19 7 10

Time span 21 21 21 21 21 21 21 21

Type Rho
statistics t statistics t statistics t statistics t statistics t statistics t statistics t statistics

Lag order none 8 8 8 8 8 8 8
Constant 0.3434 *** 6.2882 7.4275 2.5771 −1.3586 * −2.9474 *** −3.2192 *** −2.6827 ***

Time trend 0.8240 *** 0.3423 6.4061 2.3284 1.2521 −0.9340 −1.9448 ** −0.3286
None 0.9942 9.9184 5.5856 2.6403 1.0388 0.6407 −0.3130 −3.9063 ***

Electric Power Consumption

Statistics All Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Number of
samples 77 11 9 8 13 19 7 10

Time span 21 21 21 21 21 21 21 21

Type Rho
statistics t statistics t statistics t statistics t statistics t statistics t statistics t statistics

Lag order none 8 8 8 8 8 8 8
Constant 0.9726 −0.6509 4.3380 −2.3681 *** 1.5004 −1.1543 −1.4739 * −3.5845 ***

Time trend 1.0758 7.0935 9.3678 2.1944 −4.0151 *** −2.6450 *** 0.1414 −2.9873 ***
None 1.0320 10.0436 7.3219 6.9080 6.5441 6.5649 2.9902 5.9435

Note: Rho statistics are results of HT tests; t statistics are results of LLC tests.

(b)
Nighttime Light

Statistics All Group
1

Group
2 Group 3 Group 4 Group 5 Group 6 Group 7

Number of samples 77 11 9 8 13 19 7 10
Time span 21 21 21 21 21 21 21 21

ADF-Fisher
test

Lag 2 2 2 2 2 2 2 2
None −2.0892 −2.8571 −2.5906 −1.8197 −0.9193 1.4328 * 0.6117 −1.8582

Drift term 10.066 *** −1.1357 −0.3717 1.6553 ** 4.0138 *** 9.2136 *** 6.2647 *** 2.9840 ***
Time trend −5.2355 −2.4959 −2.2327 −1.6123 −2.4877 −0.3487 −0.6035 −1.1701

Electric Power Consumption

Statistics All Group
1

Group
2 Group 3 Group 4 Group 5 Group 6 Group 7

Number of samples 77 11 9 8 13 19 7 10
Time span 21 21 21 21 21 21 21 21

ADF-Fisher
test

Lag 2 2 2 2 2 2 2 2
None −7.4431 −3.3128 −2.1953 −0.3119 −2.6126 −1.5425 0.1623 0.6275

Drift term −3.6165 −3.2265 −1.0553 3.6081 *** 0.1075 4.4159 *** 5.7613 *** 6.2849 ***
Time trend −6.3063 −3.2346 −2.9252 −1.5782 −1.7726 0.304 −0.4631 −2.2507

Note: * Denotes rejection of null hypothesis at 10% significance levels; ** Denotes rejection of null hypothesis at 5%
significance levels; *** Denotes rejection of null hypothesis at 1% significance levels.

Table 6. Summary of stationarity tests.

Test Method All Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Light
Fisher-ADF yes no no yes yes yes yes yes
LLC or HT yes no no no yes yes yes yes
Conclusion yes no no no yes yes yes yes

Electricity
Fisher-ADF no no no yes no yes yes yes
LLC or HT no no no yes yes yes yes yes
Conclusion no no no yes no yes yes yes

Next step End Cointegration
test

Cointegration
test End End Causality

test
Causality

test
Causality

test
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4.3. Cointegration Test

In this study, we used three methods to test cointegration: The Kao test, the Pedroni test, and the
Westerlund test. The results are shown in Table 7. By comparing three panel data cointegration test
results, there was a cointegration relationship between nighttime light intensity and electric power
consumption levels in Group 1 and Group 2. So, two groups could be used for panel data causal
analysis in the next step.

Table 7. Panel cointegration test.

Test Method Statistics Group 1 Group 2

Kao test

Modified Dickey-Fuller t −4.6383 *** −2.6347 ***
Dickey-Fuller t −2.8722 *** −2.3908 ***

Augmented Dickey-Fuller t −2.5286 *** 0.1048
Unadjusted modified Dickey-Fuller t −4.6378 *** −3.2883 ***

Unadjusted Dickey-Fuller t −2.8721 *** −2.6374 ***

Pedroni test
Modified Phillips-Perron t −1.1674 1.0486

Phillips-Perron t −2.8284 *** −0.3223
Augmented Dickey-Fuller t −1.9415 ** −0.4606

Westerlund test Variance ratio −3.0386 *** −0.3142

Note: * Denotes rejection of null hypothesis at 10% significance levels; ** Denotes rejection of null hypothesis at 5%
significance levels; *** Denotes rejection of null hypothesis at 1% significance levels.

4.4. Causality Test

For the whole sample, Group 3, and Group 4, a panel Granger causality test could not be performed,
because they did not meet the basic conditions of the causality test. Therefore, we could not judge
whether there was Granger homogeneous causality in these groups. Based on results of Group 2 and
Group 7, electric power consumption was the Granger cause of light intensity. But nighttime light
intensity was not the Granger cause of electric power consumption. For Groups 1, 5, and 6, electric
power consumption was the Granger cause of nighttime light intensity, and nighttime light intensity
was also the Granger cause of electric power consumption (Table 8).

Table 8. Panel causality test.

Original
Hypothesis

Light does not Homogeneously Cause EC EC does not Homogeneously Cause Light

Number of Lags Z-Bar Statistics Number of Lags Z-Bar Statistics

All - - - -
Group 1 5 2.3734 ** 5 7.8490 ***
Group 2 5 0.5494 1 8.7235 ***
Group 3 - - - -
Group 4 - - - -
Group 5 5 7.9996 *** 5 12.1145 ***
Group 6 5 3.4454 *** 5 21.2654 ***
Group 7 5 1.1762 5 10.6500 ***

Note: * Denotes rejection of null hypothesis at 10% significance levels; ** Denotes rejection of null hypothesis at 5%
significance levels; *** Denotes rejection of null hypothesis at 1% significance levels.

5. Discussion

According to the correlation results, there was spatial heterogeneity between power consumption
and nighttime light data. Developing countries, such as China and Vietnam, generally had a high and
positive correlation; developed countries generally had a low or even negative correlation. According
to the causal analysis, there was no causal relationship in the world as a whole, but there was local
causality. In developing countries and regions with a strong correlation, such as Asia, South America,
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and Africa, the results showed that there was causality between power consumption and nighttime
light intensity; in developed countries, there was no causality between power consumption and
nighttime light intensity. The reasons are mainly the following:

• First, the impact of a country’s electric power consumption structure on the estimation results;
the electricity structure of developed countries is more complex, and the electricity structure of
developing countries is simple.

• Second, the power supply structure of developed countries also has a greater impact; the power
supply channels of developed countries are diversified and the proportion of renewable energy is
higher, such as in the Nordic region, while developing countries generally still use hydroelectric
or coal-fired power generation (Figure 4).

• Third, there is a spatial spillover effect of nighttime light, near Africa and the Middle East; some
European countries have strong positive correlation, such as Portugal, Spain, Turkey, and Ireland,
while other European countries have weak or negative correlation (Figure 3).Energies 2019, 12, x FOR PEER REVIEW 12 of 15 
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In general, we can draw some conclusions. First, nighttime light data can be used to estimate
power consumption intensity in some areas. The estimates of developing countries regions, such as
Southeast Asia and the Middle East, are more accurate. Using nighttime light data to directly estimate
the economic and social indicators of developed countries has a large error. Second, in the contiguous
regions between Africa, the Middle East, and Europe, such as Spain and Turkey, the nighttime light
spillover effect is relatively strong, which is not suitable for estimating socioeconomic indicators. Third,
for developed countries, it is necessary to introduce more variables, such as urban population, spatial
climate conditions, and so on, to estimate economic and social indicators using nighttime light data.

6. Conclusions

In order to evaluate the applicability of nighttime light data in estimating socioeconomic indicators,
we propose a causal-effect inference method to test the relationship between nighttime light data and
socioeconomic indicators. According to the method, we found evidence to support applications of
nighttime light data in the estimation of socioeconomic indicators. At the same time, we find that
some conclusions are of great significance to the application of light data. The main conclusions are
as follows:
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• Casual inference is necessary before estimating socioeconomic indicators by nighttime light data.
• Spatial heterogeneity exists in the applicability of nighttime light data in estimating socioeconomic

indicators.
• Nighttime light data are more suitable for estimating electric power consumption in developing

countries, such as China, India, and so on.
• For developed countries, it is necessary to add more latent variables, such as urban population,

spatial climate conditions, and so on, to estimate electric power consumption using nighttime
light data.

• In the contiguous regions of geography, such as regions between Africa, the Middle East, and
Europe, the nighttime light spillover effect is relatively strong. So, nighttime light data need to
be corrected.

Nighttime light data are publicly accessible data in practice. In academic research and practice,
economists, geographers, and ecologists regard it as an important tool and are widely used. Through
this study, we should pay more attention to correlative and causal relationships in future practice.
The correlation between nighttime light data and economic and social indicators is not equal to causality.
When using nighttime light data in practice, theoretical causal inference is a necessary process. And,
the method proposed in this paper can be used to test other research objects, such as metal stocks,
population, GDP, etc. And this method is also applicable when the statistical data of smaller spatial
units, such as the province level, the city level, or smaller units, can be obtained. Future research should
pay more attention to the intrinsic logical relationship between nighttime light data and socioeconomic
indicators. In future research, the relationship between nighttime light and socioeconomic indicators
on the spatial dimension is important in this field. In order to estimate the socioeconomic indicators
more accurately using light data, it is necessary to deal with the spatial dependence of nighttime
light data.
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