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Abstract: This study presents the development and evaluation of a novel partially open-loop heat 
pump dryer with a unit-room (HPDU). The unit-room was designed to enable the ambient air to be 
mixed with the return air, thereby reducing the influence of the ambient air on the system 
performance, while maintaining a high system thermal efficiency. A modelling system for the 
HPDU was developed and validated based on a real-scale experimental study. By using the 
modelling system, the system characteristics under different ambient conditions and bypass factors 
were analyzed. The energy benefit of the proposed HPDU was quantified through a comparative 
study with a closed-loop heat pump dryer (CHPD). It is evident that a maximal specific moisture 
extraction rate (SMER) and a minimal total energy consumption (TEC) existed when changing the 
bypass factor of the HPDU under certain ambient temperatures. Compared to the CHPD, the 
coefficient of performance (COP) of the HPDU increased by up to 39.56%, presenting a significant 
energy benefit for the application of HPDU. 
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1. Introduction 

Drying is one of the most energy-intensive industrial processes, which accounts for 
approximately 5%~25% energy consumption in various industries [1]. It consumes, for example, up 
to 70% of the total energy used in the timber industry [2], 50% of that in the textile manufacturing 
industry [2], and 60% of that in the Chinese noodles producing industry [3]. Besides the high energy 
consumption, another concern in the conventional drying process is low thermal efficiency, which is 
mainly due to the exhaustion of the moist air from drying chambers. In contrast, the utilization of the 
heat pump dryer (HPDs) can recycle both the latent heat and the sensible heat of the exhaust air, or 
extract heat from the ambient air to facilitate the drying process. The HPDs also have other significant 
advantages, such as the higher specific moisture extraction rate (SMER), better drying product 
quality, less drying time required, and so on [4]. 

With the widely held application of the HPDs in industry, various HPD technologies have been 
developed and promoted. The HPDs could be divided into three categories based on the air loops: 
The open-loop type [5–7]; the partially open-loop type [8–10]; the closed-loop type [11–13]. For the 
open-loop type heat pump dryers (OHPDs), the drying performance is directly affected by the 
ambient conditions [14], since the heat source is typically the ambient air. As the heat pumps in the 
OHPDs, they may have poor performance in cold climates [15,16], and some solutions have been 
proposed to address the problem so as to maintain a high heating capacity at the desired heating 
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temperature when there is low ambient air temperature. For instance, Shen et al. [17] developed an 
OHPD that had dual operation modes including a single cycle and a cascade cycle, in which the 
cascade cycle operation of the heat pump was utilized if the single cycle operation did not provide a 
desired heating capacity. However, it failed to improve the energy efficiency of the HDP, and was 
associated with a high initial investment. Şevik and his research group [18,19] proposed and 
experimentally evaluated the performance of a solar assisted heat pump drying system, in which 
solar energy was used as an auxiliary heat source of the system when the heat pumps failed to meet 
the desired heating capacity. Colak and Hepbasli [20] presented a ground source heat pump based 
OHPD which was able to eliminate the impact of the ambient air using the geothermal source with 
relatively stable temperatures. Different from an OHPD, the performance of a closed-loop heat pump 
dryer (CHPD) is isolated from the ambient conditions, in which the heat recovery is achieved by 
recycling the exhaust heat from the return air of the drying chamber [21,22]. It also boasts of a wide 
range of operation conditions that can be well controlled, and therefore has been widely studied and 
utilized in the cases under cold climates (such as in northern Europe [23,24] and North China [25,26]), 
requiring extremely high drying temperatures, and/or for the drying of thermal sensitive materials 
[27]. For instance, Lee et al. [28] developed a two-cycle CHPD in which a drying temperature greater 
than 80 °C was achieved in the drying chamber. Tunçkal et al. [29] experimentally analyzed the 
drying characteristics of a CHPD when it was used to dry pineapple slices which are temperature 
sensitive drying materials. Liu et al. [30] proposed a CHPD and studied the effect of the air 
temperature and the air flow ratio on the performance of the system. However, due to the inherent 
characteristics of the closed-loop, the excess heat generated by the compressors in the CHPDs tended 
to be discharged into the ambient air through external condensers [12–13,31] which reduced the 
energy efficiency of the closed-loop system. For instance, it has been reported that the heat exhausted 
from an external condenser accounted for 37.92% and 28.79% of the total thermal energy involved in 
a CHPD for ginger drying, when using air and nitrogen as the drying media, respectively [31]. 

To synthesize the advantages of both the OHPDs and the CHPDs, the partially open-loop heat 
pump dryers (POHPDs) were proposed, which have been studied by many researchers in recent 
decades. For instance, Taseri et al. [9] carried out an experimental study on a POHPD which was used 
to dry grape pomace. It was found that the energy consumption of the system was reduced by up to 
51% compared a closed-loop convective dryer. Tegrotenhuis et al. [10] developed a POHPD for 
clothes drying, which characterized a recuperative heat exchanger to pre-recover the heat of the 
return air before it was recycled by the evaporator. It was reported that the system was able to save 
50% of the energy used by a normal residential clothes dryer. Li et al. [25] designed a five-cycle 
POHPD with heat pipes, based on which a series of drying experiments on corn drying was carried 
out under cold winter conditions in North China. The results showed that a high specific moisture 
extraction rate (SMER) of 3.75 kg/(kW·h) was reached under a low ambient temperature of −25 °C. 
Duan et al. [32] designed and tested a five-cycle POHPD in cold winter, and the energy consumption 
of the HPD system decreased by 32.55% compared to a conventional hot air dryer. Ziegler et al. [33] 
theoretically calculated the thermal performance of a POHPD, and found that it was more energy-
efficient than a closed-loop system at ambient air temperatures from 8 °C to 33 °C. It can be concluded 
from the above discussion that the POHPDs with the both the desired characteristics from the OHPDs 
and CHPDs outperformed the individual systems, and can be energy-efficiently utilized under cold 
climates. Despite the extensive studies on POHPDs, there still is a necessity to further improve the 
performance of POHDPs and promote their deployment, as well as encourage a great interest to 
develop novel POHDPs and comprehensively understand how the operation factors could affect 
their energy efficiency. 

This study developed and evaluated the performance of a novel partially open-loop heat pump 
dryer with a unit-room (HPDU). The unit-room was designed to reduce the influence of ambient 
conditions through air mixing, and to provide a simple solution to effectively control the high-
efficient operation of the heat pump in the drying process. A series of numerical studies were 
implemented to study the thermal performance of the HPDU based on a modelling system together 
with an experimental investigation based on a real-scale HPDU in cold climate regions for model 
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validation. The energy efficiency of the HPDU was investigated through comparisons with other 
drying systems. 

2. System Working Principle 

The HPDU proposed is a POHPD designed for the drying applications in cold climate regions, 
which features the integration of a unit-room to reduce the influence from the ambient conditions, 
while enhancing the energy efficiency of the heat pump. The working principle of this OHPD system 
is presented by a comparison with a CHPD as follows: 

2.1. Air cycle 

Figure 1 presents the air cycle of the proposed HPDU, together with that of a CHPD for 
comparison. For the CHPD (see Figure 1a), the air cycle is closed. The air temperature of the dryer is 
controlled by an additional external condenser to remove the excess heat from the refrigerant, which 
is equal to the difference between the energy consumption including both fans and compressors, and 
the sensible heat of the water condensed by the evaporators. The air cycle of the HPDU (see Figure 
1b) is partially open which is different from the CHPD. The fresh air (0) is supplied to the system, 
and the dry air mass flow rate of the fresh air is equal to that of the exhaust air discharged into 
environment. The fresh air (0), the partial air of the evaporator outlet (7) and the bypass air (6) are 
mixed in a certain ratio which can be adjusted to control the condition of the supply air into the drying 
chamber. 

   
(a) (b) 

Figure 1. Schematic diagram of the system showing air and refrigerant cycles for: (a) The CHPD, (b) 
the HPDU. 

Accordingly, the air cycle in Mollier h, Y-chart can be presented as shown in Figure 2. The drying 
air flows through the drying chamber which is humidified and cooled by the drying materials (i.e., 
drying products) (5-6). Afterwards, the moist air returns from the drying chamber and then enters 
the evaporator, where it is dehumidified through condensation. In the CHPD, as shown in Figure 2a, 
the inlet air (8) of the condenser is mixed by both the outlet air of evaporator (7) and the bypass air 
(6). For the air cycle of the HPDU (see Figure 2b), which is different from the CHPD, the mixed air (8) 
consists of the fresh air (0), the partial outlet air of the evaporator (7) and the bypass air (6). The air is 
heated by a condenser/internal condenser and affected by the power introduced by the fan, 
corresponding to the isothermal process (8-9-5). 
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(a) (b) 

Figure 2. Mollier h, Y-chart showing air cycle in drying chamber for: (a) the CHPD, (b) the HPDU. 

2.2. Refrigerant Cycle 

The refrigerant cycle using a pressure-enthalpy diagram was illustrated in Figure 3. For both the 
CHPD and the HPDU, the refrigerant from the evaporator is first compressed (1-2) by the compressor. 
It then releases heat to the air in the condenser(s) (2–3) while the refrigerant is cooled to subcooled 
fluid. Afterwards, the refrigerant is expanded through the throttle valve (3-4) into a mixture of vapor 
and liquid from the high pressure and temperature, to the low pressure and temperature. The 
mixture evaporated in the evaporator (4-1) to superheat the vapor after absorbing the heat from the 
air. It is worthwhile to mention that the pressure drop of the refrigerant in the evaporator and 
condenser(s) is neglected to simplify the thermal dynamic process of the refrigerant. The temperature 
profiles of the air and the refrigerant in the evaporator and condenser(s) are presented in Figure 4. 
The final temperature difference can be assumed to be constant between the air and the refrigerant 
(δTc and δTe) as suggested by Pal et al. [34]. 

 
Figure 3. Pressure-enthalpy diagram of a refrigerant cycle in a heat pump. 

  
Figure 4. The temperature profile of the air and the refrigerant. 



Energies 2019, 12, 3125 5 of 18 

 

3. Methodology 

The overall methodology used in this study is presented in Figure 5. It started with the 
development of a modelling system for the HPDU followed by an experimental study based on a 
practical prototype of the HPDU system. To further facilitate the numerical performance evaluation 
of the HPDU, the proposed modelling system was first validated using the experimental results, 
together with the development/selection of a number of key performance indicators (KPIs). Based on 
the valid modelling system and the KPIs, a series of numerical studies were carried out to investigate 
the thermal performance of the HPDU under different operation parameters. To quantify the energy 
benefit of the HPDU, a modelling system for CHPD was also developed and its thermal performance 
was compared with the HPDU. 

 
Figure 5. Research methodology used in this study. 

3.1. Model Development 

A modelling system of the HPDU was developed based on the energy balance and the mass 
balance of the working fluids (i.e., refrigerant and air) in the refrigerant cycle and the air cycle. It 
comprised a series of component models, including the drying chamber model, the evaporator 
model, the condenser model, the mixed-air model, the fan model, the compressor model and the 
throttle valve model, as detailed in Equations (1–21). The following assumptions at the system level 
were adopted in the model development, according to typical operating conditions, while the 
assumptions used in each component model were discussed individually. 

(1) The fan power of the external condenser was neglected in the HPD system; 
(2) The system operation was in a steady state; 
(3) The final temperature differences between the air and the refrigerant in the evaporator and 

condenser(s) were constant, individually; and 
(4) The system was well insulated and the heat loss through the system envelope was neglected. 

3.1.1. Drying Chamber Model 

The drying process in the drying chamber was considered to be an isenthalpic process as 
described in Equation (1). Given a total moisture extraction rate (MER) of the drying system, its 
relationship with the humidity of the supply air and return air of the drying chamber, and the air 
mass flow rate can be established as presented in Equation (2). 

,5 ,6a ah h=  (1) 

, 6 53600 ( )a dMER m w w= −  (2) 

where h is the enthalpy, m is the mass flow rate, w is the humidity ratio, subscripts a and d indicate 
the air and the total return air flow from the drying chamber, respectively. 

3.1.2. Evaporator Model 
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The air mass flow of the evaporator was controlled by the bypass factor (BF) which can be 
determined using Equation (3). The moist air that returned from the drying chamber was cooled and 
dehumidified by the refrigerant in the evaporator. After passing through the evaporator, the relative 
humidity of the dehumidified air was assumed to reach 100%, while the temperature of the 
condensate water was assumed to be the temperature of the air at the evaporator outlet. Accordingly, 
the enthalpy of the return air and the air at the evaporator outlet can be obtained, as well as the 
enthalpy of the condensate water, which then can be used to determine the heat transfer rate using 
Equation (4). Further, based on the humidity of the return air and the air at the evaporator outlet, the 
moisture extraction rate of the evaporator can be calculated, as described in Equation (5). 

, ,

,

  a d a e

a d

m m
BF

m
−

=  (3) 

, ,6 ,7 ,1 ,4  (1 )( )    ( )
3600

e ew
e a d a a r r r

MER h
Q m BF h h m h h= − − − = −  (4) 

, 6 7  3600 (1 )( )e a dMER m BF w w= − −  (5) 

where Q is the heat transfer rate, subscripts e and ew indicate the evaporator and condensed water, 
respectively. 

3.1.3. Mixed Air Model 

The mixed air was a mixture of the air from the evaporator outlet, the bypass air and the ambient 
fresh air for the HPDU modelling system, which can be described by the energy balance and mass 
balance, as given in Equations (6) and (7). 

( ), ,0 ,7 ,0 ,0 , , ,6 , ,8(   )       a e a a a a a d a e a a d am m h m h m m h m h− + + − =  (6) 

( ), ,0 7 ,0 0 , , 6 , 8(  )        a e a a a d a e a dm m w m w m m w m w− + + − =  (7) 

It was assumed that part of the outlet air from the evaporator was exhausted directly to 
introduce the fresh air into the unit room. Considering this exchange between the fresh air and the 
outlet air at the evaporator, the moisture extraction rate of the fresh air can be calculated using 
Equation (8). Thus, the total moisture extraction rate of the system was the sum of the moisture 
extraction rates of the fresh air and the evaporator, as given in Equation (9). 

0 0 7 03600 ( )MER m w w= −  (8) 

0 + eMER MER MER=  (9) 

In particular, when the introduction of the ambient fresh air was set to zero, the HPDU 
modelling system somehow degraded as a CHPD modelling system in terms of the air cycle. 
Accordingly, the energy balance and mass balance can be described by Equations (10) and (11), and 
the total moisture extraction rate of the system was equal to the moisture extraction rate of the 
evaporator, as given in Equation (12). 

,7 ,6 ,8(1 ) a a aBF h BFh h− + =  (10) 

7 6 8(1 )BF w BFw w− + =  (11) 

eMER MER=  (12) 

3.1.4. Condenser Model 

The air heating process in the condenser was assumed to be a constant humidity process. The 
condenser model can be represented by Equations (13) and (14) for the energy balance and mass 
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balance, respectively, in the HPDU modelling system. The humidity of air was also constant in the 
heating process for the CHPD. 

, ,9 ,8 ,2 ,3( ) ( )c a d a a r r rQ m h h m h h= − = −  (13) 

 (14) 

For a CHPD system without introducing the fresh air, an external condenser was required. 
Equations (15) and (16) were used to represent the heat released by the condensers. 

int , ,9 ,8( )a d a aQ m h h= −  (15) 

int ,2 ,3( )c ext r r rQ Q Q m h h= + = −  (16) 

where subscripts int and ext indicate the internal and external condensers, respectively. 

3.1.5. Fan Model 

The circulation of the air in the drying system was provided by a fan in which the mechanical 
energy was assumed to be fully converted into internal energy of the air due to flow friction. 

, ,5 ,9( )fan a d a aE m h h= −  (17) 

5 9w w=  (18) 

where E is the power. 

3.1.6. Compressor Model 

The adiabatic efficiency (η) is applied together with the isentropic compression process to 
simulate the actual power consumption of a compressor [28]. In particular, the isentropic value of the 
refrigerant at the compressor inlet (hr,1) was obtained through the evaporation temperature, the 
evaporation pressure and the superheat degree. The enthalpy of the refrigerant at the compressor 
outlet (hr,2) was determined based on the isentropic curve and condensing pressure. The enthalpy 
difference (δh) of the refrigerant was obtained along the isentropic curve. 

,2 ,1( )r
comp r r r

m hE m h hδ
η

= = −  (19) 

where η is the adiabatic efficiency of the compressor which is defined as the ratio of δh divided by 
the enthalpy difference (hr,2-hr,1) between the refrigerant at the inlet and the outlet of the compressor 
in the actual compression process [17] (see Equation (20)), and usually is provided by the 
manufacture, determined through practical measurement, or set as a common assumed value. The 
subscripts comp and r indicate the compression and the refrigerant, respectively. 

,2 ,1r r

h
h h

δη =
−

 (20) 

3.1.7. Throttle Valve Model 

The expansion process of the refrigerant when passing through the throttle valve was assumed 
to be adiabatic. According to the first law of thermodynamics, the energy balance can be described in 
Equation (21). 

,3 ,4r rh h=  (21) 

The above component models were coupled as a modelling system for the HPDU in the 
engineering equation solver (EES) platform. By using this modelling system, the influencing factors, 
such as the ambient air temperature and the BF, can be analyzed to investigate their influence on 

9 8w w=
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system performance based on the psychrometric characteristics of the moist air and the thermal 
physical properties of the refrigerant. Despite its simplicity, the modelling system was able to capture 
the main performance characteristics of the HPDU while avoiding the complexity introduced by 
practical disturbances (e.g., the starting process etc.), thereby facilitating the better understanding of 
the system’s energy performance. It is worthwhile to note that the modelling system is not perfect 
and there exist inherent limitations when used in numerical performance analysis: (1) It cannot be 
used to evaluate the drying process with significant parameter/condition variations; (2) it is based on 
a number of assumptions which need to be double checked and revised based on the practical system 
operation. 

3.2. Development of the Key Performance Indicators 

A number of key performance indicators (KPIs) were developed to facilitate the system 
performance assessment including the moisture extraction rate (MER), the specific moisture 
extraction rate (SMER) and the coefficient of performance (COP) which were defined by Equations 
(22–25), respectively. These KPIs have been extensively used to evaluate the energy efficiency of a 
HPD in public domain references. 

The SMER was defined as the ratio of water evaporated from products to the total energy 
consumption (TEC) in the whole drying process [34]. 

MERSMER
TEC

=  (22) 

comp fanTEC E E= +  (23) 

The coefficient of performance (COP) is another parameter to represent the performance of the 
heat pump dryers, and it was obtained with the relation defined using Equations (24) and (25) for the 
HPDU and CHPD, respectively. 

c fanQ E
COP

TEC
+

=  (24) 

int fanQ E
COP

TEC
+

=  (25) 

3.3. Experimental System 

The design of the HPDU was presented in Figure 6. The dimension of the HPDU system was 
12.30 m (length) × 3.60 m (width) × 2.74 m (height), which can be divided into the drying chamber 
with a size of 9.20 m (length) × 3.60 m (width) × 2.74 m (height), and the unit-room with the size of 
2.10 m (length) × 3.60 m (width) × 2.15 m (height). The unit-room was not only used for fresh air 
introduction and mixing, but also served as the main equipment room where the dampers No.1–4, 
as well as the major parts of the heat pumps were installed. The heat pumps had a total capacity of 
14HP, in which the compressors, evaporators, evaporator fans, and throttle valves, etc. were installed 
in the unit-room, while the condensers and the electric heaters were installed between the bypass 
channel and the drying chamber. 

The return air from the drying chamber was drawn into the unit-room and the bypass channel, 
whose distribution fraction (i.e., BF) was controlled by damper No.1. The return air drawn into the 
unit-room was cooled and dehumidified by the evaporators, and then exhausted to the environment 
through damper No.3. The fresh air was introduced into the unit-room and controlled by damper 
No.2. The fresh air and the part of the air from the evaporator outlet were mixed and introduced into 
the bypass channel through damper No.4. The air from the unit-room and the bypass air were mixed 
in the bypass channel before entering the condenser. After the mixed air was heated by the condenser, 
the hot air was supplied into the drying chamber for material drying. 
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(a) 

 
(b) 

Figure 6. The novel partially open-loop heat pump dryer with the unit-room: (a) Schematic diagram; 
(b) practical prototype. 

A number of temperature and humidity sensors were installed in the drying chamber, the unit-
room and the heat pumps to monitor the conditions of the air and refrigerant. The temperature and 
humidity of the air were measured by the Temperature and Humidity Transmitter (JWSK-6, ±1 °C, 
±3%), and the testing points (a, b, c and d) were shown in Figure 6a. The testing points (a, b, c, d) were 
located on the symmetrical surfaces of the heat pump dryer. The testing points (a, b, c) were placed 
in the central position of the drying chamber along the high direction, and the testing points (d) in 
the central position of the unit-room along the high direction. The distance between the testing points 
(a, b, c) was 0.60 m and the distance from the testing point (c) to the ground was 0.4 m. The distance 
between the testing point (d) and the ground was 2.00 m. The temperature of the refrigerant (1, 2, 3 
and 4) was measured by the Thermocouple (KLH 1001K, ±1.5 °C), which were fixed on the surface of 
the copper tube coated with the thermal conductive silicone grease and well-insulated outside. The 
power consumption of the components, such as the compressors, fans and the electric heater, were 
determined using the measured voltage and current of these devices. The data were collected by the 
Data Acquisition Instrument (Agilent). 

3.4. Setup of the Experiment and Modelling 

No2 damper 

No3 damper 

Unit-room 

Dryer 
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3.4.1. Setup of the Experiment 

The experimental performance of the HPDU was tested through a drying experiment on 
Xinjiang Hetiandazao [35] (i.e., red jujubes). The drying experiment was carried out under the 
ambient temperature of 0–15 °C. The drying temperature was set as 56 °C based on previous studies 
[36,37]. The fresh red jujubes with a total mass of around 6.75 kg were distributed evenly on a number 
of pallets which were then assembled as 8 movable racks consisting of 384 pallets in total. The heat 
pump dryer started with a closed-loop operation mode without introducing fresh air during the 
preheating process by closing dampers No.2 and No.3 while leaving dampers No.1 and No 4 open. 
Meanwhile, the fans, the heat pumps and the electric heaters were switched on. When the 
temperature of the air in the drying chamber reached the setting value, the electric heaters were 
switched off and the system was switched to a partially open-loop operation mode. The heat pumps 
and the dampers of the unit-room were adjusted according to the air conditions in the drying 
chamber. Specifically, the air temperature in the drying chamber was controlled within 56 ± 2 °C 
through the on-off of the heat pumps, while the air humidity in the drying chamber was controlled 
by the on-off of the dampers in the unit-room. The moisture was extracted by the evaporators of the 
heat pumps and the exhaust air. The system was switched off when the red jujubes were dried to the 
required quality. 

3.4.2. Setup of the Modelling 

It has been reported that a drying process can be considered as a steady state to simplify its 
modelling [28,34]. The drying process in this study was therefore assumed to be a steady state with 
constant ambient and drying conditions. Corresponding to the experiments, the key parameters of 
the system were used in the modelling as summarized in Table 1 The parameters used in the 
modelling were mainly achieved from the experimental study by averaging the experimental 
parameters during the experiment, including η, refrigerant, δtc, δte, supply air conditions, ambient 
relative humidity (rh0), MER, the circulating fan and the work input of the evaporator fan. Some other 
parameters for the modelling, including subcooling degree, superheat degree, and ambient 
temperature (t0), were assumed values. 

Table 1. Setting parameters. 

Parameters Value 
Refrigerant R134a 

η 0.61 
δtc 8 °C 
δte 8 °C 

Subcooling degree 5 °C 
Superheat degree 5 °C 

Supply air conditions 56 °C/30% 
t0 −10, −5, 0, 5, 10 °C 

rh0 50% 
MER 30 kg/h 

Circulating fan 4.4 kW/40,000 m3/h 
Work input of evaporator fan 1.0 kW 

To gain a clear insight of the system operation characteristics for the HPDU, a series numerical 
cases were designed and studied as summarized in Table 2. For the sake of comparison, a number of 
numerical cases for the HPDU under different ambient temperatures were first studied, together with 
a numerical case designed for the CHPD as the benchmark. In each case, the system performance 
varying with the BF was also investigated. 
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Table 2. Summary of the numerical cases. 

Case System Type t0 (°C) 
A HPDU −10 
B HPDU −5 
C HPDU 0 
D HPDU 5 
E HPDU 10 

F (Benchmark) CHPD - 

4. Results and Discussion 

4.1. Experimental Results 

4.1.1. The Air Conditions in the Drying Chamber 

Figure 7 shows the profiles of the temperature and relative humidity of the air in the drying 
chamber during the drying process. It can be seen that the air temperature in the drying chamber was 
successfully controlled within 56 ± 2 °C. The preheating time required for the air to reach 55 °C was 
approximately 1.72 h, which accounted for approximately 13% of the total drying period. At 
approximately 7 h of the drying process, the intermittent on-off of the compressor resulted in the 
fluctuations of the temperature and relative humidity of the air in the drying chamber. The maximum 
air temperature deviation from the setting temperature was small and only up to 1.83 °C, presenting 
a relatively stable air temperature drying process. The maximum temperature difference among the 
testing points a, b and c was 1.2 °C in the vertical direction of the drying chamber indicating an 
excellent air flow organization in the drying chamber. Due to the moisture extraction during the 
drying process, the air humidity in the drying chamber gradually declined from approximately 34% 
to 29%. 

 
Figure 7. Temperature and humidity of drying chamber. 

4.1.2. The Air Conditions in the Unit-Room 

Figure 8 presents the temperature and humidity of the ambient air and the air in the unit-room 
during the drying process. It can be found that the temperature and humidity of the air in the unit-
room were much higher than the ambient air. Basically, a relative stable air condition was achieved 
in the unit-room, despite the significant variation of the ambient temperature and humidity. The 
relative humidity of the air in the unit-room was stabilized at approximately 99.04%, while the 
corresponding air temperature fluctuated at approximately 22 °C due to the on-off control of the heat 
pump system. Accordingly, it can be concluded that the unit-room integrated in the system was 
useful to provide a stable operation condition for the HPD to avoid the influence from the ambient 
conditions. 



Energies 2019, 12, 3125 12 of 18 

 

 
Figure 8. The temperature and relative humidity of the unit-room. 

4.1.3. Economic Analysis 

Table 3 summarized the final experimental data together with a simple economic analysis. The 
average MER of the system was 29.47 kg/h based on the mass difference of the red jujubes before and 
after drying as well as the drying time, while the corresponding energy consumption of the system 
was 236.8 kW·h. Accordingly, the average SMER of the system reached 1.64 kg/(kW·h) in the 
experimental study. 

Table 3. The economic analysis of the system. 

Parameter HPDU Coal-Fired Dryer [38] 
Fresh red jujube (kg) 2592 
Dried red jujube (kg) 2203 
Drying time (h) 13.2 
Energy consumption of circulation fan (kW·h) 59.4 26 
Energy consumption of electric heater (kW·h) 23 0 
Energy consumption of the system(kW·h) 236.8 26 
Electricity price yuan/(kW·h) 0.58 
Price of coal (yuan/t) 870 
Consumption of coal (t) 0 0.24 
Dried cost (yuan/t) 62.3 101.6 
SMER (kg/(kW·h)) 1.64 - 

The above final experimental data were economically compared with a traditional coal-fired 
dryer. Considering the electricity price of 0.58 yuan/(kW·h), the drying cost of the dried red jujube 
per ton was 62.3 yuan/t (see Table 3). As a comparison, a traditional coal-fired dryer with the same 
drying capacity and under the same drying conditions consumed approximately 0.24 t coal to 
produce the same amount of dried red jujubes whose unit drying coast reached approximately 101.6 
yuan/t (see Table 3). Even though the initial coast of the HPDU was higher than the coal-fired dryer 
(i.e., 110 thousand yuan and 68 thousand yuan, respectively), the unit drying cost of the HPDU was 
reduced by 38.7% compared to using the coal-fired dryer. Assuming that both the HPDU and the 
coal-fired drying could operation 24 h per day, the overall economic benefit of using HPDU for the 
red jujube drying could outperform the coal-fired dryer after 588 days as shown in Figure 9. 
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Figure 9. A comparative analysis of the economic benefit. 

4.2. Validation of the Modelling System 

The experimental results in terms of the TEC and COP were measured and used to validate the 
modelling system of the HPDU. Note that in the model validation, almost all the parameters used 
were from Table 1, except for the conditions of the supply air in the drying chamber (i.e., temperature 
and humidity) whose values derived from the instantaneous experimental measurement. This is the 
reason why the numerical results varied with the time corresponding to the experimental 
measurement. Figure 10 compares the measured TEC with the calculated value using the modelling 
system. It can be seen that the measured TEC of the system ranged from 14.20 kW to 16.66 kW, which 
averaged at approximately 15.78 kW during the experiment. Correspondingly, the calculated TEC 
fluctuated between 13.69 kW and 15.43 kW with an average value of approximately 14.35 kW. The 
root mean square error (RMSE) between the experimental and numerical values of the TEC was 1.71. 
This deviation may be due to the heat loss of the system. 

 
Figure 10. Energy consumption of the heat pumps. 

Figure 11 further compared the measured COP with the COP numerically calculated using the 
modelling system. It can be found that an acceptable agreement between the calculated COP and the 
experimental measurement was achieved. The measured COP and the calculated COP ranged from 
2.29 to 2.49 and from 2.37 to 2.46, respectively, and the corresponding RMES value was only 0.06. 
Based on the above discussion, it can be concluded that the modelling system can provide a reliable 
prediction of energy efficiency for the practical system performance, and it therefore can be used for 
the further numerical performance analysis of the HPDU. 
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Figure 11. The coefficient of performance (COP) of the system in the course of the drying process. 

4.3. Numerical Results 

Figure 12 presents the variations of SMER with the increasing BF for different cases. It can be 
seen that for both the HPDU (i.e., Cases A-E) and the CHPD (i.e., Case F), the corresponding SMER 
first increased and then decreased with the increasing BF, where a maximum existed for each case. 
However, being different from Case F without the ambient influence, a higher SMER can generally 
be found under a higher ambient temperature for the HPDU. With the increasing of the ambient 
temperature, the BF corresponding to the maximal SMER slightly increased. When the ambient air 
temperature was 10 °C (i.e., Case E), the maximal SMER reached 2.23 kg/(kW·h) with a BF of 96.51%, 
which was much higher than the CHPD (i.e., Case F) of 1.54 kg/(kW·h) with a BF of 94.38%. Compared 
to Case F, the maximal SMER of the system can be improved by 36.32%–44.64% in the HPDU 
depending on the ambient temperature. 

Figure 13 further presents the variations of the TEC with the increasing BF for different cases. 
The corresponding TEC decreased first and then increased when increasing the BF. Similar to that of 
the SMER, a great difference can be found between Case F and Cases A-E, presenting a much lower 
TEC for the HPDU compared to the CHPD. The TEC can be reduced by up to 30.87% in comparison 
to the benchmark (i.e., Case F). With increasing the ambient temperature (i.e., Cases A-E), the TEC of 
the HPDU experienced a decreasing trend. 

Figure 14 shows the COP for each case as a function of BF. It can be found that the system types 
significantly affected the energy efficiency of the drying process in which the HPDU outperformed 
the CHPD due to its much higher COP. However, the ambient temperature only had a slight impact 
on the COP of both heat pump drying systems. The COP experienced a decreasing trend in each case, 
and a maximal COP did not correspond to the maximal SMER (see Figure 11). When the BF 
corresponding to the maximal SMER was adopted, the COP can reach 2.79 for Case A, while the 
CHPD (i.e., Case F) was only approximately 2.00. Compared to the benchmark (i.e., Case F), the COP 
corresponding to the maximal SMER can be improved by up to 39.56%. 
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Figure 12. The effect of the bypass factor (BF) on specific moisture extraction rates (SMER). 

 
Figure 13. The effect of BF on total energy consumption (TEC). 

 
Figure 14. The effect of BF on COP. 

5. Conclusions 

A novel partially open-loop heat pump dryer with a unit-room (HPDU) was proposed and 
developed to improve the energy efficiency of the heat pump drying process under cold climate 
applications. The HPDU featured a unit-room which was designed to introduce fresh air and mix the 
air for system energy efficiency enhancement while avoiding the direct influence of ambient 
conditions on system performance. A modelling system of the HPDU was developed and validated 
based on a real-scale experimental study. A series of numerical studies were then carried out to 
characterize the system performance by comparison with a closed-loop heat pump dryer (CHPD). 

It was found that the unit-room can provide a relatively stable air condition for the drying 
process. There was an optimal bypass factor (BF) in each numerical study under a certain ambient air 
temperature corresponding to a maximal specific moisture extraction rate (SMER) where the lowest 
total energy consumption (TEC) can also be achieved. By comparison to the CPHD, the SMER and 
the TEC increased and decreased by up to 44.64% and 30.87%, respectively for the HPDU. By using 
the optimal BF, the corresponding coefficient of performance (COP) can reach 2.79 maximum for the 
HPDU, compared to only 2.0 in the CHPD. Even though the ambient temperature had a considerable 
influence on the SMER and TEC of the system, it only slightly affected the system’s COP. It 
demonstrated that the HPDU outperformed the CHPD in terms of energy efficiency, and it was 
effective in utilizing the unit-room for performance enhancement of HPDs. 
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Nomenclature 

BF Bypass factor 
E Energy consumptions [kW] 
δh Enthalpy change of refrigerant at isentropic compression [kJ/kg] 
h Enthalpy [kJ/kg] 
m Mass flow rate[kg/s] 
MER Moisture extraction rate of the dryer [kg/h] 
Q Heat transfer rate [kW] 
rh Air relative humidity [%] 
t Temperature [°C] 
δt The temperature difference between the air and the refrigerant [°C] 
w Humidity ratio of air [kg water/kg] 

Greek Symbols 

η Adiabatic efficiency of compressor 

Subscripts 

a Drying air 
d Drying air of the dryer outlet 
c Condenser 
comp Compressor 
e Evaporator 
ew Water condensed by the evaporator 
ext External condenser 
fan Circulating fan 
int Internal condenser 
r Refrigerant 
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