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Abstract: The loadability characteristics of overhead transmission lines (OHLs) is certainly not a
new topic. However, driven by sustainability issues, the increasing need to exploit existing electrical
infrastructures as much as possible, has given OHL loadability a renowned central role and, recently,
new investigations on this subject have been carried out. OHL loadability is generally investigated
by means of numerical methods. Even though this approach allows deducing useful information
in both planning and operation stage, it does not permit to capture all the insights obtainable by
an analytical approach. The goal of this paper is to tailor a general analytical formulation for the
loadability of OHLs. The first part of the paper is devoted to the base-case of uncompensated OHLs.
Later, aiming to demonstrate the inherent feasibility and flexibility of the novel approach proposed,
the less frequent case of shunt compensated radial OHLs is investigated as well. The analytical
formulation is combined with the use of circular diagrams. Such diagrams allow a geometrical
interpretation of the analytical relationships and are very useful to catch the physical insights of
the problem. Finally, in order to show the applicability of the new analytical approach, a practical
example is provided. The example concerns calculation of the loadability characteristics of typical
400 kV single-circuit OHLs.
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1. Introduction

Loadability of transmission lines plays a central role for both expansion planning and optimal
operation of power systems [1,2]. The loadability of a given type of transmission line can be defined as
the steady-state maximum power that type of line can carry, expressed as a function of its (variable)
length, L. This maximum power p(L) must be retained as a theoretical upper limit, since it is evaluated
by neglecting practical constraints like the transmission reliability margin and the power margin
imposed by the N − 1 contingency criterion. This concept was early introduced in 1953 by St. Clair
who described the loadability curve of uncompensated transmission lines, expressed in per unit (p.u.)
of the surge impedance loading (SIL), as a function of L [3]. This curve was deduced on the basis
of empirical considerations and technical practice. Later, in [4] the theoretical bases for the St. Clair
loadability curve were presented and its use was extended to the highest voltage levels. Using the
same methodology, reference [5] provides the “universal loadability curve” for uncompensated OHLs,
expressed in p.u. of the SIL, which can be applied to any voltage level. In [5], a lossless line model is
adopted, and the constraints affecting the transmissible power are the thermal limit, the voltage drop
limit, and the steady-state stability margin. These cornerstone papers generally assume the voltage
drop limit ∆Vmax% = 5% and power transmission at the unity power factor (cosϕ = 1).
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The more recent papers [6,7] performed a technical comparison among different solutions of
OHLs that encompasses the common single- and double-circuit three-phase AC OHLs, but also
monopolar and bipolar HVDC OHLs and new proposals of OHLs (four-phase AC and AC–DC lines).
The papers [6,7] adopt the same methodology used in [4,5] but employ the complete distributed
parameters line model, highlight the effects of less-than-one power factor values, and include a further
limit concerning the Joule power losses, ∆Pmax%.

A critical analysis of the constraints affecting the loadability of OHLs is developed in [8] considering
the conductor thermal limit, the voltage drop limit, the steady-state stability margin, the voltage
stability margin, and the Joule energy losses limit.

The loadability curves are characterized by various “regions”, or ranges of length. In the first
region, the transmissible power is limited by the conductor thermal limit; in the second region, by the
voltage drop limit, ∆Vmax. Further regions concern very long lines, starting from a length of about
300–500 km. These regions are determined by the other constraints referred to the line or power system
performance: The steady-state (or angle) stability margin, the voltage stability margin, and/or the
maximum allowable Joule losses, ∆Pmax. (In principle, the power losses limit could be more stringent
(i.e., it could be attained at lower L) than the voltage drop limit. In actual cases, however, for realistic
values of voltage drop and power losses limits, the power losses limit does not prevail (see Section 4).)

The base-case analyzed by all the previous works [3–8] are uncompensated OHLs. On the
contrary, these works do not take into account any actual reactive power reserves available and, thus,
provide limited information about line compensation (i.e., reactive power management through VAR
resources). Reference [5] states that line loadability can be increased by compensation, but the matter
is not investigated. The incidence of reactive power reserves in OHLs loadability is outlined and
investigated in [9] where, however, attention focuses only on the aspect of the angle stability limit and
the analysis is carried out for lossless lines. Reference [10] demonstrates the large advantage that can
be obtained through a controlled compensation for medium and quite long lines, which fall in the
voltage drop region of the loadability curves. The work in [11] examines the power capacity increase
in long OHLs that can be obtained through passive compensators consisting of series capacitors and
shunt reactors located at one or both line ends, whereas [12] analyzes the loadability curves of radial
OHLs compensated by means of synchronous condensers connected at the receiving end.

It must also be underlined that the power transfer limits of OHLs have been studied with reference
to both compensated and uncompensated lines in the old paper [13], at a time when the concept of line
loadability had not been developed yet.

This paper proposes an analytical representation of the loadability curves of OHLs. This is a new
approach to characterize the various regions of the loadability curves, completely different from the
traditional approach based on numerical analyses. The closed-form expressions derived take into
account the constraints related to the conductor thermal limit, permissible voltage drop and Joule
losses, as well as the steady-state stability margin. The proposed analytical approach allows obtaining
an original and simple geometrical tool, based on circular diagrams, whose interceptions show the
influence of the different limits. The contribution of this paper can help power designers and system
operators in both planning and operation stages of OHLs.

Section 2 illustrates the analytical representation of the loadability curves of uncompensated
OHLs. Section 3 is dedicated to the analysis of radial OHLs compensated by means of synchronous
condensers connected at the receiving end. This is a much less frequent case, investigated here in
order to show the potentiality of the new analytical approach. Section 4 has the aim to demonstrate
the applicability of the analytical approach and the use of the relationships provided in the previous
sections. The application examples developed refer to standard 400 kV single-circuit OHLs.

2. Analytical Formulation of Loadability Characteristics for Uncompensated Lines

In this section, the different regions of the loadability characteristics of uncompensated OHLs
are derived analytically. We take into account the constraints considered in the classic works [3–5],
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which are the (static) thermal limit of the conductor (in this paper, we refer to the thermal limit of the
conductor determined through the traditional static approach, as is done in all classic works on OHLs
loadability. Modern dynamic approaches for calculation of the conductor thermal limit are beyond
the scope of this work), voltage drop limit, ∆Vmax, and steady-state stability limit. In addition, as was
done in [6,7], we also consider the power losses limit, ∆Pmax. We adopt the general formulation of
power transmission lines:

V1 = AV2 + BI2,
I1 = CV2 + AI2,

(1)

with A = cosh(KL), B = Z0sinh(KL), C = (1/Z0)sinh(KL), and where K is the propagation constant
and Z0 is the surge impedance of the line. The quantities expressed in p.u. will be denoted by lower
case letters.

2.1. Thermal Limit

According to the second line of Equation (1), the modulus of the current changes along the
line. In the first region of the loadability curve, characterized by the incidence of the thermal limit,
the modulus of I1 (the current at the sending end of the line) is slightly lower than that of I2 (the
current at the receiving end). The same is valid for the modulus of the current at any point along the
line. Since the first region concerns lines with limited length, the differences in the current modulus
are little (by far less than 1%) and are usually neglected. Actually, the thermal limit is attained at the
receiving end of the line (see Section 4.2 for more insights).

Accordingly, the maximum transmissible (active) power is pth = ath cosϕ2, where ath = v2ith
is the maximum apparent power at the receiving end, ith is the conductor thermal limit, and ϕ2 the
displacement angle relative to the load power factor at the receiving end.

Assuming v2 = v2e j0 = v2, in the first region the following relationship—derived from the first of
Equation (1)—is valid:

v1 = v2cosh(KL) +
pth

v2
(1− j tanϕ2)z0sinh(KL), (2)

being v2 = v2e j0 = v2.
The thermal limit prevails for short lines, until the voltage drop limit ∆vmax is attained at a certain

line length L1. This can be written as

vmax
1 =

∣∣∣∣∣v2cosh(KL1) +
pth

v2
(1− j tanϕ2)z0sinh(KL1)

∣∣∣∣∣, (3)

having denoted vmax
1 = v2 + ∆vmax.

Practical evaluation of the first region of the loadability curve can be made through the simple
iterative procedure reported in Figure 1, where ∆L is the length step (for example, it could be assumed
∆L = 1 km). It is sufficient to verify, for increasing values of L, that v1 ≤ vmax

1 . The length L1 is
identified when the upper limit v1 = vmax

1 is attained. Of course, for L ≤ L1 the maximum transmissible
power p(L) is equal to pth = ath cosϕ2, and does not change with the line length.

Section 4 shows the application of this procedure in a practical case.
The analytic solution is less immediate. For any assigned type of line and having set ∆vmax,

Equation (3) can be interpreted as a nonlinear equation in the unknown L1. In Appendix A, an easy
way to get an analytical solution of Equation (3) in the unknown L1 is illustrated.

The well-known Perryne–Baum diagram is a helpful graphical representation of transmission lines
steady-state operation. Figure 2 depicts in Cartesian coordinates the meaning of the relationship of
Equation (3), for the base-case cosϕ2 = 1. By adding the two phasors v2cosh(KL1) and pth

v2
z0sinh(KL1),

the resulting vector v1 intercepts the circle whose centre is located in the origin of the Cartesian
coordinates system and whose radius is equal to vmax

1 = v2 + ∆vmax.
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Figure 1. Iterative procedure for the calculation of L1.
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Figure 2. Voltage phasors diagram for L1 in the case of cosϕ2 = 1.

2.2. Voltage Drop Limit

The voltage drop limit affects the second region of the loadability curve, for L > L1, and until a
different limit takes over. In this region, the maximum transmissible active power p(L) (clearly, p < pth)
can be obtained by solving the equation

vmax
1 =

∣∣∣∣∣v2cosh(KL) +
p
v2

(1− jtanϕ2)z0sinh(KL)
∣∣∣∣∣, (4)

More easily, the unknown p can be determined by solving the following algebraic quadratic
equation, which can be derived properly rewriting Equation (4):

p2
(
γ2 + δ2

)
+ 2p(αγ+ βδ) + α2 + β2

− vmax
1

2 = 0, (5)

where
α = v2cosh(K′L)cos(K′′L), (6)
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β = v2sinh(K′L)sin(K′′L), (7)

γ =
1
v2

((
zr + zytanϕ2

)
sinh(K′L)cos(K′′L) −

(
zy − zrtanϕ2

)
cosh(K′L)sin(K′′L)

)
, (8)

δ =
1
v2

((
zr + zytanϕ2

)
cosh(K′L)sin(K′′L) +

(
zy − zrtanϕ2

)
sinh(K′L)cos(K′′L)

)
. (9)

Therefore, the second region of the loadability curve p(L) can be directly calculated solving
Equation (5) in the unknown p for each value of L (with L > L1). Once p is obtained, it must be verified
that the power losses and steady-state stability limits are not attained (the analytical description of
these limits is reported in Sections 2.3 and 2.4 below). The attainment of one of these limits determines
the upper length of the second region of the loadability curve, L2. This simple procedure is depicted in
Figure 3.
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Figure 3. Iterative procedure for the calculation of L2.

Section 4 shows the application of this simple iterative procedure in a practical case.
Referring to the Perryne–Baum diagram, p can be interpreted as the value that intercepts the

circle with radius vmax
1 , as shown in Figure 4 with reference to the case cosϕ2 = 1. Note that the two

phasors v2cosh(KL) and p
v2
(1− jtanϕ2)z0sinh(KL) vary with L and, hence, have different values from

those depicted in Figure 2.
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2.3. Power Losses Limit

Concerning Joule losses along the line and considering that this paper deals with the maximum
permissible power p(L), a natural approach could be to fix a limit to the power losses ∆p calculated
with regard to the loadability limit p(L). Better, looking for homogeneity with the percent voltage drop
limit, we could fix a limit to the ratio between ∆p and p(L).

Analytically, considering that p(L) must be intended as known (see Figure 3), this ratio can be
calculated, for any given length L, as

∆p(p, L)
p(L)

=
Re{v1i1

∗
}

p
− 1 (10)

with
v1 = Av2 + B p

v2
(1− jtanϕ2),

i1 = Cv2 + A p
v2
(1− jtanϕ2).

(11)

As we show in Appendix B, the ratio ∆p
p(L) can be explicitly evaluated as a function of p and L.

From the methodological point of view, however, the problem is to identify a significant criterion
for setting a limit to the ratio ∆p

p(L) . Joule losses are an economic problem rather than a distinct limiting
factor in line loadability. Thus, any limit concerning Joule losses should involve the energy EJ lost in a
given time period T (for example, one year), whereas the instantaneous power losses corresponding to
a certain power transported have scarce or no practical meaning [3,8,14].

It is clear that a limit on the lost energy Emax
J is equivalent to a limit on the average value pm of the

power transported. Thus, the load factor of the line fc =
pm
p , i.e., the ratio between the average and the

maximum power transported (in what follows, we assume the maximum power transported equal to
p(L)) becomes a crucial parameter.

On the other hand, the ratio fp of the power losses ∆pm evaluated with respect to pm and the
power losses ∆p evaluated with regard to the maximum power p(L), can be deduced from the load
factor fc using the formula [15]:

fp =
∆pm

∆p
= 0.7 f 2

c + 0.3 fc. (12)
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All this considered, we set a limit to the ratio ∆pm
pm

, where ∆pm is the power losses calculated with
regard to the average power pm. Finally, using Equation (12) and the definition of fc, we can write(

∆p
p(L)

)max

=

(
∆pm

pm(L)

)max fc
fp

. (13)

Equation (13) allows to calculate the maximum value of the ratio ∆p
p(L) , as a function of the limit(

∆pm
pm(L)

)max
and the load factor fc. Therefore, once the load factor fc and the limit

(
∆pm

pm(L)

)max
are set,

one can obtain
(

∆p
p(L)

)max
and check the constraint ∆p

p(L) ≤

(
∆p

p(L)

)max
.

This procedure converts a limit to the lost energy into a limit to the (instantaneous) power losses
∆p, calculated with regard to the loadability limit p(L). Examples of application are shown in Section 4.

2.4. Steady-State Stability Limit

The stability limit depends not only on the transmission line characteristics, but also on the
network equivalents at both line ends [6–8].

As far as the steady-state stability limit plim is concerned, one can refer to the equivalent system
shown in Figure 5.
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The cascade system in Figure 5 can be described by the equivalent transmission matrix T:

T =

[
1 jXcc

0 1

] [
A B
C A

] [
1 jXcc

0 1

]
=

[
At Bt

Ct At

]
. (14)

The active power, expressed in p.u., is given by the well-known formula

p =
ed1ed2

bt
cos(βt − δ) −

Ate2
d2

bt
cos(βt − αt), (15)

where bt = bte jβt and At = Ate jαt .
The maximum value of p is obtained for δ = βt, and is:

pmax =
ed1ed2

bt
−

Ate2
d2

bt
cos(βt − αt). (16)

The steady-state stability limit plim and pmax are related each other by means of the stability margin
mstab, that is:

plim = (1−mstab)

 ed1ed2

bt
−

Ate2
d2

bt
cos(βt − αt)

. (17)

This relationship is a monotonically decreasing function of L, plim(L). For well-developed power
systems, a good approximation of plim is obtained assuming ed1 = vmax

1 and ed2 = v2. In this case,
Equation (17) becomes

plim(L) = (1−mstab)

vmax
1 v2

bt(L)
−

At(L)v2
2

bt(L)
cos(βt(L) − αt(L))

. (18)
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The maximum allowable active power, therefore, must satisfy the inequality:

p(L) ≤ plim(L). (19)

According to the procedure illustrated in Figure 3, the inequality (19) must be checked for each
value of L. In this case also, Section 4 shows the application of this procedure in a practical case.

2.5. Third Region of The Loadability Characteristic

At the line length L2 either the power losses or the steady-state stability limit is attained. Longer
lines (L > L2) belong to further regions of the loadability curve. Obviously, the third region is
determined by the limit attained (power losses or steady-state stability). Examples reported in Section 4
show that L2 is usually quite long and, thus, the majority of the existing OHLs belong to the first
two regions.

3. Analytical Formulation of Loadability Characteristics for Shunt Compensated Radial Lines

Referring to the specific case of radial OHLs with shunt reactive compensation at the receiving
end, is illustrated in Figure 6. The shunt compensation (reactive power injection qc < 0) superimposes
a backward (i.e., from the receiving end to the sending end) reactive power flow to the forward active
power flow. Assuming cosϕ2 = 1, it follows q = qc < 0. In this way the voltage drop across the line
can be limited and, thus, the power transfer capacity increases. This operation is illustrated in Figure 7.
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Accordingly, reactive compensation is useful to increase the loadability curve in the second region,
whereas in the thermal limit region a reactive power injection would reduce the loadability limit
(L) = pth.

Some preliminary considerations help to understand the succession of the various limits in the
loadability curve of these lines. Unlike uncompensated OHLs, in this case the slight difference between
the modulus of the sending end and receiving end currents plays a role in deriving the loadability
characteristics. Until the voltage drop is less than ∆vmax, as already said in Section 2.1, the modulus of
the current at the sending end is slightly lower than that at the receiving end, which is equal to the
thermal limit. Once the voltage drop limit is achieved, the modulus of the current at the sending end
increases with L until, at a certain length L2, it attains the thermal limit and equals the receiving-end
current. After this length, not to exceed the thermal limit the compensation action must decrease.
These aspects are quantified in the practical example discussed in Section 4.2.

Keeping this in mind, the succession of the various limits and the relevant analytical description
are explained in the following subsections where, for the sake of clarity, the case of unitary power
factor is examined first.

3.1. Receiving-End Thermal Limit

It is trivial to remark that, until the voltage drop limit is achieved, reactive compensation is not
required and the loadability curve coincides with that of uncompensated lines. Hence, the maximum
line length for which reactive compensation is not required, is equal to L1.

3.2. Receiving-End Thermal Limit and Voltage Drop Limit

The voltage phasor diagram shown in Figure 7 is characterized by the following equations:

vmax
1 =

∣∣∣∣v2 cos h(KL) + p− jq
v2

z0sinh(KL)
∣∣∣∣
L>L1√

p2 + q2 = ath.
, (20)

For each value of L (and, thus, for any given line), the two relationships in Equation (20) represent
the two power circles, C1 and C2, shown in Figure 8, and expressed in Cartesian coordinates (p, q) as (p− p1)

2 + (q− q1)
2 = r2

1
(p− p2)

2 + (q− q2)
2 = r2

2
, (21)

where

p1 = −Re
{(

v2
2 cos h(KL)
z0sinh(KL)

)∗}
, q1 = −Im

{(
v2

2 cos h(KL)
z0sinh(KL)

)∗}
, and r1 =

vmax
1 v2

|z0sinh(KL)|
,

p2 = 0, q2 = 0, r2 = ath,
(22)

The points of intersection of the circles in Equation (21) are P1 and P2 in Figure 8. The maximum
allowable active power p(L) corresponds to the abscissa of P1, whose coordinates are obtained by
solving Equation (21). For this purpose, as is well known from analytical geometry, the radical axis,
i.e., the line passing through P1 and P2, is described by the equation:

q = −
p2 − p1

q2 − q1
p +

p2
2 − p2

1 + q2
2 − q2

1 + r2
1 − r2

2

2(q2 − q1)
(23)

Hence, by substituting Equation (23) in one of the formulas in Equation (21), the coordinates of P1

and P2 can be derived. In this way, p(L) can be obtained for each line length L (with L > L1).
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This simple analytical procedure (similar in principle to that illustrated in Figure 3) allows
calculation of the second region of the loadability curve.

The second region extends up to the line length at which another limit is attained. Therefore,
as made above for uncompensated lines, the attainment of another limit must be checked. In this case,
the check concerns the attainment of the thermal limit at the sending end at the length L2. As already
said, at this line length the currents at the two line ends are both equal to the thermal limit. Analytically,
at L2 the following constraints are attained at the same time:√

p2 + q2 = ath,

vmax
1 =

∣∣∣∣cosh(KL2) +
p− jq

v2
z0sinh(KL2)

∣∣∣∣∣∣∣∣ v2
z0

sinh(KL2) +
p− jq

v2
cosh(KL2)

∣∣∣∣ = ith

, (24)

Also the third relationship of (24) can be represented by a circle, named C3 and expressed in
Cartesian coordinates (p, q) as:

(p− p3)
2 + (q− q3)

2 = r2
3, (25)

where:

p3 = −Re
{

tgh(KL)
z0

}
, q3 = Im

{
tgh(KL)

z0

}
, r3 =

ith∣∣∣cos h(KL)
∣∣∣ (26)

For L = L2 the three circles C1, C2 and C3, which are the geometrical representation of (21) and
(25), have a common intersection point P3, which identifies the maximum allowable active power,
as shown in Figure 9.

In order to determine the coordinates of P3 avoiding the complex solution of the system (24), it is
convenient to resort to an iterative procedure similar in principle to those described in Figures 1 and 3.
The module of the sending end current can be calculated, for increasing values of L, using the left-hand
member of the first of (24): the point P3 is identified when the sending end current attains the thermal
limit. Section 4 shows the application of this procedure in a practical case.
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3.3. Sending-End Thermal Limit and Voltage Drop Limit

When the thermal limit is attained at the sending end, the maximum allowable active power
p(L) can be calculated by solving the following two-equations system:

vmax
1 =

∣∣∣∣v2cosh(KL) + p− jq
v2

z0sinh(KL)
∣∣∣∣
L>L2∣∣∣∣ v2

z0
sinh(KL) + p− jq

v2
cosh(KL)

∣∣∣∣
L>L2

= ith
. (27)

In this way, a third region of the loadability curve can be calculated, likewise we already performed
in Section 3.2 with regard to the second region. Indeed, for each value of L (with L > L2) the system in
Equation (27) can also be reduced to a system of two algebraic quadratic equations.

The solution of Equation (27) is graphically represented by the intersection of the circles C1 and C3

illustrated in Figure 10. Clearly, the maximum allowable active power is determined by the intersection
point P4 of C1 and C3.
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The figure reports also the circle C4 that represents the power losses limit. This limit, indeed, can
be written as

(p− p4)
2 + (q− q4)

2 = r2
4 (28)

with p4, q4 and r4 given by

p4 = −
v2

2

(
A2 + Re{BC∗} − (1 + ∆pmax)

)
2 Re{A∗B}

, q4 = −
v2

2Im{BC∗}

2 Re{A∗B}
, and r4 =

√
p2

4 + q2
4 −

v4
2Re{AC∗}

Re{A∗B}
(29)

Equation (28) corresponds to the circle C4 depicted in Figure 10.
In practice, in order to check satisfaction of the power losses limit, once the solution p∗(L),

q∗(L) of Equation (27) is obtained, it must be verified that this point is within the circle C4, i.e.,
(p∗(L) − p4)

2 + (q∗(L) − q4)
2 < r2

4. In the same way, one can simply verify, for each value of L,
the satisfaction of the steady-state stability limit (19) that can be rewritten, by assuming infinite
short-circuit power at both line ends, i.e., ed1 = vmax

1 and ed2 = v2, as

p∗(L) ≤
(1−mstab)

b(L)

(
vmax

1 v2 −A(L)v2
2cos(β(L) − α(L))

)
. (30)

A practical example of application is shown in Section 4.

3.4. Voltage Drop Limit and Steady-State Stability Limit

For longer lines, starting from a certain line length L3, the steady-state stability limit starts
determining the loadability curve (note that, in compensated lines, this line length can be much lower
compared with the base-case of uncompensated lines). Thus, the loadability limit is determined by the
voltage drop and steady-state stability limits. In this region, both the active and reactive power of the
compensator decrease starting from the maximum value of complex power. If the maximum reactive
power the synchronous condenser can deliver, Qmax, is less than this value, the sequence of the limits
can change.

Analytically, for L > L3, the maximum active power is calculated as

plim(L) =
(1−mstab)

b(L)

(
vmax

1 v2 −A(L)v2
2cos(β(L) − α(L))

)
. (31)

The reactive power q in turn can be calculated by solving the following relationship:

vmax
1 =

∣∣∣∣∣cos h(KL) +
plim − jq

v2
z0 sin h(KL)

∣∣∣∣∣
L>L3

(32)

Equation (32) can also be reduced to a second order algebraic equation in the unknown q, following
the same procedure already shown for Equation (4). For the sake of brevity, the relevant equations are
not reported here.

3.5. Case : cosϕ2 , 1

The more general case with cosϕ2 , 1 can be reduced to the case cosϕ2 = 1 by adding a further
reactive compensation qc = −P tanϕ2. This means that the whole reactive power absorbed by the load
is delivered by the synchronous condenser and the line power factor at the receiving end of the line,
cosϕ2, is adjusted to 1. This, of course, requires Qmax > Ptanϕ2 and implies that a reduced reactive
power reserve, equal to Qmax − Ptanϕ2, is available to control the voltage drop across the line.
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4. Practical Applications

The goal of this Section is to show the ability of the proposed analytical methodology to derive
the loadability characteristic of OHLs. Calculations are performed for the base-case of uncompensated
OHLs and for the specific case of shunt compensated radial lines. In the second case, we assume that a
synchronous condenser is connected at the receiving end of the OHL, as shown in Figure 6. The limits
considered in both cases are:

• conductor thermal limit, ith;
• voltage drop limit, ∆vmax;

• power losses limit,
(

∆pm
pm(L)

)max
; and

• steady-state stability limit, mstab.

Calculations concern traditional single circuit 400 kV OHLs equipped with a standard triple-core
ACSR conductor bundle of 3 × 585 mm2 cross section, already taken as reference conductors in [6,7].
The relevant line parameters are reported in Table 1.

Table 1. Per unit length line parameters.

Parameter Unit Value

Resistance, r Ω/km 0.021
Reactance, x Ω/km 0.271

Conductance, g S/km 4 × 10−9

Susceptance, b S/km 4.21 × 10−6

The values in Table 1 yield to Z0 = Zr + jZy = 253.90 − j9.83Ω, K = K′ + jK′′ = 4.186× 10−5 +

j1.068 × 10−3 and SIL = 620 MW. At the receiving end it is set v2 = 1 p.u. and the thermal limit is
assumed as Ith = 2038 A (according to the Italian Standard CEI 11-60 [16], the conductor thermal limit
Ith ranges from 2038 to 2952 A depending on the season and geographical location. Here, we take the
lowest—most conservative—value of Ith = 2038 A), which corresponds to Ath = 1412 MVA.

The percent value of maximum voltage drop is assumed ∆vmax% = 5%.

With regard to Joule losses, we assume
(

∆pm
pm(L)

)max
= 5%, and a load factor fc = 0.75. The last

assumption is rather conservative, as it corresponds to a rather high average exploitation of the line.

From (12) we obtain fp = 0.619 and, from (13),
(

∆p
p(L)

)max
= 0.0606 p.u.

With regard to the steady-state stability margin, the commonly used value of 30% (mstab = 0.3) is
considered. Finally, regarding the power factor, the case cosϕ2 = 1 is analyzed first.

Using these values and the relationships explained in Sections 2 and 3, it is rather easy to calculate
the loadability curves of both uncompensated and compensated lines.

Figure 11 shows the loadability curves obtained with v2 = 1. On the y-axis, powers are in p.u. of
a 1000 MVA base power.
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Figure 11. Loadability curves of uncompensated and compensated lines (case: v2 = 1, cosϕ2 = 1).

4.1. Uncompensated Lines

The numerical solution (illustrated in Figure 1) of the non-linear Equation (3) provides L1 = 114 km,
whereas the approximated analytical solution described in Appendix B gives 118 km. However,
this error dramatically reduces with the power factor and, at cosϕ2 < 0.97, the difference between the
numerical and analytical solutions practically vanishes.

Hence, the first region of the loadability curve has constant ordinate equal to pth in the length
interval 0–114 km.

The second region of the loadability curve is calculated by solving Equation (4) in the unknown
variable p for each value of L > L1. For these relatively long lines, the limit ∆vmax% = 5% imposes to
reduce the transmissible power and, increasing L, the line loadability p(L) quickly decreases.

For each value of p, power losses can be evaluated by (A9), and the constraint ∆p
p(L) ≤

(
∆p

p(L)

)max

can be easily checked. The limit value
(

∆p
p(L)

)max
is never achieved at least until L = 600 km. In fact,

for L = 600 km the loadability limit, determined through Equation (5) where the numerical values
of the parameters α, β, and δ are 0.8015, 0.0150, 0.0687, and 0.9721 respectively, is p = 0.641 p.u.
The relationship (A7), reported in Appendix B, for p = 0.641 p.u. and L = 600 km provides ∆p

p(L) =

0.0529 p.u. that is less than
(

∆p
p(L)

)max
= 0.0606 p.u.

With regard to steady-state stability, having set mstab = 0.3 and assuming an infinite
short-circuit-ratio at both line ends, until L = 600 km the steady-state stability limit does also not affect
the line loadability. In fact, for L = 600 km the relationship in Equation (17) gives plim = 0.719 p.u,
higher than the power corresponding to ∆vmax% (0.641 p.u.).

In summary, for the considered OHLs the loadability curve calculated in the 0–600 km range of
lengths consists of only two regions, resulting L2 > 600 km. The limit length L1 and the loadability
curve p(L) can be easily derived, as just illustrated, avoiding the need to resort to optimization
procedures, which generally require a major effort for the implementation on a digital computer and
more computation burden.

Note that, assuming different values for the power losses limit
(

∆pm
pm(L)

)max
and the load factor fc,

the Joule losses limit could prevail over the voltage drop limit reducing the loadability curve after a
certain line length that can be individuated by the methodology described. The same is valid in the
case of a more stringent setting of the steady-state stability limit.
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4.2. Shunt Compensated Radial Lines

For shunt compensated radial lines, it is obvious that the first region of the loadability curve is
equal to the one of uncompensated lines. Starting from the line length L1, the injection of the required
amount of reactive power allows limiting the voltage drop across the line and thus avoids exceeding
the voltage drop limit ∆vmax% = 5%. Increasing L, this operation continues until other limits are
attained or the reactive power reserve is fully exploited. As already pointed out, the second region
of the loadability curve is determined by both the thermal limit at the receiving end and the voltage
drop limit. This operation is graphically represented by the intersection point P1 of the circles C1

and C2 illustrated in Figure 8, whose Cartesian coordinates are given by Equation (21). Analytically,
the coordinates of P1 must be determined. The maximum allowable active power corresponds to
the abscissa of P1, which is determined for each value of L > L1 by solving the linear relationship in
Equation (23) and one of the two Equations (21), as described in Section 3. The only computation
effort required is the solution of a second order algebraic equation. For example, for L = 200 km,
the equations system becomes{

(p + 0.2274)2 + (q + 2.8894)2 = 9.6970
q = −0.0787p− 0.1206

. (33)

Solving this system, the coordinates of P1 are p = 1.393 p.u. and q = −0.230 p.u. Note that the
reactive power, which corresponds to a capacitive absorption, can be actually delivered only if it is
lower than the rating of the synchronous condenser.

The second region extends up to the line length L2 at which also the sending end current achieves
the thermal limit (Figure 12). This length corresponds to point P3 depicted in Figure 9.
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Figure 12. Modulus of the current at sending and receiving ends (case: cosϕ2 = 1).

The numerical procedure explained at the end of Section 3.2 provides L2 = 276 km, and the
coordinates of P3 are p = 1.356 p.u., and q = −0.394 p.u.

The gradual and moderate reduction of the loadability curve (Figure 11) in the second region
(114–276 km) is due to the thermal limit and to the progressive reduction of the line power factor:
The increasing reactive component of the current, injected for compensation, reduces the active current
in the line.

After L = 276 km, the third region is determined by the thermal limit at the sending end and by
the voltage drop limit, and is analytically represented by Equation (27). For each value of L, the powers
p and q can be evaluated as the intersection of the two circles C1 and C3 illustrated in Figure 10. It must

be also verified that the power losses limit
(

∆pm
pm(L)

)max
and the steady-state stability margin mstab are
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not exceeded. This can be done by means of Equations (28) and (30), respectively. For the specific
case under study, the steady-state stability limit takes over at L3 = 304 km. Indeed, at this length
the maximum active power p compatible with the thermal and voltage drop limits (obtained by the
solution of (27)) is equal to the maximum active power p∗(L) compatible with the steady-state stability
limit (obtained by (30)): p = p∗(L) = 1.344 p.u.

Also in this case, the power losses limit is never attained. Indeed, for L = 600 km, ∆p
p(L) = 0.0590 p.u

which is lower than
(

∆p
p(L)

)max
= 0.0606 p.u.

Concluding, the explained calculations allow determining the loadability curve depicted in
Figure 11, which is determined by the following sequence of limits:

• L ≤ L1: Thermal limit at the receiving end;
• L1 ≤ L ≤ L2: Voltage drop limit and thermal limit at the receiving end;
• L2 ≤ L ≤ L3: Voltage drop limit and thermal limit at the sending end;
• L3 ≤ L ≤ 600 km: Voltage drop limit and steady-state stability limit.

with L1 = 114 km, L2 = 276 km, and L3 = 304 km.

4.3. Case: cosϕ2 < 1

In case of less than one load power factor (practical values can be assumed in the range (0.97–1),
the loadability curve of uncompensated lines reduces because

• the active power transmitted at the thermal limit is proportional to cosϕ2; this causes a small
loadability reduction in the first region; and

• the voltage drop across the line increases; this causes a much greater loadability reduction in the
three following regions, all affected by the voltage drop limit.

Also, the limit length L1 sharply reduces [6,7]. The analytical calculation of L1 for cosϕ2 = 0.97,
performed as explained in Appendix A, gives the value 58 km which is almost identical to the numerical
solution obtained through widespread algorithms for the solution of nonlinear algebraic equations,
such as Newton–Raphson. Practically the same result is obtained by means of the numerical solution
illustrated in Figure 1. For example, assuming ∆L = 1 km, the result is L1 = 59 km.

On the contrary, in the case of shunt compensated radial lines, the compensator action (provided
that the compensator can provide the reactive power amount required to adjust to unity the load power
factor) allows to obtain the same loadability curve reported in Figure 11 for the case cosϕ2 = 1.

5. Conclusions

This paper proposes a new approach for the analytical description of the various regions of the
loadability curves of overhead transmission lines. Using the complete line model with distributed
parameters and the relevant general formulation, we show how the loadability curves of any actual
line can be deduced taking into account the conductor thermal limit, a maximum voltage drop across
the line, a maximum amount of Joule losses along the line, and a steady-state stability margin.

The analytical formulation has general validity and can be used to calculate the loadability
curves—helping power system operators in both planning and operation stages—in all practical
cases. The last sentence is demonstrated by two application examples. The first example refers to the
base-case of standard (uncompensated) 400 kV single circuit OHLs equipped with standard triple-core
ACSR conductor bundle with 3 × 585 mm2 cross section, whereas the second example concerns the
same 400 kV single circuit OHLs in radial topology and shunt compensated at the receiving end.

Despite the apparent complexity of the general analytical description, we demonstrate that the
practical application of this analytical approach is rather simple. In both case studies, the loadability
curves can be easily derived, avoiding the need to formulate the loadability problem in terms of a
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constrained optimization problem, whose solution implies an adequate procedure of implementation
on a digital computer and a major computation burden.
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Appendix A

This section provides an easy way to get an analytical solution of Equation (3) in the unknown L1.
Assuming K = jK′′ (lossless approximation), Equation (3) can be rewritten as

vmax
1 =

∣∣∣∣∣v2cos(K′′L1) +
pth

v2
(1− j tanϕ2)z0 jsin(K′′L1)

∣∣∣∣∣ (A1)

Equation (A1) can be written also as

vmax
1 =

∣∣∣∣v2cos(K′′L1) +
(
ax + jay

)
sin(K′′L1)

∣∣∣∣ (A2)

where
ax =

pth

v2

(
−zy + zrtanϕ2

)
, ) (A3)

ay =
pth

v2

(
zr + zytanϕ2

)
. (A4)

After some elementary manipulations, the following quadratic equation in the unknown ξ =

tan(K′′L1) can be obtained:

ξ2
(
vmax

1
2
− ax

2
− ay

2
)
− 2axv2ξ+

(
vmax

1
2
− v2

2

)
= 0 (A5)

Only one of the two solutions ξ∗ has a physical meaning, and L1 can be finally evaluated as:

L1 = atan
(
ξ∗

K′′

)
(A6)

The error of this approximated analytical solution is lower than 3.5% when cosϕ2 = 1 and becomes
practically negligible when cosϕ2 < 0.99.

Appendix B

The ratio ∆p
p(L) can be explicitly evaluated as a function of the variables p and L as follows:

∆p(p, L)
p(L)

=
Re{v1i1

∗
}

p
− 1 =

Re
{[

Av2 + B p
v2
(1− jtanϕ2)

][
Cv2 + A p

v2
(1− jtanϕ2)

]∗}
p

− 1. (A7)

By simple manipulations, one obtains

∆p(p, L)
p(L)

= Λ1(L) + Λ2(p, L) + Λ3(p, L) (A8)

with
Λ1(L) = A2

− 1 + Re
{
BC∗

}
+ Im

{
BC∗

}
tanϕ2

Λ2(p, L) =
v2

2 Re{AC∗}
p

Λ3(p, L) = p
(
1 + tanϕ2

2
)
Re{BA∗}.

(A9)
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For each value of L and p, the expression (A8) can be easily evaluated, since the terms Λ1(L) is an
explicit function of the only variable L and Λ2(L) and Λ3(L) are explicit functions of also the variable

p. Finally, ∆p
p(L) can be compared with the limit

(
∆p

p(L)

)max
, verifying the satisfaction of the inequality

constraint ∆p
p(L) ≤

(
∆p

p(L)

)max
.

Aiming to demonstrate the easy applicability of these formulas, we report the estimation of power
losses in the base-case of uncompensated lines for L = 600 km, with cosϕ2 = 1. In this case, p is equal to
0.641 p.u., and the application of (A9) allows to determine the following estimates: Λ1(L) = 2·10−4 p.u.,
Λ2(p, L) = 0.0064 p.u. and Λ3(p, L) = 0.0463 p.u. Finally, ∆p

p(L) = 0.0529 p.u., as reported in Section 4.
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