

Defect, Diffusion and Dopant Properties of NaNiO₂: Atomistic Simulation Study

Ruwani Kaushalya ¹, Poobalasuntharam Iyngaran ¹, Navaratnarajah Kuganathan 2,3* and Alexander Chroneos 2,3

- ¹ Department of Chemistry, University of Jaffna, Sir. Pon Ramanathan Road, Thirunelvely, Jaffna, Srilanka; ruwanikonara5@gmail.com (R.K); piyngs@jfn.ac.lk (P.I)
- ² Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; alexander.chroneos@imperial.ac.uk
- ³ Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB, United Kingdom; ab8104@coventry.ac.uk
- * Correspondence: n.kuganathan@imperial.ac.uk; ad0636@coventry.ac.uk

Received: 23 June 2019; Accepted: 29 July 2019; Published: date

Two-body $[\Phi_{ij}(r_{ij}) = A_{ij} \exp(-r_{ij}/\rho_{ij}) - C_{ij}/r_{ij}^6]$					
Interaction	A / eV	ρ / Å	$C / eV \cdot Å^6$	Y / e	K / eV·Å ⁻²
Na+O2-[1]	1497.830598	0.287483	0.00	1.000	99999
Ni ³⁺ –O ^{2–} [2]	1018.36	0.3299	0.00	4.97	304.7
O ²⁻ –O ^{2–} [3]	22764.30	0.149	43.0	-2.86	42.0
Mg ²⁺ O ²⁻ [4]	946.627	0.31813	0.000	0.000	99999
Co ²⁺ –O ^{2–} [5]	1670.2416	0.2859	0.000	-1.5030	110.5
Fe ²⁺ -O ²⁻ [6]	1207.6	0.3084	0.000	2.000	99999
Ca ²⁺ –O ^{2–} [5]	1090.4	0.3372	0.0000	1.26	34.00
Sr ²⁺ -O ²⁻ [5]	1400.0	0.3500	0.0000	1.33	21.53
Ba ²⁺ -O ²⁻ [5]	931.7	0.3949	0.000	1.46	14.78
Al ³⁺ -O ²⁻ [7]	1725.20	0.28971	0.000	3.000	99999
Sc ³⁺ –O ^{2–} [5]	1299.4	0.3312	0.000	3.000	99999
Ga ³⁺ -O ²⁻ [5]	2901.12	0.2742	0.000	3.000	99999
Fe ³⁺ -O ²⁻ [5]	1156.36	0.3299	0.000	4.970	304.7
In ³⁺ –O ^{2–} [5]	1495.65	0.3327	4.33	3.000	99999
Gd ³⁺ -O ²⁻ [5]	1885.75	0.3399	20.34	3.000	99999
Y ³⁺ -O ²⁻ [5]	1345.10	0.3491	0.00	3.000	99999
La ³⁺ -O ²⁻ [5]	1545.21	0.3590	0.00	-0.250	99999
Sn4+-O2-[8]	1414.32	0.3479	13.66	4.000	99999
Zr ⁴⁺ -O ²⁻ [5]	985.869	0.3760	0.00	1.350	169.617
Ce4+-O2-[5]	1986.83	0.3511	20.40	7.700	291.75
$Ti^{4+} - O^{2-}[9]$	5111.7	0.2625	0.000	-0.10	314.0
Ge4+-O2-[10]	1497.3996	0.325646	16.00	4.0000	99999
Si ⁴⁺ -O ²⁻ [11]	1315.2478	0.317759	10.141118	0.000	99999

Table S1. Interatomic potential parameters used in the atomistic simulations of NaNiO2.

References

- 1 Treacher, J. C.; Wood, S. M.; Islam, M. S.; Kendrick, E. Na₂CoSiO₄ as a cathode material for sodium-ion batteries: structure, electrochemistry and diffusion pathways. *Phys. Chem. Chem. Phys.* 2016, *18*, 32744– 32752.
- 2 These parameters were fitted to the experimental lattice constants.
- Jones, A.; Islam, M. S. Atomic-scale insight into LaFeO₃ perovskite: defect nanoclusters and ion migration. *J. Phys. Chem. C* **2008**, 112, 4455–4462.

- 4 Heath, J.; Chen, H.; Islam, M. S. MgFeSiO₄ as a potential cathode material for magnesium batteries: ion diffusion rates and voltage trends. *J. Mater. Chem. A* **2017**, *5*, 13161–13167.
- 5 Tealdi, C.; Saiful Islam, M.; Malavasi, L.; Flor, G. Defect and dopant properties of MgTa₂O₆. *J. Solid State Chem.* **2004**, 177, 4359–4367.
- 6 Lewis, G. V. Interatomic potentials: Derivation of parameters for binary oxides and their use in ternary oxides. *Physica B+C* **1985**, *131*, 114–118.
- Minervini, L.; O. Zacate, M.; W. Grimes, R. Defect cluster formation in M₂O₃-doped CeO₂. 1999; 116, 339–349.
- 8 Minervini, L.; Grimes, R. W.; Sickafus, K. E. Disorder in pyrochlore oxides. J. Am. Ceram. Soc. 2000, 83, 1873– 1878.
- 9. Olson, C. L.; Nelson, J.; Islam, M. S. Defect chemistry, surface structures, and lithium insertion in anatase TiO₂. *J. Phys. Chem. B* **2006**, *110*, 9995–10001.
- 10 Kendrick, E.; Islam, M. S.; Slater, P. R. Atomic-scale mechanistic features of oxide ion conduction in apatitetype germanates. *Chem. Commun.* **2008**, *14*, 715–717.
- 11 Sastre, G.; Gale, J. D. Derivation of an Interatomic Potential for Germanium- and Silicon-Containing Zeolites and Its Application to the Study of the Structures of Octadecasil, ASU-7, and ASU-9 Mater. *Chem. Mater.* 2003, *15*, 1788–1796.