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Abstract: Determining the characteristics of the dynamic behavior of carbon dioxide in a rock mass is
a stage in the process of assessing a potential CO2 storage reservoir. The aim of this study was to
analyze the process of CO2 storage in saline aquifers of the selected regions of the Upper Silesian
Coal Basin in Poland. The construction of dynamic simulation models was based on static models
of real deposit structures developed on a regional scale. Different simulation variants of the CO2

storage process were adopted, varying in terms of injection efficiency and duration of individual
simulation phases. The analysis examined the influence of the degree of hydrodynamic openness of
the structure on the CO2 storage process, in each of the variants. The results of numerical simulations
showed that among the three analyzed geological formations, the Dębowiec formation is the most
prospective for potential CO2 storage and is characterized by the most favorable geological and
hydrogeological parameters. In the best variant of the simulation, in which the safety of CO2 storage
in the rock mass was taken into account, the total amount of CO2 injected in a single directional well
was approximately 8.54 million Mg of CO2 during 25 years of injection.

Keywords: geological CO2 storage; saline aquifers; hydraulic fracturing; numerical simulation;
reservoir characterization

1. Introduction

The level of global CO2 emissions associated with energy production is constantly increasing. An
increase in CO2 emissions by 1.4% was observed in 2017 compared to 2016, which is an increase of
460 million Mg, and the highest global CO2 emissions to date amount to 32.5 billion Mg. The increase
in carbon dioxide emissions associated with energy production is a serious warning and shows that
global efforts carried out so far to combat climate change are insufficient and are not able to achieve the
objectives of the Paris Agreement [1]. The results of the work of the International Panel on Climate
Change (IPCC) clearly show that without additional measures to reduce greenhouse gas emissions, the
global average atmospheric temperatures at the earth’s surface will increase from 3.7 ◦C to 4.8 ◦C in
2100 compared to the level from before the industrial era [2].

Scenarios where the atmospheric CO2 concentration is approximately 450 ppm by 2100 are
consistent with maintaining global temperatures below 2 ◦C. Such scenarios foresee a significant
reduction in greenhouse gas emissions in the coming decades and require radical changes in energy
systems and the systematic introduction of low-carbon technologies [3]. The Sustainable Development
Scenario developed by the International Energy Agency (IEA) sets the path to achieving long-term
climate goals. In the near future, this scenario assumes a slight increase in the volume of CO2 emissions,
reaching the peak level, and then a sharp decline by 2020. Regarding the energy sector, this scenario
requires an increase in the volume of energy produced from renewable sources by an average of
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700 TWh per year, an increase of 80% compared to an increase of 380 TWh registered in 2017. It was
estimated that the share of energy from low-emission sources must increase by 1.1% annually. In
addition, this scenario assumes that carbon capture, utilization and storage (CCUS) technologies will
play an important role in reducing CO2 emissions in the industrial and energy sectors [4]. The key
factor limiting the possibility of using carbon capture and storage (CCS) technology in climate plans is
the availability and recognition of appropriate geological formations and structures for underground
CO2 storage. Numerous analyses have been developed on a global, regional and local scale regarding
the geological potential of CO2 storage. Estimates of the global geological potential of CO2 storage can
vary widely, as work is ongoing to improve the calculation methodology and develop an international
classification system [5]. Several studies have suggested that there is a large global potential for efficient
storage of large amounts of CO2 in geological formations and structures, such as deep saline aquifers
and depleted oil and gas fields. The estimated global CO2 storage capacity is more than fifty times
the current global CO2 emissions, which means there is a sufficiently large potential to inject carbon
dioxide into geological formations for at least the next 50 years, assuming current annual CO2 emission
levels [3].

CO2 has been used to support oil production (EOR) since the 1950s [6]. Research related to the
use of technologies for the capture and geological storage of CO2 began approximately 20 years ago.
Studies carried out so far have confirmed that CO2 can be stored in geological formations and structures
by a number of different CO2 trapping mechanisms, depending on the type of formation used [7–18].

The Intergovernmental Panel on Climate Change (IPCC) has estimated the potential capacity of
geological CO2 storage in the world to be at least 1678 billion Mg of CO2, of which approximately
60% is deep saline aquifers [4]. Compared with oil and gas deposits, deep saline aquifers are less
well-known, and therefore, the characteristics of deep saline aquifers on a regional scale are currently
the main objective in the search for suitable sites for geological storage of CO2 [19].

Research in the scope of carbon capture and storage (CCS) in Poland includes theoretical work
in the field of modeling the process of CO2 injection into geological formations [20–24], as well as
experiments of small-scale CO2 injection into the Borzęcin gas field [25] and the coal deposit in
Kaniów [26]. In addition, intensive actions were carried out in Poland regarding the possibility of CO2

storage in saline aquifers [27–31].
In the works by Wójcicki [32], Bromek et al. [33] and Jureczka et al. [34], a number of formations

and structures located on the territory of Poland were analyzed in terms of the potential for safe CO2

storage in saline aquifers in the Upper Silesian Coal Basin (USCB, Poland).
The research by Dubiński and Solik-Heliasz [35,36] presents the general geological conditions for

CO2 storage and the geological and mining conditions for underground CO2 storage in the Upper
Silesia region (Poland), as well as the potential sites for geological storage of CO2 that were selected in
this region [37].

The CCS technology in Poland is covered by the Directive of the European Parliament and the EU
Council. The selection of an appropriate underground geological formation for permanent CO2 storage
must be preceded by a detailed characterization and assessment of the potential CO2 storage reservoirs
and surrounding rock mass in accordance with the criteria set out in the directive. Determining the
characteristics of the dynamic behavior of carbon dioxide stored in a rock mass is an essential stage in
the process of assessing a potential CO2 reservoir. Dynamic modeling includes a series of simulations
of the process of CO2 injection and storage in a reservoir using a three-dimensional static geological
model of the rock mass.

Available software packages for simulation of phenomena related to the geological storage of
carbon dioxide are mainly based on source codes for reservoir simulators used in the oil and gas
industry. Jiang [38] conducted a comparison of available reservoir simulators used for numerical
analyses of geological CO2 storage. The analysis shows that numerical simulations depend on the
type of simulator used and are characterized by the physical models, numerical methods and specific
discretization methods used.
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This articles aims to present the results of numerical simulations of the CO2 storage process in
saline aquifers of the selected regions of the Upper Silesian Coal Basin (Poland) using the ECLIPSE
reservoir simulator from Schlumberger [39]. As part of the research, 26 simulations of CO2 injection
processes were performed using numerical models of real deposit structures developed using the
Petrel software from Schlumberger [40].

2. Materials and Methods

First, the scope of the research included determining the initial conditions in the rock mass within
the potential CO2 storage site. Injection parameters and location of injection wells were determined.
A series of simulations of the injection process was carried out to obtain information on injection
efficiency and CO2 flux properties, vertical profiles of CO2 concentration as a function of time, the
process of CO2 flow in the rock mass (including phase behavior), tightness of overburden deposits,
storage capacity and pressure gradients at the storage site.

The next stage of the work included the assessment of the sensitivity of the model to some initial
parameters, including temperature and degree of hydrodynamic openness of the structure. As part of
the risk assessment of the modeled process, the critical parameters influencing potential CO2 leakage
were identified, including maximum pressure in the reservoir and maximum injection rate.

2.1. Description of the Simulation Model

Static 3D geological models of potential carbon dioxide storage sites located in the Cracow
Sandstone Series, the Upper Silesian Sandstone Series, as well as the Dębowiec formation (Upper
Silesian Coal Basin—Poland), were developed using the Petrel 2010.1 software (Schlumberger
Petrel—Geoscience Core).

To build a lithological model, Sequential Indicator Simulation algorithm, belonging to a group of
stochastic algorithms, was applied.

Basic input material applied to build a 3D lithological model of the deposit included lithological
data from boreholes. The lithofacies from the available core profiles were given numerical codes. Then,
such processed data were implemented in the structural model which had been prepared before.

The results of well logs, in discrete form, were scaled up (Scale up well logs procedure). Statistical
algorithm Most of, which assigns a given interval to a lithological type which is the most common
in the averaging interval, was applied for the lithological data. Accuracy of matching the average
data in the model depends mainly on the vertical resolution of the model, i.e. its division into
litho-stratigraphic layers.

The basic input material used to build these models included the results of laboratory tests on
samples of cores from boreholes. Based on the available data, borehole models were calculated, i.e.,
borehole data regarding reservoir parameters were subjected to averaging (upscaling). In the case of
upscaling the effective porosity, arithmetic averaging was used, and permeability—geometric mean.

In the process of modeling the variability of effective porosity and permeability, other algorithms
were used than in the case of the lithological model. The use of stochastic sequence algorithm
Sequential Gaussian Simulation did not allow obtaining satisfactory results. In order to achieve the
most continuous variability of parameters, the deterministic Kriging method in the Gslib variant was
used. Both during the modeling of the distribution of effective porosity and permeability, ordinary
kriging was used. Modeling was performed separately for individual sequences using the control
procedure of the previously developed lithological model. Additionally, it was assumed that vertical
permeability is 10% of the horizontal permeability.

A compositional version of the Schlumberger ECLIPSE simulator designed for simulation of
reservoir processes (ECLIPSE 300) was used to perform numerical simulations. The compatibility
of the ECLIPSE simulator with the Petrel Reservoir Engineering Core software package ensured the
possibility of performing detailed analyses of the CO2 storage process, as well as visualization of the
obtained results.
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2.1.1. Location of the Study Area

Based on the initial stratigraphic and hydrogeological analysis, the potential for carbon dioxide
storage in the USCB area is shown only by two Carboniferous lithostratigraphic complexes - the Upper
Silesian Sandstone Series and the Cracow Sandstone Series—as well as the Dębowiec formation, which
lies in the bottom part of the Miocene.

Potential geological structures for carbon dioxide storage in the USCB region also include the roof
part of the carbonate series (lower Carboniferous) and terrigenous series of the Lower Devonian and
Cambrian; however, these series are located at great depths (usually significantly exceeding 2000 m)
and are very poorly recognized [41].

The selected areas are located in the southern part of the USCB. The first area is located in the
Cracow Sandstone Series north of Bielsko-Biała (the area of Ćwiklice), while the second area, selected
in the Dębowiec formation, is west of Bielsko-Biała (Figure 1a). The third selected region is located
within the Upper Silesian Sandstone Series northwest of Bielsko-Biała (Figure 1b).
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Figure 1. Location of static and dynamic models in the Cracow Sandstone Series and Dębowiec
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3. Results and Discussion

The static regional models for the selected the Upper Silesian Coal Basin (USCB) regions (two
Carboniferous lithostratigraphic complexes—the Upper Silesian Sandstone Series and the Cracow
Sandstone Series—and the Dębowiec formation) form the basis for constructing detailed dynamic
models involving numerical simulations of the process of CO2 injection into potential storage sites.

3.1. Numerical Model in the Cracow Sandstone Series Aquifer

Figure 2 presents a static model within the Cracow Sandstone Series. Within the developed model,
a local numerical model was selected for which a number of simulations of CO2 storage processes
were carried out.

A model with an area of 7.875 km2 and a grid resolution of 75 × 75 m was isolated from the initial
model (Figure 2a) with an area of 221.9 km2 and a grid resolution of 200 × 200 m (Figure 2b). The
detailed characteristics of the local numerical models are summarized in Table 1.

The effective porosity in the simulation model is in the range of 7.70–21.04%, with an average
value of 13.44%. The permeability in the local model, however, ranges from 6.97 mD to 211.36 mD,
with an average value of 57.30 mD (Figure 2b).

In the developed model, four injection wells, namely, IN3, IN4, IN5 and IN6, were used during
the simulation, with the injection amount depending on the adopted CO2 injection option.
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Table 1. Details of the reservoir simulation model.

Parameter/Model Cracow Sandstone
Series Aquifer

Upper Silesian
Sandstone Series

Aquifer

Dębowiec formation
Aquifer

Model resolution, m 3000 × 2625 3300 × 3050 7150 × 4500
3D mesh resolution, m 40 × 35 × 30 66 × 61 × 12 140 × 90 × 10
Depth interval, m a.s.l.

(meters above sea level) from −1200.00 to 77.60 from −1094.85 to −540.86 from −972.30 to −585.88

Effective porosity, % 7.70–21.04 2.48–16.17 6.90–14.91
Permeability, mD 6.97–211.36 0.03–5.10 0.00–49.88

Pore volume of the
model, billion m3 9.49 3.38 63.09

In addition, a single IN-8 horizontal well was designed to simulate the process of CO2 storage.
The behavior of the rock mass during the individual simulation variants after hydraulic fracturing
of the rock mass was also considered, aimed at intensifying the CO2 injection process. Hydraulic
fracturing in the horizontal section of the well is shown in Figure 3.
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3.2. Numerical Model in the Upper Silesian Sandstone Series Aquifer

Figure 4a presents a static model built within the Upper Silesian Sandstone Series, together with a
local numerical model for which a number of simulations of CO2 storage processes were carried out.
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Based on a model developed on a regional scale (Figure 4a) with an area of 137.80 km2 and a
horizontal grid resolution of 100 × 100 m, a local model was developed with an area of 9.15 km2 and a
grid resolution of 50 × 50 m (Figure 4b). A list of detailed characteristics of the local model is presented
in Table 1.

The model implements one vertical injection well located in the central part of the anticlinal
structure, as well as a single horizontal well. The values of effective porosity, referring to the
interconnected pore volume in the rock structure, in the simulation model range from 2.48% to 16.17%,
and for the most part, the average value is approximately 10%. The maximum permeability value in
the local model reaches 5.10 mD.

3.3. Numerical Model in the Dębowiec Formation Aquifer

Of the three analyzed reservoirs, the Dębowiec formation is the most prospective for potential
storage of CO2 and is characterized by the most favorable values for the geological and hydrogeological
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parameters. The Dębowiec formation is a Miocene macroclastic molasse composed of four lithofacies:
Olistostromes, boulders, conglomerates and sandstones [42].

In a static model developed on a regional scale within the rock complex of the Dębowiec formation
with an area of 555.75 km2 (Figure 5a), a local numerical model with an area of 32.18 km2 was developed
(Figure 5b), in which a series of numerical simulations of the CO2 storage process was carried out.
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The effective porosity in the constructed simulation model ranged from 6.90% to 14.91%. The
maximum permeability value in the local model was 49.88 mD (Figure 5b).
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To simulate the process of CO2 injection into the rock mass, two-directional wells were designed
with horizontal section lengths of approximately 500 m and 900 m.

3.4. Models of Reservoir Fluids

At a later stage of the work, reservoir parameters were analyzed in the static models of the selected
USCB regions and supplemented with reservoir fluid parameters necessary to simulate CO2 storage
in the studied geological formations and structures. An appropriate simulator module was selected,
taking into account the phenomenon of water solubility of CO2. For this purpose, a compositional
version of the ECLIPSE simulator (E300) with the CO2SOL [43] option was used. The Eclipse reservoir
simulator defines the sm3 unit as a cubic meter of gas at pressure 1 atm = 1013.25 hPa and temperature
equal to 15.56 ◦C. The unit rm3 describes the volume of gas in the reservoir conditions.

To select the correct state equation and determine the thermodynamic parameters of the process,
the Peng-Robinson state equation was used, taking into account the molar volume modification. This
equation allowed determination of the thermodynamic parameters in a manner more similar to real
conditions [43]. The viscosity of CO2 was estimated using the Lorentz-Bray-Clark correlation [44].
Parameters concerning the solubility of CO2 in saline were determined from the Chang-Coats-Nolen
correlation [45].

The CO2 flow in layers saturated with water (brine) is controlled by the curves of relative
permeability. In this study, relative permeability curves were generated based on Corey’s correlation [46].
The often-used Brooks and Corey relations are actually an extension of equations developed by
Burdine et al. [47], for normalized drainage effective permeability. The equations shown here are the
original Burdine equations modified for relative permeability calculations:

krw = (S∗w)
(2 + 3λ)/λ, (1)

krn = ko
r ·((Sm − Sw)/(Sm − Siw))

2
·

(
1 − (S∗w)

(2+λ)/λ
)
, (2)

S∗w = (Sw − Siw)/(1 − Siw), (3)

ko
r = 1.31 − 2.62Siw − 1.1(Siw)

2, (4)

where:

krw = wetting phase relative permeability;
krn = non-wetting phase relative permeability;
ko

r = non-wetting phase relative permeability at irreducible wetting phase saturation;
S∗w = normalized wetting phase saturation;
λ = pore size distribution index;
Sm = 1 − Sor(1 − residual non-wetting phase saturation);
Sw = water saturation;
Siw = initial water saturation.

The basic equation for capillary pressure Pc as a function of liquid saturation is adapted from the
van Genuchten formulation [48], and is given by the following equation:

Pc = −Po
(
S∗w
−1/λ

− 1
)1−λ

. (5)

The values of parameters used in calculations of relative permeability and capillary pressure for
simulation models are summarized in Table 2.
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Table 2. Characteristics of relative permeability and capillary pressure in the simulation models.

Relative Permeability and Capillary Pressure—Parameter Simulation Models—Value

Pore size distribution index, λ 2
Initial water saturation Siw, fraction 0.3

The Dębowiec formation-minimum threshold pressure Po, Pa 3580
The cap rock-minimum threshold pressure Po, Pa 62,000

Relative permeabilities relationships as a function of fluids saturation are the key parameters
in classical formulations of multiphase flow in porous media. Experimental laboratory tests and an
analysis of pore-scale physics demonstrate that relative permeabilities are not single functions of fluid
saturations—relative permeabilities display hysteresis effects [49]. Figures 6 and 7 shows relative
permeability and capillary pressure curves used in the simulation models.
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In particular variants of the simulation, the influence of the degree of hydrodynamic openness
of the geological structure on the course of the CO2 storage process was analyzed. Due to the very
large surface area of the analyzed geological structures, the aquifers surrounding the area covered by
the numerical model were simulated using semianalytic models of aquifers defined by Carter and
Tracy [50].

The surface range of the aquifer models surrounding each simulation variant exceeded the
dimensions of the numerically modeled areas several times. In some simulations, the size of the
analytical aquifer was defined as the total range of occurrence of a given geological formation (e.g.,
range of occurrence of the Upper Silesian Sandstone Series in the entire Upper Silesian Coal Basin).
The parameters of the above aquifers were defined as mean values from numerically modeled areas.
The detailed characteristics of the analytical aquifers are summarized in Table 3.

Table 3. Characteristics of the analytical aquifers in the simulation models.

Properties of Analytical Aquifers—Parameter Simulation Models—Value

The prominent direction from the simulation grid sides
Size, km2 ~482

Permeability, mD 200
Porosity, % 25

Total (rock and water) compressibility of the aquifer, 1/bar 0.00001
External radius, m 5000

Thickness, m 50
Angle of influence, deg (angle subtended by boundary between reservoir and aquifer) 360

Type of analytical aquifer Carter-Tracy

As the initial condition of the conducted reservoir simulations, the location of the gas-water
contact depth varied in each of the three analyzed models (from 100 m to approximately 170 m). In
addition, data regarding the initial reservoir pressure from 10 to 11 MPa (depending on the type of
modeled geological formation at depth from 1000 to 1150 m) and temperature were adopted on the
basis of archived borehole data. Reservoir fluids at the above pressure and deposit temperature were
under hydrostatic equilibrium conditions. The maximum bottom-hole pressures are determined as
about 90% of the frac gradient or the leak-off pressure, which represents the pressure that should not
be exceeded during CO2 injection, to avoid cover rock failure by fracking.

In this study, the leak-off pressure is approximately 50–60% above the normal hydrostatic gradient.
It was assumed in the models that the storage pressure should not exceed 20% of the normal hydrostatic
gradient, in order to keep the storage pore pressure way below the leak-off or frac gradient. The basic
initial parameters assumed in the individual simulation models are listed in Table 4.

Table 4. Characteristics of the initial conditions in the simulation models.

Parameter
Simulation Model

Cracow Sandstone
Series Aquifer

Upper-Silesian Sandstone
Series Aquifer

Dębowiec Beds
Aquifer

Pr
op

er
ti

es
of

R
es

er
vo

ir
W

at
er Density dw, kg/m3 1137.79 1048.73 1093.93

Viscosity µw, cP 0.9957 0.8144 0.8514

Compressibility cw, 1/Pa 3.215 × 10−10 3.831 × 10−10 3.495 × 10−10

Volumetric coefficient Bw, rm3/sm3 1.0330 0.9988 1.0020

In
it

ia
l

C
on

di
ti

on
s Average temperature, K 308.15 308.15 313.15

Pressure, MPa 11.00 10.37 10.00

Depth, m 1150.00 1100.00 1000.00

Depth of gas-water contact, m 150.00 169.80 100.00
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Constant injection efficiency and the maximum bottom pressure at the injection well PBHP were
adopted as the boundary conditions of the analyzed process. These quantities were varied in the
individual simulation models depending on the assumed injection variant.

Hydraulic fracturing used in directional drilling is one of the basic operations aimed at improving
the parameters of the near-well zone. The main purpose of the fracturing treatment is to increase the
rock permeability and to improve the gas exchange between the well and the rock mass. This effect is
obtained by creating a system of fractures around the injection section of the well. The radius of the
range of fractures is large and can be up to several dozen meters. The formation of fractures in the
reservoir rocks is related to the rupture stress being greater than the rock strength limit, generated as a
result of the fracturing liquid injected into the well.

The hydraulic fracturing treatment was applied in the case of the directional well for the model of
the Cracow Sandstone Series. Fracturing was carried out at 14 depth intervals every 50 meters.

In the model of the Upper Silesian Sandstone Series, the hydraulic fracturing treatment was
applied in both the vertical and the horizontal wells. In the case of the vertical well, the fracturing
process was initiated at three depth intervals approximately 50 meters apart starting after 30 days
from the start of CO2 injection. In the directional well, similar to the fracturing interval in the Cracow
Sandstone Series, fracturing was applied at 14 depth intervals every 50 meters.

Simulations of the hydraulic fracturing treatment in the Dębowiec formation model were carried
out in a directional well at 16 depth intervals every 50 meters. Schematic arrangement of fracturing
intervals in injection wells is shown in Figure 8. The main properties of fractures assumed in the
simulation models are listed in Table 5.
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Table 5. Characteristics of fractures assumed in the simulation models.

Properties of Fractures—Parameter Simulation Models—Value

Conductivity Permeability, mD 10 000
Width, inch 0.20

Geometry Length, m 250
Orientation, deg 0

Vertical extent Fracture height (in the z direction), m 50

Simulations of the process of CO2 injection into saline aquifers in the models, including the
individual series of sandstone, were made for separate technological variants diversified in terms of
the injection methodology applied. The effectiveness of the sequestration process was analyzed in
groups concerning the type of injection wells, which means that the use of both vertical wells and the
directional (horizontal) well was considered together with the process supported through hydraulic
fracturing of the rock mass. In all variants of the simulation, carbon dioxide was injected into the
footwall layers of the reservoir. Injection wells with partially perforated casing completion were
analyzed. The purpose of the perforation was to achieve the maximum productivity of the opening in
a cost-effective manner, and to establish a good connection between the well and the deposit formation.

Different process simulation variants were adopted and varied in terms of injection efficiency.
For each of the wells, the injection volume was assumed to be between 1.00 and 3.24 million sm3/d
depending on the simulation scenario adopted. In addition, in each of the above variants, the simulation
scenarios varied in terms of duration.

Simulations of the CO2 migration process in the analyzed structures were carried out for a time
interval of 15 to 400 years after the end of injection (relaxation phase). The duration of the CO2 injection
phase was also varied depending on the scenario adopted and ranged from 6 to 25 years.

The influence of the degree of hydrodynamic openness of the structure on the course of the
sequestration process was analyzed. The effect of hydraulic fracturing of wells on the injection efficiency
was also investigated.

Detailed characteristics of individual injection variants are presented in Table 6.

Table 6. List of considered simulation variants of CO2 injection into geological formations.

Geological
Structure Type of Borehole

Established
CO2 Injection

Efficiency,
mln sm3/d

Duration of
the CO2
Injection

Phase, Years

Duration of
the

Relaxation
Phase, Years

Temperature
of the Saline
Aquifer, K

Simulation
ID

KSP

1 vertical well: IN3 1.00 10 100

308.15

S1

4 vertical wells: IN3, IN4,
IN5, IN6 4 × 1.00 10 100 S2

1 vertical well: IN8 1.50 10 100 S3

1 vertical well: IN8 1.50 25 200 S4

1 vertical well: IN8 3.24 6 200 S5

1 vertical well: IN8 3.00 25 400 S6

4 vertical wells: IN3, IN4,
IN5, IN6 1.50 25 400 S7

2 vertical wells: IN4, IN6 1.50 25 400 S8

3 vertical wells: IN4, IN5,
IN6 1.00 25 400 S9

1 directional well:
IN8 + fracturing 3.00 25 400 S10

1 directional well:
IN8 + fracturing 3.00 25 400 303.15 S11
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Table 6. Cont.

Geological
Structure Type of Borehole

Established
CO2 Injection

Efficiency,
mln sm3/d

Duration of
the CO2
Injection

Phase, Years

Duration of
the

Relaxation
Phase, Years

Temperature
of the Saline
Aquifer, K

Simulation
ID

GSP

1 vertical well: IN-Cze 1.00 10 15

308.15

S1

1 vertical well:
IN-Cze + fracturing 1.00 10 15 S2

1 vertical well:
IN-Cze + fracturing,

without analytical aquifer
1.50 25 100 S3

1 vertical well:
IN-Cze + fracturing, with
bigger analytical aquifer

1.50 25 100 S4

1 vertical well: IN1-size
of analytical aquifer equal
to the range of occurrence

of Upper-Silesian
Sandstone Series

1.50 25 100 S5

1 vertical well:
IN-Cze + fracturing 1.50 25 100 S8

1 vertical well:
IN-Cze + fracturing 3.00 25 100 S9

1 vertical well:
IN-Cze + fracturing, with
bigger analytical aquifer

3.00 25 100 S10

1 directional well:
hor_well + fracturing 3.00 25 400 S11

1 directional well:
hor_well + fracturing 3.00 25 100 313.15 S12

DEB

1 directional well:
wellhor (horizontal

section = 500 m)
2.50 25 200

313.15
S3A

1 directional well:
wellhor (horizontal

section = 900 m)
2.50 25 200 S4

1 directional well: wellhor
(horizontal section =
900 m) + fracturing

2.50 25 400 S5A

3.5. Simulation Results for Model in the Cracow Sandstone Series Aquifer

Simulations of the process of CO2 injection into saline aquifers in a model, including the Cracow
Sandstone Series, were conducted for separate technological variants. Table 7 presents a list of the
modeling results for the total amount of CO2 injected in the individual simulation variants. The
volume of CO2 is given for regular (sm3) and reservoir conditions (rm3).

The largest total amounts of CO2 injected correspond to variant No. 7 (four vertical wells) and
variant No. 10 (one horizontal well with fracturing).

The following figures (Figure 9) shows the distribution of the saturation of the structure with
carbon dioxide remaining in the residual state and the distribution of dissolved CO2 in the analyzed
structure for individual simulation time intervals.
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Table 7. List of the results obtained for the total amount of CO2 injected in individual variants of
simulation in the Cracow Sandstone Series model.

Variant Number Total Amount of
Injected CO2, mln sm3 *

Total Amount of Injected
CO2, mln rm3 **

Total Amount of
Injected CO2, mln Mg

S1 348.234 0.969 0.658
S2 1419.139 3.951 2.680
S3 979.634 2.713 1.850
S4 2919.997 7.815 5.514
S5 872.109 2.426 1.647
S6 2983.540 8.078 5.634
S7 3688.960 10.003 6.966
S8 1762.297 4.812 3.328
S9 3236.669 8.895 6.112
S10 3312.648 8.886 6.256
S11 2096.081 5.224 3.958

*,** The Eclipse reservoir simulator defines the sm3 unit as a cubic meter of gas at pressure. 1 atm = 1013.25 hPa and
15.56 ◦C [43]. The unit rm3 describes the volume of gas in the reservoir conditions.
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Figure 9. Free CO2 saturation (1) and distribution of CO2 dissolved in brine (RSWCO2 —molar fraction)
(2) in the zone of vertical injection wells (variant S7-I and variant S11-II) after (a) 5, (b) 15, and (c) 25 years
from the start of injection and after (d) 50, (e) 200 and (f) 400 years after the end of injection.

Carbon dioxide in the residual state is defined as the free-phase CO2 remaining in the nonwetting
phase, which after being injected into the rock mass is trapped by capillary forces in the pore spaces of
the rocks [51].

Free CO2 saturation in the aquifer of the Cracow Sandstone Series is presented in the form of a
common fraction, while the distribution of CO2 dissolved in the brine is presented in the form of a
molar fraction.

In injection variant No. 7 (S7), an increase in is observed, and the maximum is approximately
240 kPa pressure in the roof layers of the aquifer after 25 years of injection. As a result of conducting
long-term simulations for the next 400 years from the end of injection, it was found that after
approximately 30 years, the reservoir pressure in the structure’s roof is already close to the original
pressure before starting the injection of carbon dioxide.

In the initial phase of the simulation, the injected carbon dioxide accumulates in the area of the
injection well. Only a slight movement of free CO2 towards the roof layers of the aquifer was observed,
probably due to the poor reservoir properties of the analyzed structure. In addition, there is a very slow
process of reducing the free CO2 phase, due to the dissolution of CO2 in the brine, which eventually
falls to the bottom layers of the aquifer. The phenomenon of brine convection arises as a result of
changes in its density caused by the dissolution of CO2.

In injection variant S11 with the use of the directional well, free CO2 zones around the injection
well are also formed and gradually develop. There is also a noticeable slow movement of CO2 towards
the aquifer’s roof layers, due to the dominant buoyancy forces. In addition, there is a phenomenon of
dissolution of CO2 in the brine, and descent of dissolved CO2 towards the lower layers of the aquifer.
It can be observed that the brine containing dissolved CO2 spreads over a much larger area than the
residual CO2 zone. It is caused by a gradual disappearance of residual CO2, due to its dissolution
in brine.

Figure 10 presents the course of the free-phase CO2 reduction process due to the dissolution of
CO2 in brine in the two injection variants previously analyzed (S7 and S11). In the simulation scenario
with a directional well, the reduction of free CO2 in the structure is faster—there is a dissolution of
approximately 500 million sm3 of CO2 in the zone of the directional well in relation to approximately
300 million sm3 of CO2 in the zone of the vertical well. In the case of a directional well, the process
of dissolution of injected CO2 in the brine is more effective, due to the much larger contact zone of
carbon dioxide with unsaturated brine. The efficiency of the dissolution process strongly depends on
the effective surface area of the contact of CO2 with the brine.
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3.6. Simulation Results for Model in the Upper Silesian Sandstone Series Aquifer

Simulations of CO2 injection into saline aquifers in a model of the Upper Silesian Sandstone Series
were conducted for separate technological variants. Calculations were carried out for eight simulation
variants using one vertical well and two variants including injection with a directional well with the
process supported by hydraulic fracturing of the rock mass. Table 8 presents a list of the modeling
results for the total amount of CO2 injected in the individual simulation variants.

Table 8. Comparison of the results obtained for the total amount of CO2 injected in particular simulation
variants in the model of the Upper Silesian Sandstone Series.

Variant Number Total Amount of
Injected CO2, mln sm3

Total Amount of
Injected CO2, mln rm3

Total Amount of
Injected CO2, mln Mg

S1 45.905 0.183 0.087
S2 81.079 0.286 0.153
S3 409.676 1.146 0.774
S4 415.432 1.162 0.785
S5 415.432 1.162 0.785
S8 658.042 1.822 1.243
S9 658.042 1.822 1.243

S10 680.388 1.882 1.285
S11 1399.284 4.057 2.642
S12 1446.091 4.510 2.731

In the first two variants of the simulation, the maximum bottom pressure was set in the injection
wells at PBHP = 12 MPa, while in the other variants, the bottom pressure was assumed to be equal to
PBHP = 15 MPa. The first two variants compared CO2 injection for a period of 10 years, investigating the
impact of fracturing in a single well on injection efficiency. Application of hydraulic fracturing enabled
injection of almost twice as much CO2 in comparison to the amount of CO2 injected without fracturing.
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In the next three variants (S3, S4, S5), the influence of degree of hydrodynamic openness of the
structure on the sequestration process was investigated. After taking into account in the simulation
the aquifers surrounding the structure area covered by the model, only a slight increase in the total
amount of CO2 injected (S4) was found. The increase in the size of the surrounding aquifer to the size
of the Upper Silesian Sandstone Series in the entire USCB did not affect the amount of injected CO2

(S5). The size of the analytical aquifer has no real influence on the efficiency of CO2 storage probably
due to a small amount of CO2 that managed to inject in these three simulations (S3, S4, S5).

In variant No. 8, the injection of carbon dioxide was stimulated by hydraulic fracturing. This
variant resulted in an increase in the amount of CO2 injected to a value of approximately 1.243 million
Mg CO2 (1.243 Mt CO2). Increasing the assumed injection efficiency up to 3 million sm3/d in variant S9
resulted from an attempt to achieve maximum productivity of the injection wells. This change did
not give the expected outcomes, and as a result, values similar to those in variant S8 were obtained,
probably due to the poor reservoir properties of the analyzed structure. Additionally, in variant S10,
after taking into account in the simulation the aquifers surrounding the structure area covered by the
model, only a slight increase in the total amount of injected CO2 was found.

In the last variant of the simulation (S11), the sequestration process carried out using the horizontal
well with fracturing was investigated. The pressure characteristic of the sequestration process was
registered during the simulations. Similar to the previous model, the pressure at the bottom of the
injection well reaches the assumed maximum value in the course of injection. Then, it drops rapidly
after the injection is completed, and—in the next stage of the simulation—the aim is to achieve the
initial pressure.

Figure 11a presents the course of changes in average pressure in the injection zone for three
simulation variants (S8, S10, S11). In the case of variant 10, the highest total amount of injected CO2

was obtained from all simulations, including injection into a vertical well. The results of this simulation
were compared with the results of a simulation involving carbon dioxide injection using a horizontal
well (S11).
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amount of free CO2 in the structure (b) for three simulation variants: S8, S10, and S11.

Figure 11b shows the dissolution rate of injected CO2 in brine for the two simulation scenarios.
Similar to the previous model, the course of the dissolution process of CO2 in brine in the variant with
a vertical borehole is negligible, while simulation with a horizontal borehole is already characterized
by the highly dynamic dissolution of CO2 in brine.

In the simulation carried out according to the S11 scenario, a significant increase in pressure in
the roof layers of the aquifer after the end of injection in relation to the initial pressure was observed,
amounting to a maximum of approximately 4.7 MPa after 25 years of injection (Figures 12 and 13).

Such a significant excess of pressure on the roof of the structure, constituting the amount limiting
the effective capacity of the CO2 storage process, resulted in the unsealing of the overburden rocks and
partial leakage of CO2 into the superficial layers belonging to the mudstone series. After the injection
of carbon dioxide, a pressure drop in the roof layers is visible; however, as a result of long-term
simulations after even 400 years, there is still a pressure surge of approximately 1.15 MPa relative to
the original pressure in the structure’s roof.
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The analysis of the geological CO2 storage potential in the Dębowiec formation included three 
selected simulation variants that show the greatest efficiency of CO2 storage in the rock mass while 
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Simulations of the process of CO2 injection into aquifers in the model, including the Dębowiec 
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Figure 13. Changes in pressure across the injection zone—(a) pressure distribution before starting
injection and (b) pressure distribution after 25 years of injection.

In the S12 scenario, the formation and gradual development of free CO2 zones occur around the
injection well. It is also noticeable that CO2 moves towards the roof layers of the aquifer and further
towards the local top of the structure, due to the dominant buoyancy forces. In addition, there is a
phenomenon of dissolution of CO2 in brine. Figure 14 presents changes in free CO2 saturation and
dissolved CO2 in the roof part of the injection layer after 25 years of injection, whereas Figure 15
shows changes in CO2 saturation after 200 years from the end of injection. It was found that the brine
containing dissolved CO2 spreads to a much larger area than the zone of residual CO2.
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3.7. Simulation Results for Model of the Dębowiec Formation Aquifer

The analysis of the geological CO2 storage potential in the Dębowiec formation included three
selected simulation variants that show the greatest efficiency of CO2 storage in the rock mass while
maintaining injection parameters that ensure safe storage.
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Simulations of the process of CO2 injection into aquifers in the model, including the Dębowiec
formation, were made for three variants, of which one included injection of CO2 with a directional
well with the process supported through hydraulic fracturing of the rock mass. Table 9 presents a list
of the modeling results for the total amount of CO2 injected in the individual simulation variants. As
with the previous model, the volume of CO2 was given for regular and reservoir conditions.

Table 9. List of the results obtained for the total amount of CO2 injected in particular variants of the
simulation in the Dębowiec formation.

Variant Number Total Amount of
Injected CO2, mln sm3

Total Amount of
Injected CO2, mln rm3

Total Amount of
Injected CO2, mln Mg

S3A 4252.988 11.911 8.541
S4 7244.086 19.845 14.231

S5A 16024.450 40.125 28.774

Based on the initial reservoir pressure and previously conducted test simulations, it was found
that to enable effective CO2 injection for the assumed 25-year period, the bottom-hole pressure value
in the injection well should not be higher than PBHP = 13 MPa.

In the first variant of the simulation (S3A), CO2 injection is continuous for 25 years using a
directional well, with the length of the horizontal section equal to 500 m.

In the second variant of the simulation (S4), CO2 injection is also continuous for 25 years using a
directional well, with the length of the horizontal section equal to 900 m.

In the case of the third simulation scenario of the CO2 storage process in the Dębowiec formation
(S5A), CO2 injection was supported through hydraulic fracturing of the rock mass. Here, CO2 injection
was assumed for 25 years with an injection rate of 2.5 million sm3/d.

Figure 16 presents the total amount of CO2 injected into the rock mass as a function of time in
individual simulation variants (Figure 16a), changes in the average pressure in the injection zone
(Figure 16b) and changes in the injection efficiency in particular simulation variants (Figure 16c).
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Figure 16. Comparison of changes in the amount of free CO2 over time in the structure (a), changes in
the average pressure over time in the injection zone (b) and changes in the injection efficiency (c) for
three simulation variants: S3A, S4, and S5A.

The process of CO2 injection into the geological formation is usually divided into CO2 drainage
and water imbibition stages. During the drainage process, the gas saturation increases and CO2

displaces brine when it is injected into the geological formation. An outflow of water from the aquifer
can be observed during the injection process, which varied according to the variant of the simulation
(Figure 17a). The largest water movement in the analytical aquifer was found in variant S5A.
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Figure 17. Aquifer influx flowrates in an analytical aquifer (a) and process of free phase reduction of
carbon dioxide, due to the dissolution of CO2 in brine (b) in simulation variant S5A.

As the injected CO2 is driven upward to the top of the aquifer, due to buoyancy forces, ambient
groundwater flows into brine formation. This replacement of CO2 by groundwater behind the rising
CO2 plume is an imbibition process [52]. Therefore, a small inflow of water can be observed after
the end of the process of CO2 injection (Figure 16a). In this stage, capillary trapping of the CO2 is an
essential mechanism after the injection phase during the lateral and upward migration of the CO2

plume. Once the injection stops, the CO2 continues to migrate upward to the top of the aquifer. Gas
continues to displace water in a drainage process (increasing gas saturation) at the leading edge of the
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CO2 plume. Meanwhile, water displaces gas in an imbibition process (increasing water saturations) at
the trailing edge of the CO2 plume. Finally, the presence of an imbibition saturation leads to trapping
of the gas phase [49].

It is related to the effect of the hysteresis in the relative permeability that has an important
influence on CO2 trapping. After the CO2 injection is completed, during the imbibition phase, the
water displaced by CO2 starts to return and displace the carbon dioxide, at the same time cutting off

the smaller pore channels saturated with supercritical CO2. Residual gas is trapped after the end of
CO2 injection when water displaces CO2. As a result, a part of the migrating CO2 remains immovable
within the pore space by surface forces (e.g., capillary, buoyancy and viscous forces).

Similar to the previous models, this simulation case indicates a slow process of reducing the
free-phase CO2, due to its dissolution in the brine, while maintaining a constant amount of CO2 (Gas
in place) in the formation (Figure 17b).

Figure 18 illustrates the saturation distribution of injected carbon dioxide in the injected layer
of the Dębowiec formation in individual intervals of time. As in previous models, it is clear that the
brine containing dissolved CO2 is spreading over a much larger area than the zone of residual CO2. In
addition, the vertical section through the injection zone (Figure 19) shows free CO2 saturation in the
aquifer (carbon dioxide remaining in the residual state) which is presented in the form of a common
fraction, while the distribution of CO2 dissolved in the brine is presented in the form of a molar fraction
for individual simulation time intervals.
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4. Conclusions

• The obtained results of the numerical simulations made it possible to analyze the changes in
parameters characteristic for the geological process of CO2 storage, i.e., pressures at the bottom of
injection wells, maximum pressure in the rock mass, pressure gradient with depth and excess
pressure in the roof layers of the structure caused by CO2 injection in relation to the primary
pressure in the rock mass.

• The results indicate that the most prospective reservoir for potential geological storage of CO2

out of the three analyzed reservoirs is the Dębowiec formation, which is characterized by the
most favorable geological and hydrogeological parameters. The optimal variant of the simulation
regarding safe CO2 storage in the rock mass, i.e., excluding the possibility of unsealing overburden
rocks and uncontrolled leakage of injected carbon dioxide, is a variant with a total amount of
injected CO2 of approximately 8.54 million Mg during 25 years of injection. The critical limit of
the effective sequestration capacity is the excess pressure on the structure’s roof, which in this
simulation variant constituted approximately 20% of the original pressure on the structure’s roof.

• The total amount of injected CO2 assumed in the analyzed simulation variant involves a relatively
small volume of the structure around the injection well. To explore the potential for CO2 storage
in the entire area of the Dębowiec formation, it would be necessary to simulate CO2 injection with
simultaneous use of more injector wells while maintaining the injection parameters obtained in the
S3A variant. It seems that the results of numerical simulations using a larger number of injection
wells can be similar to the block method estimated for the static storage capacity of CO2 in saline
aquifers of the Dębowiec formation amounting to approximately 44 million Mg CO2 [32,34].

• In addition, there is a very slow process of reducing the free-phase CO2, due to the dissolution of
CO2 in the brine, which eventually falls to the bottom layers of the aquifer. The phenomenon of
brine convection arises as a result of changes in its density caused by the dissolution of CO2. In the
case of the simulation scenario with the directional well, the reduction of free CO2 in the structure
is slightly faster than the variant with the vertical wells. This process depends to a large extent on
the effective contact area of carbon dioxide with brine, which in the case of the directional well is
much larger.

• It was noted that the following processes increases the CO2 storage capacity of saline aquifers and
facilitates the permanent long-term trapping of injected carbon dioxide:

- Migration of CO2 towards the top layers of the aquifer caused by buoyancy forces;
- Slow reduction of the free-phase CO2 due to the dissolution of CO2 in brine;
- Convective movement of brine enriched with dissolved carbon dioxide.

• Within the framework of this study, in the simulations of CO2 injection, the maximum permissible
overbalance pressure in the roof layers of the aquifer was set at 20% above the hydrostatic pressure.
It was assumed that such a pressure increase informs about the risk of unsealing a cap rock.
Integration analysis can be a continuation of these works in combination with future work related
to the analysis of possible scenarios of CO2 leakage. Maintaining the long term storage of CO2 is
an important requirement for a geologic CO2 storage project. However, the possibility remains
that the CO2 will leak out of the formation into overlying groundwater aquifers. A site-specific
remediation plan is important during the site selection process and necessary before storage
begins. The following objectives for remediation can be considered: Removing any mobile CO2,
reducing the quantity of CO2 in the reservoir and reducing the aqueous phase concentration
of CO2. The effectiveness of using vertical and horizontal extraction wells to remove the CO2

could be analyzed. Moreover, injecting water to dissolve the gaseous CO2 and reduce the overall
concentration and increase capillary trapping are worth of consideration [53–55].

• The continuous injection of CO2 may cause a sharp increase for pressure in the reservoir system, so
it is important to determine reasonable reservoir pressure control strategies to ensure the safety of
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the CGS project. Based on a Study on the CO2-Enhanced Water Recovery Efficiency and Reservoir
Pressure Control Strategies [56], CO2-EWR technology can effectively control the evolution of the
reservoir pressure and offset the sharp increase in reservoir pressure caused by CO2 injection and
the sharp decrease of reservoir pressure caused by saline production. The results of the analysis
provide a guide and reference for the CO2-EWR site selection, as well as the practical placement
of wells, so that it can be very useful for the future work on-site selection in the Upper Silesian
Coal Basin in Poland.
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