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Abstract: Empirical mode decomposition (EMD) is a widely used adaptive signal processing method,
which has shown some shortcomings in engineering practice, such as sifting stop criteria of intrinsic
mode function (IMF), mode mixing and end effect. In this paper, an improved sifting stop criterion
based on the valid data segment is proposed, and is compared with the traditional one. Results show
that the new sifting stop criterion avoids the influence of end effects and improves the correctness of
the EMD. In addition, a novel AEMD method combining the analysis mode decomposition (AMD)
and EMD is developed to solve the mode-mixing problem, in which EMD is firstly applied to dispose
the original signal, and then AMD is used to decompose these mixed modes. Then, these decomposed
modes are reconstituted according to a certain principle. These reconstituted components showed
mode mixing phenomena alleviated. Model comparison was conducted between the proposed
method with the ensemble empirical mode decomposition (EEMD), which is the mainstream method
improved based on EMD. Results indicated that the AEMD and EEMD can effectively restrain the
mode mixing, but the AEMD has a shorter execution time than that of EEMD.

Keywords: empirical mode decomposition; analysis mode decomposition; analysis-empirical mode
decomposition; mode mixing; sifting stop criterion

1. Introduction

The analysis of time-frequency of vibration signals is one of the most effective and important
methods for fault diagnosis of rotating machinery, since the vibration signal includes massive
information that reflects the running state of rotating machinery [1]. The empirical mode decomposition
(EMD) is one of most commonly used methods for signal processing in the time-frequency domain.
EMD can decompose a complex signal into the finite intrinsic mode functions (IMF) based on the
local characteristic time scale of signals, and each IMF represents one intrinsic vibration mode of
the original signal. Then the characteristic information of the signal can be extracted by analyzing
such stationary stable IMFs [2]. EMD has attracted increasing attention since it appeared [3–5], and it
has been widely used in economics, biomedicine and engineering science fields, especially for fault
diagnosis. Ali et al. [6] applied the EMD method and artificial neural network in fault diagnosis of
rolling bearings automatically. Xue et al. [7] presented an adaptive, fast EMD method and applied
it to rolling bearings fault diagnosis. Yu et al. [8] introduced various applications of EMD in fault
diagnosis. Cheng et al. [9] combined EMD with a Hilbert transform to conduct the recognition for
mode parameters. Then, they introduced how to apply the EMD to the fault diagnosis for local
rub-impact of rotors [10]. Rilling [11] investigates how the EMD behaves under the case of a composite
two-tone signal.
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Though EMD has been commonly utilized in reality, some shortcomings are exposed, including
mode mixing, end effects, stop criteria of IMF, over-envelope and under-envelope. These deficiencies
normally restrict the further promotion and application of EMD [12]. Since the criterion to judge IMF is
that the average value of its upper and lower envelope spectrums is zero in the EMD method, but in the
real decomposition process, that average value is impossible to be zero due to the disturbance of cubic
spline interpolation, the influence of end effect and adopted frequency. Thus, it is necessary to define
a valid stop criterion for the decomposition process in engineering, namely the stop criterion problem
of IMF for the EMD method, also named as the sifting stop criterion. Some researchers have attempted
to improve the efficiency of EMD. Among them, Pustelnik [13] mainly developed an alternative to the
sifting process for EMD, based on non-smooth convex optimization allowing integration flexibility in
the criteria, proposed algorithm and its convergence guarantees.

Mode mixing means that one IMF contains vastly different characteristic time scales, or similar
characteristic time scales that are distributed in different IMFs, which results in the waveform mixing
of the two adjacent IMFs. These mixing modes influence each other so that it is difficult to identify
them. Mode mixing is the fatal flaw of EMD. It makes the physical significance of IMF components
uncertain finally, which influences the correctness of signal decomposition and seriously restricts its
application in engineering [14].

Until now, various methods have been developed to restrain the mode-mixing problem in the
EMD. Zhao [15] directly filtered abnormal information related to the IMF and fitted filtered data
segment by spline interpolation, but it only proved to dispose the mode mixing problems caused
by a known transient abnormity. The masking signal method [16] and the high frequency harmonic
method [17] are simple and effective, but they are susceptible to distortion and need to be reprocessed
for practical engineering signals.

The ensemble empirical mode decomposition (EEMD) presented by Huang is generally considered
an effective one [18]. EEMD takes advantage of the statistical characteristics of white Gaussian noise
while frequency is uniformly distributed, so the signal after adding white Gaussian noise shows
continuity in different scales, which solved the mode mixing problem to some extent. However, it also
raised some other issues. For example, the number and the amplitude of white noises which are added
in the signal are greatly subjective, and the EEMD sacrifices some adaptivity. In addition, although the
number and the amplitude of added white noises are chosen reasonably, the mode mixing in low
frequency may be aroused artificially while high-frequency mode mixing is restricted [19]. Moreover,
the algorithm of the EEMD method is complex and it takes a long time to run the program, which will
restrict its application on the signal process that demands to be processed in real-time. Accordingly,
some researchers presented improved methods to overcome the deficiencies of EEMD. Among them,
Lei [20] proposed adaptive EEMD to improve its adaptivity. Zheng [21] developed partial EEMD
and Tan [22] presented multi-resolution EMD to solve mode mixing problem. Mohammad [23] uses
approximate entropy and mutual information to improve EEMD to generate statistical features in
order to increase the performance of early fault appearance detection, as well as the fault type and
severity estimation.

In this paper, a new sifting stop criterion was proposed based on valid data segments to solve the
problem of sifting stop criteria in the EMD, and an improved method, namely AEMD, combined the
analysis mode decomposition (AMD) and EMD. It was developed to solve the mode-mixing problem.
The sifting stop criteria and AEMD proposed were applied to a simulation signal and an engineering
case to illustrate the validity and superiority of the proposed method. The structure of the paper is as
follows: Section 2 introduces the basic principles of EMD; Section 3 narrates the proposed sifting stop
criteria based on valid data segment and compares it with the original one; in Section 4, the principle
and steps of AEMD are expounded firstly, then applied to decompose simulation signals and a rotor
vibration signal, and it is compared with the EMD and EEMD methods; finally, Section 5 draws a brief
conclusion of current work.
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2. Basic Principles of EMD

EMD refers to a “sifting” process, in which, the component with the smallest extreme time feature
scale is sifted out firstly, then those with larger extreme time feature scales, and the component with
the largest feature scales are finally sifted out. That is to say, the average frequency of IMF components
obtained from the EMD is reduced gradually, and the main steps of the EMD are introduced as follows [24]:

(1) Firstly, identify all the local maximum points and minimum points of original signal x(t),
then match the upper and lower envelope spectrums of extreme points with cubic spline line
respectively. Furthermore, ensure that the signal x(t) is between the upper and lower envelope
spectrums; (2) calculate the local mean of upper and lower envelope spectrums, denoted as m1;
(3) calculate the first component h1(t) according to Equation (1):

h1(t) = x(t) −m1 (1)

(4) Judge that whether h1(t) can satisfy the conditions to be an IMF. If not, h1(t) should be treated
as an original signal to repeat steps (1), (2) and (3) until h1(t) can meet the conditions, designated as
C1(t) = h1(t). C1(t) is the first IMF component after decomposition. (5) Separate C1(t) from the signal
x(t), i.e., r1(t) = x(t) − c1(t). (6) Treat r1(t) as an original signal to repeat steps (1)–(5), and after n
cycles, n IMF components and 1 residual value rn(t) can be derived; i.e.,

r2 = r1 − c2

r3 = r2 − c3
...
rn = rn−1 − cn

(2)

Then, the original signal x(t) can be expressed as:

x(t) =
n∑

i=1

ci+rn (3)

where ci refers to the ith IMF component and rn is the residual function.
This cycle comes to the end when rn becomes a monotonic function, but in the real decomposition

process, when rn meets the conditions of monotonic function, the cycle number is usually large, and the
number of IMF components will be too large. Furthermore, a mass of EMD tests have revealed that
most of these final components obtained from EMD are false IMF components, without substantive
physical significance. Thus, a good sifting stop criterion can not only improve the decomposition
efficiency, but also increase the decomposition accuracy.

The stop criteria of decomposition process proposed by Huang was realized by limiting the
standard deviation of the two adjacent IMFs and the sifting times are eventually controlled by the
iteration threshold Sd [25]. In particular, Sd is defined as:

Sd =
T∑

t=0

[hk(t) − hk−1(t)]
2

h2
k−1(t)

(4)

where T refers to the time span of a signal, hk(t) and hk−1(t) denote the two adjacent processing
sequences in the process of EMD and the value of Sd is usually between 0.2 and 0.3.

It is of great significance to determine reasonable iteration threshold Sd. If the threshold is too
small, the computational cost will increase greatly and the IMF components finally obtained will be of
no significance; while if it is too large, it will be difficult to satisfy the condition of IMF.
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3. The Sifting Stop Criteria Based on the Valid Data Segment

The sifting stop criteria of IMF proposed by Huang is valid for most cases, but there are some
problems; it can be noted from Equation (3) that when hk(t) = 0, the iteration threshold will become
an uncertain value. It is evidently inappropriate if the iteration threshold is used to control sifting
number at the time. In addition, the sifting stop criteria ignored the influence of end effect. Consequently,
the decomposition result may produce errors if the distorted endpoint data are adopted. In most cases,
the end effect of EMD is obvious, though some effective measures will been taken to restrain it, the end
effect still exists.

In this paper, an improved sifting stop criterion of IMF based on the valid data segment is
proposed, where the valid data segment means the residual data segment after kicking out the distorted
endpoint data. The sifting stop criteria fully consider the influence of end effect to sifting stop criteria,
and only use the valid data segment to calculate the iteration threshold. The sifting stop criterion is
expressed as follows:

If hk(t) is an IMF, it satisfies the following inequality:

− δ < m̃k+1 < δ (5)

where m̃k+1 denotes the valid data segment of the mean curve of upper envelope and lower envelope;
δ represents the error threshold, which ranges from 0.01 to 0.1.

The EMD is applied to decompose a simulation signal respectively based on the proposed sifting
stop criterion and the traditional one below. The simulation signal is

x(t) = x1(t) + x2(t), t ∈ [0, 1] (6)

x1(t) = (1 + 0.5 sin(2π ∗ 4t)) ∗ 2 cos(2π ∗ 80t),
x2(t) = sin(2π ∗ 24t)

(7)

The simulation signal consists of x1(t) and x2(t) (as shown in Figures 1–3) are the decomposition
results by using EMD based on the proposed sifting stop criterion and the traditional one, respectively.
It is worth noting that the EMD can efficiently decompose the original signal by using the two sifting
stop criteria, but it is clear from the two edges of these two figures that the decomposition result c1 and
c2 in Figure 2 are more accurate than imf 1 and imf 2 in Figure 3, which show an evident end effect.
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Figure 2. The result of empirical mode decomposition (EMD) method using the sifting criterion based
on the valid data segment.
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Figure 4 plots the vibration signal of a real gear with broken teeth. The number of gear teeth
z = 75; module m = 2; the rotating frequency f = n2/60 ≈ 13.6. EMD based on the proposed sifting
stop criteria is used to decompose the vibration signal of a gear, and obtain five IMFs. The first IMF
imf 1 contains massive fault information of the gear. Note from its time domain graph (see Figure 5)
that the waveform of imf 1 presents an obvious modulation feature, and its cycle of modulation wave
(T, approximately 0.074 s) accordingly had a frequency of about 13.6 Hz, which is exactly the rotating
frequency of the faulty gear. Thus, it can be concluded that the fault information has been exacted
from the vibration signal of the practical gears by using the proposed sifting stop criterion.
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4. AEMD Method

4.1. Analytical Mode Decomposition (AMD) Method

AMD can separate the harmonic components of each frequency band from a multiband signal,
its principle is as follows:

A signal x0(t) is separated into the two components by boundary frequency f b, one is the
fast-changing signal xf(t) and another is slowly-changing signals xs(t):

x0(t) = x f (t) + xs(t) (8)

Their corresponding Fourier transforms Xf(ω), Xs(ω) have no overlap in the frequency band.
The Hilbert transforms of cos(2π fbt) · x0(t) and sin(2π fbt) · x0(t) are as follows:

H[cos(2π fbt) · x0(t)] = xs(t) ·H[cos(2π fbt)] + cos(2π fbt) ·H[x f (t)] (9)

H[sin(2π fbt) · x0(t)] = xs(t) ·H[sin(2π fbt)] + sin(2π fbt) ·H[x f (t)] (10)

xs(t) and xf(t) can be derived from the above formulas:

xs(t) = sin(2π fbt) ·H[cos(2π fbt) · x0(t)] − cos(2π fbt) ·H[sin(2π fbt) · x0(t)] (11)

x f (t) = x0(t) − xs(t) (12)

As aforementioned, the signal x0(t) is decomposed into xs(t) and xf(t) by using the analysis
mode decomposition.

4.2. Steps of the AEMD Method

When the signal to be decomposed contains high-frequency intermittent signals or some similar
compositions in time feature size, it is inevitable that the mode mixing appears in decomposition
result by using EMD directly [11]. In this section, the AEMD that combines AMD with EMD is
proposed to restrain the mode mixing in EMD. In particular, EMD is first applied to dispose the original
signal, and then AMD is used to decompose these mixed modes. Then, these decomposed modes are
reconstituted according to a certain principle. These reconstituted components show mode mixing
phenomena alleviated. The specific steps are given as follows:

(1) EMD is applied to the original signal and obtain some IMFs and a residual component r;
(2) A fast Fourier transform (FFT) is conducted on IMFs, and the spectral diagrams of these IMFs

are obtained. The first IMF1(t) with mode mixing is performed by AMD. The boundary frequency
f b1 can be determined according to the spectrum. The average frequency of the two confused modes
is used as the boundary frequency in this analysis. Then IMF1(t) is separated into the two signals
c1(t) and ĉ1(t) by using AMD. c1(t) is the correction component of IMF1(t) and ĉ1(t) is the residual
component of c1(t). Thus, IMF1(t) can be expressed as follows:

IMF1(t) = c1(t) + ĉ1(t) (13)
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(3) Add ĉ1(t) to the IMF2(t) and get the renewed IMF2(t), denoted as IMF*2(t). The boundary
frequency fb2 can be obtained according to the amplitude spectrum of IMF*

2(t). Then IMF*
2(t) is

decomposed into the two signals c2(t) and ĉ2(t) by using AMD. c2(t) is the correction component of
IMF*2(t) and ĉ2(t) is the residual component of c2(t). Similarly, IMF*2(t) is expressed as follows:

IMF∗2(t) = c2(t) + ĉ2(t) (14)

(4) By that analogy, the similar approach is utilized to dispose all the subsequent IMF components
with mode mixing. The final residual component cˆ

k(t) is added to the residual error r and obtain the
final residual error, denote as vk(t).

4.3. The Comparison of Simulation Signal Analysis by Different Methods

A simulation signal was decomposed by using EMD, EEMD and the proposed AEMD
respectively, and their disposal results were compared, to demonstrate AEMD efficiency and superiority.
The simulation signal x(t) is:

x(t) = x1(t) + x2(t) + x3(t); t ∈ [0, 1] (15)

x1(t) =


0.8 cos(600πt); 0.12 ≤ t ≤ 0.18
0.9 cos(600πt); 0.42 ≤ t ≤ 0.48
0.8 cos(600πt); 0.75 ≤ t ≤ 0.81

0; else

(16)

x2(t) = 2 cos(60πt); t ∈ [0, 1]
x3(t) = 2.5 cos(28πt); t ∈ [0, 1]

(17)

The simulation signal is shown in Figure 6. The decomposition result of EMD, in Figure 7,
shows more serious mode mixing. For the first mode, the high frequency intermittency signal c1(t)
is confused with the sinusoidal signal at 30 Hz, for the second mode c2(t), the sinusoidal signal at
30 Hz with the sinusoidal signal at 14 Hz. The third and fourth modes are false IMF components.
The decomposition result of EEMD is imf 1, imf 2, imf 3, imf 4, as shown in Figure 8, with ensemble
average number N = 30, and the amplitude of noise is set as 0.01 standard deviation of the original
signal. The decomposition result of AEMD is shown in Figure 9. A successful decomposition result
should distinctly obtain the several components of the original signal. In order to compare the results
of decomposition results by these different methods, the green lines in Figures 7–9 represent the several
components of the original signal; The blue lines represent the composition results by these different
methods. Table 1 lists the run time by these three methods using the same computer.

Note from Figures 7–9 that the goodness of fit between the blue line and green line by EEMD
and AEMD methods is higher than that of EMD. The comparison of these three methods reveals that
EEMD and AEMD can restrain effectively the mode confusion phenomena, but the running time of
EEMD is much longer than those of AEMD and EMD, because the EEMD method adds white noise
to original signals to alleviate mode mixing problem, which makes the decomposition process more
complex and time-consuming. The executed time of EMD is approximately equal with AEMD’s, but it
has inevitable mode mixing problem. Thus, AEMD has shown certain comprehensive advantages in
alleviating mode mixing and making decomposition efficient.
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Table 1. The running time of the three methods (unit: seconds).

Method First Second Third Fourth Fifth Sixth

EMD 1.3988 1.3860 1.3930 1.3846 1.3820 1.3940
EEMD 41.4875 44.8383 44.1800 42.8480 43.2321 44.024
AEMD 1.4027 1.3832 1.3843 1.3934 1.3880 1.3848
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Figure 9. The decomposition result of the simulation signal by AEMD (combined AMD and EMD).

4.4. Case Study

Figure 10 presents the experimental device to simulate the local rubbing fault of rotors,
during which the rotate-speed was at 300 RPM, controlled by the inputted motor. The displacement
sensor that was horizontally installed was employed to sample the vibration signals, with sampling
frequency 4k Hz. Figure 11 plots the vibration signal of a practical rotor system with rub-fault.
The decomposition result for the vibration signal by using the EMD and the AEMD are shown as
Figures 12 and 13, respectively. Figure 14a,b is the spectrum diagram by fast Fourier transform (FFT)
for the composition results of EMD and AEMD, respectively.

Note from Figures 12 and 14a that the mode mixing problem still distinctly exists in the
decomposition results by EMD. In the imf 2 diagram, the characteristic frequency of the rotor rubbing
fault is confused in multiple frequencies, caused by the slight rubbing fault of the rotor, which affects
the identification for the fault. In the imf 3 diagram, the triple frequency of the characteristic frequency
of the rotor rubbing fault—150 Hz is nearly invisible, which is mixed in the fundamental frequency of
the rotor rubbing fault—50 Hz.
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In addition, note from Figures 13 and 14b that the tripling frequency 150 Hz and ten times
frequency—500 Hz of the characteristic frequency of the rotor rubbing fault are distinctly decomposed.
This spectrum character with multiple higher harmonics is in accordance with the slight rubbing fault
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of the rotors. Thus, the characteristic frequency of the rotor rubbing fault is successfully obtained by
AEMD, though there is still slighter mode mixing.

5. Conclusions

In this paper, an improved sifting stop criterion based on valid data segment was proposed.
Compared with the traditional one, results indicated that the newly proposed sifting stop criterion
avoids the influence of end effects and improves the correctness of the EMD. In addition, a novel
method, namely AEMD, which combines the AMD and EMD, was developed to solve the mode
mixing problem of EMD. Model comparison was conducted between the proposed method and the
EEMD. It is worth mentioning that both the AEMD and EEMD can effectively restrain the mode mixing,
but the AEMD needs less execution time than that of EEMD. The proposed method overcomes some
shortcomings of EMD to some extent and makes it better for use in the fault diagnosis of rotating
machinery. However, the proposed method has certain imitations; the boundary frequency of AMD
method requires human intervention, which means worse adaptivity than EMD. It can achieve better
results for more simple signals, but its advantage is not obvious for complex engineering signals,
since they take more time than EMD.

Author Contributions: Z.C. conceived the methodology, conducted the research and wrote the original draft. B.L.
performed the programming to fulfil the method and edited the manuscript. X.Y. collected data and analyzed the
data. H.Y. investigated the experiment and discussed the results.
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