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Abstract: With the convening of the annual global climate conference, the issue of global climate
change has gradually become the focus of attention of the international community. As the largest
carbon emitter in the world, China is facing a serious situation of carbon emission reduction. This
paper uses the IPCC (The Intergovernmental Panel on Climate Change) method to calculate the
carbon emissions of energy consumption in China from 1996 to 2016, and uses it as a dependent
variable to analyze the influencing factors. In this paper, five factors, total population, per capita GDP
(Gross Domestic Product), urbanization level, primary energy consumption structure, technology
level, and industrial structure are selected as the influencing factors of carbon emissions. Based on
the expanded STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology)
model, the influencing degree of different factors on carbon emissions of energy consumption is
analyzed. The results show that the order of impact on carbon emissions from high to low is total
population, per capita GDP, technology level, industrial structure, primary energy consumption
structure, and urbanization level. On the basis of the above research, the carbon emissions of China′s
energy consumption in the future are predicted under eight different scenarios. The results show that,
when the population and economy keep a low growth rate, while improving the technology level
can effectively control carbon emissions from energy consumption, China′s carbon emissions from
energy consumption will reach 302.82 million tons in 2020.
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1. Introduction

According to the fourth IPCC assessment report, the average surface temperature has risen by
about 0.74 ◦C in the past 100 years [1]. Global climate change is mainly caused by greenhouse gases
such as carbon dioxide and methane emitted by human activities. The warming effect of carbon
dioxide is the most clear. In order to reduce carbon dioxide emissions and the negative impact
of human activities on the environment, the international community has made many efforts in
this century. China is the largest developing country whose science and technology are inferior to
developed countries. Additionally, its economic development largely relies on traditional energy, so
the environmental problems and energy crisis need to be solved urgently in China [2]. China is also a
big energy-consuming country. Under the background of global low carbon emission reduction, China
has an obligation to contribute to the development of environmental friendliness.

As for the influencing factors of carbon emissions, scholars at home and abroad have made fruitful
research. The representative research results are driving force analysis based on the IPAT equation
and driving factor analysis based on the Kaya model. Ehrlich et al. put forward the IPAT equation,
believing that the driving force of carbon emissions is the comprehensive effect of population size,
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the economic development level, and scientific and technological progress [3]. Dietz et al. combined
stochastic theory with the IPAT model and established the STIRPAT model. He introduced the index
into the model so that the model could be used to analyze the non-proportional impact of human
factors on the environment [4]. Kaya, who is a Japanese scholar, established a mathematical model
to reflect the quantitative relationship between population, economy, energy, and carbon dioxide
produced by human activities. He believed that the total amount of carbon dioxide produced by
social and economic activities in a region was equal to the product of factors such as total population,
per capita GDP, energy intensity, and carbon emissions per unit energy consumption [5]. Wang et al.
decomposed the influencing factors of carbon emissions by logarithmic mean Dirichlet decomposition
(LMDI). The results showed that energy intensity was the most important factor to reduce carbon
emission [6]. Wang Feng and others used the logarithmic average Divisia index decomposition method
to study the growth rate of carbon dioxide emissions from China′s energy consumption. He thought
that per capita GDP growth was the greatest factor affecting the increase of carbon emissions, and that
the decrease of energy intensity in the production sector was the most important factor to restrain the
increase of carbon emissions [7].
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Research shows that different factors have different effects on carbon emissions, so it is necessary to
further explore the factors affecting carbon emissions. In view of the shortcomings of previous studies,
this paper uses the expanded STIRPAT model to analyze the impact of population size, affluence,
primary energy consumption structure, technology level, industrial structure, and urbanization level
on total carbon emissions. On the basis of factor analysis, the three most influential factors are taken
as variables to set different scenarios. In addition, the carbon emissions of China′s future energy
consumption under different scenarios are predicted and analyzed. The research structure of the article
is shown in Figure 1. Within the figure, b, k, c, h, f, and g are elastic coefficients. Descriptions of other
symbols are shown in following article.

2. Establishment of Influencing Factors Regression Model

2.1. Sources of Data

Energy consumption data are from the China Energy Statistics Yearbook (1996–2016) [8].
Population, GDP, urban population, and output value of secondary industry all come from the
“China Statistical Yearbook” (1996–2016) [9].

2.2. Introduction of the Modeling Method

2.2.1. Introduction of the Carbon Emission Calculating Method

This paper analyzes carbon emissions from energy consumption in China. Considering the
availability of data and the purpose of research, the IPCC method is adopted in this paper. The selected
energy consumption categories are raw coal, washed coal, coke, coke oven gas, other gas, crude oil,
gasoline, kerosene, diesel oil, fuel oil, liquefied petroleum gas, refinery dry gas, and natural gas. The
calculation formula is shown below.

CF =
n∑

i=1

Fi × si × ei × u (1)

Fi is the total energy consumption per ton. si is the standard coal coefficient for energy conversion,
as shown in Table 1. ei is the carbon emission factor of each energy source. The energy carbon emission
coefficients used in this paper refer to the various energy carbon emission coefficients in the 2006 IPCC
National Greenhouse Gas Emission Inventory Guidelines, as shown in Table 2. Since the statistical
unit of each energy consumption is not meaningful, u is the unit conversion coefficient.

Table 1. Standard coal coefficient for 13 energy conversions.

Standard Coal
Coefficient Energy Types Standard Coal

Coefficient

raw coal 0.7143 kerosene 1.4714
washed coal 0.9000 diesel oil 1.4571

coke 0.9714 fuel oil 1.4286
coke oven gas 0.5926 liquefied petroleum gas 1.7143

other gas 0.3214 refinery dry gas 1.5714
crude oil 1.4286 natural gas 1.2128
gasoline 1.4714
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Table 2. Carbon emission coefficient for 13 energy types.

Energy Types Carbon Emission
Coefficient Energy Types Carbon Emission

Coefficient

raw coal 0.7559 kerosene 0.5714
washed coal 0.7559 diesel oil 0.5921

coke 0.855 fuel oil 0.6185
coke oven gas 0.3548 liquefied petroleum gas 0. 5042

other gas 0.3548 refinery dry gas 0.4602
crude oil 0.5857 natural gas 0.4483
gasoline 0.5538

2.2.2. Introduction of Influencing Factors Analysis Method

The IPAT (I = Human Impact, P = Population, A = Affluence, T = Technology) model is widely
used in the research of carbon emission related issues. The IPAT model was first proposed by American
ecologists Ehrlich and Commoner to study the relationship between human activities and the natural
environment. The major variables are population size (P), affluence (A), technology level (T), and
environment (I) [10]. It has been widely used by scholars to analyze the influencing factors of
environmental change since it is simple and easy to understand. However, the factors leading to
environmental problems are complex. The IPAT model only involves three influencing factors, which
cannot fully reflect the actual problems. The model can only analyze the problem by changing one
factor while keeping other factors fixed, so that the influence of independent variables on dependent
variables is proportional. However, this is not in line with the actual situation. In order to make up for
the deficiency of the IPAT model, York and other scholars put forward the STIRPAT model on the basis
of this model [11], which is expressed as follows.

I = aPb
×Ac

× Tde (2)

In the formula, a is the coefficient of the model, b, c, and d are the index of population size, affluence
degree, and technology level, respectively, and e is the random error term. In practical application,
according to the STIRPAT model, the elasticity of influence factors on the environment is obtained by
taking a natural logarithm on both sides of the equation. The logarithmic form is as follows.

ln I = ln a + b ln P + c ln A + d ln T + e (3)

Among them, b, c, and d are the elasticity coefficients of the population, affluence, and the level of
technology, and ln a is a constant term.

In order to analyze the influencing factors of carbon emission intensity in China, this paper
introduces six indicators: total population, urbanization level, per capita GDP, technology level,
industrial structure, and primary energy consumption structure to extend the original STIRPAT model.
The expanded STIRPAT model is expressed below.

ln I = ln a + b ln P + k ln U + c ln A + h ln T + f ln S + g ln F + ln e (4)

Among them, I represents the total carbon emissions from China′s energy consumption, P
represents the total population, U represents the urbanization level, A represents the per capita GDP, T
represents the level of technology, S represents the industrial structure, and F represents the primary
energy consumption structure. b, k, c, h, f, and g are elastic coefficients, which indicate that, when P, U,
A, T, S and F change by 1%, the carbon emissions will change b%, k%, c%, h%, f %, and g%, respectively.

The explanations of each variable are given in Table 3.
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Table 3. The explanations of variables.

Variable Symbol Variable Description Unit

carbon emission I total carbon dioxide emissions ten thousand tons
population size P total population ten thousand

affluence A per capita GDP yuan
technology level T energy intensity –

urbanization level U urbanization rate %

industrial structure S the proportion of the output value of
the secondary industry %

primary energy
consumption structure F the proportion of coal consumption in

primary energy consumption %

Technology level refer to energy intensity. Energy intensity is energy consumption per unit of
GDP, which reflects the input-output characteristics of the energy system, and reflects the overall
efficiency of energy economic activities.

The urbanization level is expressed by the urbanization rate, that is, the proportion of urban
population to the permanent population. The urbanization level is one of the important factors affecting
carbon emissions. Cities are the concentration areas of population, transportation, industry, and other
resources, as well as energy consumption and carbon emissions [12].

The industrial structure is explained by the proportion of the output value of the second industry
in the total output value of that year. Among the three major industries, the secondary industry
consumes the largest energy, especially the heavy industry.

The structure of the primary energy consumption is the proportion of coal consumption in primary
energy consumption in that year. China′s energy consumption structure is still dominated by coal, and
coal and other fossil energy consumption is the main reason for carbon dioxide production.

In order to test whether there is an inverted U-shaped curve between economic growth and carbon
emissions, the ln A in model (4) is decomposed into ln A and (ln A) 2 [13]. The model is adjusted below.

ln I = ln a + b ln P + k ln U + c1 ln A + c2(ln A)2 + h ln T + f ln S + g ln F + ln e (5)

c1 and c2 are coefficients of the logarithm of per capita GDP and logarithm quadratic of per capita
GDP, respectively.

From Equation (5), the elasticity coefficient EEIA of per capita GDP to carbon emissions from
energy consumption can be obtained as follows.

EEIA = c1 + 2c2 ln A (6)

If c2 is negative, there is an inverted U-shaped curve between per capita GDP and carbon emissions.
In data regression, because the nature and unit of each variable are different, if the original data

is directly used for regression, it will result in unfair regression. Therefore, before using principal
component analysis, the data should be standardized. The standard processing method adopted in
this paper is the Z-score processing method [14].

2.3. Regression Model Results

2.3.1. Results of China′s Energy Consumption Carbon Emissions

According to the China Energy Statistics Yearbook (1996–2016) and Formula (1), China′s energy
consumption and carbon emissions from 1996 to 2016 are calculated as shown in Figure 2.
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Figure 2. China′s energy consumption and carbon emissions from 1996 to 2016.

As can be seen from the figure, since 1996, China′s total energy consumption has maintained a
growing trend. China′s total energy consumption in 1996 was 138.948 million tons, while, in 2016,
it was 435.819 million tons, which reached an increase of 213.66%. Similarly, carbon emissions from
China′s energy consumption were increasing. Before 2003, the growth rate was low and stable at 2%.
However, the growth rate in the three years from 2003 to 2005 exceeded 15%, of which the growth rate
in 2004 reached 26.25%. After 2005, the growth rate has decreased slightly, but the carbon emissions
are still increasing. From 111.263 million tons in 1996 to 410.052 million tons in 2016, it increased by
268.54% in 20 years.

2.3.2. Results of the Regression Model

The least squares regression is performed on the variables lnP, lnU, lnA, (lnA)2, lnT, lnS, and lnF.
The model test results include the adjustable coefficient R2 = 0.71505, the F value is 43.31292, and the
p value is 0.00000 < 0.05. The multivariate regression parameters are estimated as shown in Table 4,
and the value p of the variables ln A, ln T, and ln S are all greater than the significance level of 0.05.
The Variance Inflation Factor (VIF) is calculated on the basis of multiple explanatory variables to assist
the regression equation, and reflects the severity of multicollinearity between explanatory variables.
It is generally believed that there is a serious multiple collinearity between explanatory variables and
residual explanatory variables when VIF is greater than 10. Additionally, the multiple collinearity
between explanatory variables will affect the results of least squares regression [15]. In this study, the
variable VIF values for each indicator are shown in Table 4. There are multiple collinearity between
variables. The main methods to eliminate multicollinearity are partial least squares [16], principal
component regression [17], and ridge regression [18]. In this study, principal component regression
is used.

Before eliminating multiple collinearity by principal component regression, the independent
variables ln P, ln U, ln A, (ln A) 2, ln T, ln S, and ln F should be tested by KMO (Kaiser-Meyer-Olkin)
test and Bartlett sphericity test. The two tests can confirm whether the above variables are suitable for
principal component regression [19]. This can be seen from Table 5. The result shows that KMO = 0.747.
The Bartlett sphericity test has a significant value less than 0.05, so we should reject the zero hypothesis.
Additionally, consider that the correlation coefficient matrix cannot be a unit matrix. Therefore, there is
correlation between the original variables. This indicates that these seven independent variables are
suitable for principal component analysis.
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Table 4. Estimation of multivariate regression parameters.

Variable Coefficient Standard Error t-Statistic Probability VIF

C 8.07×10−8 0.0131 6.17×10−6 1.0000 −

lnP 1.8444 0.7040 2.6199 0.0212 2759.3270
lnU −1.8825 0.7706 −2.4430 0.0296 2951.6632
lnA −0.7634 3.5876 −0.2128 0.8348 1754.8335

(lnA) 2 2.5871 3.3737 0.7669 0.4569 109.1082
lnT −0.7992 0.1163 −6.8732 0.0000 75.0465
lnS 0.0170 0.0668 0.2549 0.8028 24.1146
lnF 0.0163 0.0841 0.1943 0.8489 19.7655

Table 5. KMO test and Bartlett sphericity test.

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.747

Bartlett′s Test of Sphericity Approx. Chi-Square 502.132
df 21
sig 0.000

This paper uses SPSS22.0 software to carry out principal component analysis. The eigenvalues of
each factor must be greater than 1. The contribution rate of cumulative variance is shown in Table 6
and the principal component load matrix is shown in Table 7. The contribution rate of variance of
the first principal component extracted is 75.336% and, of the first two, is 97.787%, which means it
meets the requirement of principal component extraction. Therefore, this study extracts two principal
components Z1 and Z2 after seven independent variables of principal component analysis.

Table 6. The cumulative variance contribution rate.

Component Eigenvalue
Percentage of

Variance of Initial
Eigenvalue

Cumulative
Percentage Total

Percentage of Square
Sum Loading Variance

Extracted

Cumulative
Percentage

1 5.273 75.336 75.336 5.273 75.336 75.336
2 1.572 22.451 97.787 1.572 22.451 97.787
3 0.137 1.958 99.745
4 0.011 0.152 99.897
5 0.007 0.100 99.997
6 0.000 0.003 100
7 7.378×10−6 0.000 100

Extraction method: Principal component analysis.

Table 7. Principal component load matrix.

Variable 1 2

lnP 0.989 0.124
lnU 0.987 0.146
lnA 0.989 0.096

(lnA)2 0.990 0.072
lnT 0.991 −0.057
lnS −0.611 0.750
lnF 0.084 0.977

According to Table 7, we can get the principal component coefficient, as shown in Table 8. With
the result of principal component analysis, the regression equations of Z1 and Z2 can be established.

Z1 = 0.187 ln P∗ + 0.187 ln U∗ + 0.188 ln A∗ + 0.188(ln A∗)2 + 0.188 ln T∗ − 0.188 ln S∗ + 0.016 ln F∗

Z1 = 0.079 ln P∗ + 0.093 ln U∗ + 0.061 ln A∗ + 0.046(ln A∗)2
− 0.036 ln T∗ + 0.477 ln S∗ + 0.622 ln F∗
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Establishing regression equation as follows,

ln I∗ = β0 + β1Z1 + β2Z2 (7)

β0 is a constant term. β1 and β2 are coefficients.

Table 8. Principal component coefficient.

Variable 1 2

lnP 0.187 0.079
lnU 0.187 0.093
lnA 0.188 0.061

(lnA)2 0.188 0.046
lnT 0.188 −0.036
lnS −0.116 0.477
lnF 0.016 0.622

The regression result is shown in Table 9. From Table 9, we can see that VIF is 1.000, so there is no
multiple collinearity between the extracted two principal components. After calculating the score, we
make a regression analysis with a standardized dependent variable ln I* and the adjusted R-squared is
0.823. The P value of the T-test of the constant term (β0) is not significant, but the coefficient is very
small and can be neglected. Therefore, it has no influence on this study. The T-test of Z1 and Z2
showed a significant difference.

Table 9. Component coefficient.

Coefficient Non-Standardized
Coefficient

Standard
Error

Standardized
Coefficient t Significant VIF

β0 − 0.046 − 0 1.000 −

Z1 0.769 0.047 0.793 20.450 0.000 1.000
Z2 0.316 0.047 0.325 2.961 0.008 1.000

* means at 0.1 level. Therefore, the regression result is as follows.

ln I∗ = 0.793Z1 + 0.325Z2
= 0.412 ln P∗ + 0.711 ln U∗ + 1.656 ln A∗ + 1.826(ln A∗)2

+2.266 ln T∗ + 0.752 ln S∗ − 0.205 ln F∗

The above formula is a regression equation for standardized variables. According to the principle
of standardization, the final regression equation can be obtained by restoring the data.

ln I = 8.011 ln P + 0.505 ln U+1.314 ln A + 0.106(ln A)2

+1.184 ln T + 1.026 ln S + 0.816 ln F− 20.513

The regression results show that the order of impact on carbon emissions from high to low is
population, per capita GDP, level of science and technology, proportion of secondary industry, primary
energy consumption structure, and urbanization level. Their elasticity coefficients are 8. 011, (1.314 +

0.212ln A), 1.184, 1.026, 0.816, and 0.505, respectively. Among them, A is per capita GDP.
The coefficient of (ln A)2 is positive, which indicates that there is no inverted U-shaped relationship

between China′s economic growth and carbon emissions. With the economic growth, environmental
pressures are increasing day by day, and there is no equilibrium inflection point yet.
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3. Prediction of Carbon Emission Trend under Different Scenarios

3.1. Introduction of Prediction Model

Based on the simulation results of the STIRPAT model, the future carbon emissions of China are
predicted. The prediction formulas are shown below.

I = exp(8.011 ln P + 0.505 ln U + 1.134 ln A + 0.106(ln A)2 + 1.184 ln T
+1.026 ln S + 0.816 ln F− 20.513)

(8)

According to the historical population, per capita GDP, primary energy consumption, energy
intensity, the proportion of secondary industry, and urbanization rate, this paper uses the above model
to simulate the carbon emissions of China′s historical energy consumption, and makes regression
between the simulated and historical values. The comparison chart is shown in Figure 3. The results
show that the simulated R2 reaches 0.9984. Therefore, it is feasible to use the above model to forecast
the carbon emissions of energy consumption in China in the future.Energies 2019, 12, x FOR PEER REVIEW 10 of 14 
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3.2. Scenarios Setting

In the factor analysis above, population, per capita GDP, and the technological level are the three
factors that have the greatest impact, respectively. Therefore, taking these three indicators as variables
in the scenario and growth rate as scenario conditions, the specific scenario settings are shown in
Table 10.

Table 10. Scenario settings.

Scenario Population Per Capita GDP Technological Level

scenario 1 low growth low growth high growth
scenario 2 low growth low growth low growth
scenario 3 high growth low growth high growth
scenario 4 high growth low growth low growth
scenario 5 low growth high growth low growth
scenario 6 low growth high growth high growth
scenario 7 high growth high growth low growth
scenario 8 high growth high growth high growth
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3.3. Prediction of Carbon Emission Trend

According to the Development Strategy of the Development Research Center of the State Council
and the Report of the Ministry of Regional Economic Research on the Forecast and Analysis of the
Speed of Urbanization in China [No. 99 of 2017], the growth rate of urbanization in China slowed down
from 2016 to 2050. The urbanization rates in 2020, 2030, 2040, and 2050 were 60.34%, 68.38%, 75.37%,
and 81.63%, respectively [20]. In this way, we can deduce that the growth rate of the urbanization rate
in each stage is 0.793%, and then calculate the urbanization rate of China in the coming years.

According to the national energy strategic action plan and related research, the slowdown of coal
demand growth will become a new normal for the development of the coal industry. By 2020, 2030,
2040, and 2050, the proportion of coal in China′s primary energy structure will remain 62%, 55%, 53%,
and 50% [21]. Similarly, it can deduce the primary energy consumption structure in different stages,
and calculate the primary energy consumption structure in future years in China.

According to the Long-term Forecast of China′s Economy in the 21st Century, the proportion
of the secondary industry output value to GDP in 2020, 2030, 2040, and 2050 is 50.2%, 48%, 45.3%,
and 42.1%, respectively [22]. According to the same method mentioned above, we can predict the
proportion of secondary industry output value in China in the coming years.

Based on the historical data of China from 1996 to 2016, the population growth rate and per
capita GDP growth rate of each year are calculated. The maximum and minimum growth rates of
population growth rate (1.13% vs 0.39%)and per capita GDP growth rate (13.64% vs. 6.12%) are used
as their respective high and low growth rates, respectively, to estimate China′s future population and
per capita GDP. The maximum and minimum of the energy intensity decline rate (14.26% vs. 1.75%)
are selected as the high and low growth rates of technology, respectively. Additionally, the future
technological level of China is estimated.

Based on the above scenarios, the carbon emissions from China′s energy consumption are
predicted by using Formula (8). The calculation results are shown in Figure 4. Table 11 provides a
forecast of carbon emissions from China′s energy consumption in 2020, 2030, 2040, and 2050.
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Table 11. Prediction of China′s energy consumption carbon emissions in different scenarios.

Scenario 2020 2030 2040 2050

S1 302.81 359.96 362.27 692.05
S2 337.72 552.06 704.77 835.34
S3 341.82 429.13 663.62 1123.48
S4 354.29 579.03 1285.48 1963.68
S5 355.61 562.59 1188.6 2103.72
S6 327.33 437.52 770.38 1351.39
S7 316.47 603.37 1547.23 3527.45
S8 368.43 733.56 2003.69 5532.06

Unit: million tons.

4. Discussion

4.1. Discussion on Influencing Factors

Population size has the highest impact on carbon emissions, and the elasticity coefficient is as
high as 8.011. It shows that if the population increases by 1%, the total carbon emissions will increase
by 8.011%. China has a large population base, and its lifestyle and production activities depend on
traditional energy. Population size has the most direct impact on carbon emissions. China is the largest
manufacturing concentration country in the world. Developed countries have set up high-pollution
and high-energy-consuming manufacturing links in China. Labor-intensive and high-carbon industries
make the environmental pressure worse.

Per capita GDP is another important factor affecting China′s energy consumption carbon
emissions. For every 1% increase in per capita GDP, energy consumption carbon emissions will
increase (1.314 + 0.212l n A). It is the second important factor affecting China′s energy consumption
carbon emissions. This shows that China′s economic development and social life are highly dependent
on energy consumption.

The elasticity coefficient of the impact of technology level on carbon emissions from energy
consumption is 1.184. For every 1% increase in energy intensity, carbon emissions from China′s
energy consumption will grow by 1.184%. China′s energy consumption structure is dominated by
coal, which leads to a large consumption of fossil energy and a large amount of carbon emissions when
GDP increases.

Similarly, the industrial structure also plays an important role in China′s energy consumption
carbon emissions. Regression results show that every 1% increase in the proportion of secondary
industry output value will generate 1.026% carbon emissions. In China′s industrial structure, heavy
industry and manufacturing industry occupy the main position. This kind of industrial structure with
high energy consumption and emission has a negative impact on reducing carbon emissions from
energy consumption in China.

The impact coefficient of primary energy consumption structure, especially coal consumption, on
China′s carbon emissions is 0.816%. The current situation of energy consumption in China is that coal
accounts for 60% of primary energy. China is one of the few countries in the world where coal is the
most important energy resource. It is also one of the most polluted areas in the world because of coal
combustion. The long-term high proportion of coal resources in energy consumption is also one of
the main reasons for China′s high carbon emissions. Therefore, China needs to optimize its energy
structure and vigorously develop low-carbon energy.

The level of urbanization is also a factor contributing to the increase of carbon emissions from
energy consumption in China. The regression results show that an increase of 1% in the urbanization
level will result in an increase of 0.505% in carbon emissions. From 29.37% urbanization in 1996 to
57. 37% in 2016, China′s urbanization level has developed rapidly in the past 20 years. Yet, with
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the advancement of urbanization, the demand for energy in urban buildings, transportation, and
residential buildings is also increasing, which increases China′s carbon emissions.

4.2. Discussion on Trend Prediction

As can be seen from Figure 4, in scenario 1, when China maintains low population growth rate,
low per capita GDP growth rate, and high-tech growth rate in the future, the growth rate of carbon
emissions from energy consumption in China is the slowest. By 2050, the carbon emissions will be
692.05 million tons. In scenario 8, when the population and per capita GDP keep a high growth,
and the technological progress rate keeps low growth, the growth of carbon emissions from energy
consumption will be the fastest. There will be 5532.06 million tons of carbon emissions by 2050. It is
also eight times higher than the result in scenario 1. By comparing Scenario 2, Scenario 3, and Scenario
6 with Scenario 1, we can find that, when the population keeps low growth, the per capita technological
level keeps high growth, and the per capita GDP keeps high growth, while the growth rate of carbon
emissions from energy consumption is the fastest. While, when the population and per capita GDP
keep a low growth, the growth rate of energy consumption is the slowest when the technological level
keeps a low growth. Therefore, reducing carbon emissions from China′s energy consumption should
enhance the technological level and reduce energy intensity.

Comparing Scenario 4 with Scenario 8, when the population keeps a high growth and the
technological level keeps a low growth rate, the carbon emissions of energy consumption can be
effectively reduced by reducing the growth rate of per capita GDP. Therefore, in order to control
China′s future carbon emissions, it is necessary not only to improve energy utilization technology and
control the population, but also to reduce the growth rate of per capita GDP. This means that China
should slow down its economic development in the future, change its mode of economic growth, and
make its economic growth tend to a new normal.

5. Conclusions

First, this paper calculates the carbon emissions of energy consumption in China from 1996 to
2016, and then uses the STIRPAT model to decompose the influencing factors of carbon emissions of
energy consumption and analyze the influence degree of different factors. This combines different
scenarios to predict the future trend of carbon emissions from energy consumption in China.

(1) During the two decades from 1996 to 2016, China′s energy consumption and carbon emissions of
energy consumption showed an increasing trend. Among them, energy consumption increased
by 213.66% and carbon emissions of energy consumption increased by 268.54%.

(2) Among the factors affecting carbon emissions from energy consumption in China, population
factors have the highest impact on carbon emissions, with an elasticity coefficient of 8.011.
The impact of per capita GDP on carbon emissions is second only to that of the population.
The high demand for energy in China′s economic development has greatly increased China′s
carbon emissions from energy consumption. The order of impact degree is population quantity >

per capita GDP > technology level > industrial structure > primary energy consumption structure
> urbanization level.

(3) There is no inverted U-shaped relationship between China′s economic growth and carbon
emissions. Therefore, with economic growth, environmental pressures are increasing, and there
is no equilibrium inflection point.

(4) By forecasting the carbon emissions of China′s future energy consumption in different scenarios,
we can see that the growth rate of China′s energy consumption carbon emissions is the slowest
while maintaining low population growth rate, low per capita GDP growth rate, and a high-tech
growth rate. When in the scenarios of high population growth rate, high per capita GDP growth
rate, and a low-tech growth rate, the carbon emissions are the highest. Therefore, in order to reduce
China′s energy consumption carbon emissions, we should not only control the population size
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and control the speed of economic development, but also improve energy utilization technology
and reduce the dependence of economic development on energy.

Author Contributions: Conceptualization and Methodology: Y.L. Formal Analysis, Investigation, Writing—
Original Draft Preparation and Writing—Review & Editing: Z.L. Resources, Data Duration, Validation and
Supervision: S.S.

Funding: The Beijing social science foundation research base project (Grant No. 17JDGLA009), “Natural Science
Foundation of China Project” (Grant No. 71471058), the Fundamental Research Funds for the Central Universities
under No. 2019QN075, supported this paper.

Acknowledgments: First of all, I would like to extend my sincere gratitude to my supervisor, Professor Li, for her
instructive advice and useful suggestions on my thesis. I am deeply grateful of his help in the completion of this
thesis. Second, I would like to express my heartfelt gratitude to the anonymous reviewers and referees, which
gave me many inspirations and suggestions for this paper. Last but not least, I owe much to my friends especially
Shuangshuang Shao for their valuable suggestions and critiques, which are helpful and important for making this
thesis a reality.

Conflicts of Interest: The authors declare that they have no competing interest.

References

1. The Fourth IPCC Assessment Report. Available online: https://www.ipcc.ch/reports/ (accessed on
1 March 2019).

2. Bei, X. Research on Temporal and Spatial Migration of Energy Consumption Carbon Footprint and its
Influence Factors in China. Master’s Thesis, Anhui University of Finance and Economics, Bengbu, China,
December 2016.

3. Ehrlich, P.R.; Ehrlich, A.H. Population, Resources, Environment. Issues in Human Ecology; Freeman: San Francisco,
CA, USA, 1970; pp. 89–157.

4. Dietz TRosa, E.A. Rethinking the environmental impacts of population affluence and technology.
Hum. Ecol. Rev. 1994, 1, 277–300.

5. Kaya, Y. Impact of Carbon Dioxide Emission on GNP Growth: Interpretation of Proposed Scenarios; Presentation to
the Energy and Industry Subgroup; Response Strategies Working Group, IPCC: Paris, France, 1989; pp. 1–25.

6. Can, W.; Jining, C.; Ji, Z. Decomposition of energy-related CO2 emission in China: 1957–2000. Energy 2005,
30, 73–83.

7. Feng, W.; Lihua, W.; Chao, Y. Study on the Driving Factors of Carbon Emission Growth in China′s Economic
Development. Econ. Res. 2010, 2, 0629.

8. China Energy Statistics Yearbook (1996–2016); China Statistics Press: Beijing, China, 1996–2016.
9. China Statistical Yearbook (1996–2016). Available online: http://www.stats.gov.cn/tjsj/ndsj/ (accessed on

1 December 2017).
10. Shuang, L.; Tao, D.; Xia, Q. Study on the Influencing Factors of Carbon Emission in China′s Construction

Industry Based on Extended STIRPAT Model. Mod. Manag. 2017, 37, 96–98.
11. Jingshui, S.; Zhirui, C.; Zhijian, L. Research on the Influencing Factors of China′s Low Carbon Economy

Development—Based on the Expanded STIRPAT Model Analysis. Audit Econ. Res. 2011, 26, 85–93.
12. Bangli, C.; Meiping, X. Analysis of the Influencing Factors of Carbon Emissions in China: An Empirical

Study of STIRPAT-Alasso Model Based on Panel Data. Ecoeconomy 2018, 1, 20–24.
13. Yue, P. Analysis of Driving Factors of Carbon Emission in Jiangsu Province Based on STIRPAT Model.

Environ. Pollut. Prev. 2014, 36, 104–109.
14. Gao, T. An Empirical Study on the Influencing Factors of Housing Prices in Nanjing. Econ. Res. Guide. 2019,

12, 125–127.
15. Vu, D.H.; Muttaqi, K.M.; Agalgaonkar, A.P. A variance inflation factor and backward elimination based

robust regression model for forecasting monthly electricity demand using climatic variables. Appl. Energy
2015, 140, 385–394. [CrossRef]

16. Xu, O.; Fu, Y.; Su, H. A Selective Moving Window Partial Least Squares Method and Its Application in
Process Modeling. Chin. J. Chem. Eng. 2014, 22, 799–804. [CrossRef]

17. LV, F.; Liang, B.; Sun, W.J.; Wang, Y. Gas emission quantity prediction of working face based on principal
component regression analysis method. J. China Coal Soc. 2012, 37, 113–116.

https://www.ipcc.ch/reports/
http://www.stats.gov.cn/tjsj/ndsj/
http://dx.doi.org/10.1016/j.apenergy.2014.12.011
http://dx.doi.org/10.1016/j.cjche.2014.05.012


Energies 2019, 12, 3054 14 of 14

18. Ngo, S.H.; Kemény, S.; Deák, A. Performance of the ridge regression method as applied to complex linear
and nonlinear models. Chemom. Intell. Lab. Syst. 2003, 67, 69–78. [CrossRef]

19. Wu, H.C.; Ai, C.H.; Yang, L.J.; Li, T. A Study of Revisit Intentions, Customer Satisfaction, Corporate Image,
Emotions and Service Quality in the Hot Spring Industry. J. China Tour. Res. 2015, 11, 371–401. [CrossRef]

20. Shantong, L. The Prediction and Analysis of the Speed of Urbanization in China. Development Strategy
and Regional Economic Research Department of Development Research Center of the State Council.
Available online: http://www.drc.gov.cn/n/20170824/1-224-2894327.html (accessed on 1 December 2017).

21. Xianzheng, W. Wang Xianzheng reports on the development of coal industry in China University of Mining
and Technology. Coal Eng. 2014, 7, 120.

22. Jingwen, L. Long-term Forecast of China′s Economy in the 21st Century. Metall. Econ. Manag. 2000, 3, 4–7.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0169-7439(03)00062-5
http://dx.doi.org/10.1080/19388160.2015.1110545
http://www.drc.gov.cn/n/20170824/1-224-2894327.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Establishment of Influencing Factors Regression Model 
	Sources of Data 
	Introduction of the Modeling Method 
	Introduction of the Carbon Emission Calculating Method 
	Introduction of Influencing Factors Analysis Method 

	Regression Model Results 
	Results of China's Energy Consumption Carbon Emissions 
	Results of the Regression Model 


	Prediction of Carbon Emission Trend under Different Scenarios 
	Introduction of Prediction Model 
	Scenarios Setting 
	Prediction of Carbon Emission Trend 

	Discussion 
	Discussion on Influencing Factors 
	Discussion on Trend Prediction 

	Conclusions 
	References

