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Abstract: Precise and steady substation project cost forecasting is of great significance to guarantee the
economic construction and valid administration of electric power engineering. This paper develops a
novel hybrid approach for cost forecasting based on a data inconsistency rate (DIR), a modified fruit fly
optimization algorithm (MFOA) and a deep convolutional neural network (DCNN). Firstly, the DIR
integrated with the MFOA is adopted for input feature selection. Simultaneously, the MFOA is
utilized to realize parameter optimization in the DCNN. The effectiveness of the MFOA–DIR–DCNN
has been validated by a case study that selects 128 substation projects in different regions for training
and testing. The modeling results demonstrate that this established approach is better than the
contrast methods with regard to forecasting accuracy and robustness. Thus, the developed technique
is feasible for the cost prediction of substation projects in various voltage levels.

Keywords: substation project cost forecasting model; feature selection; data inconsistency rate;
modified fruit fly optimization algorithm; deep convolutional neural network

1. Introduction

The inadequate management and supervision of substation projects tend to bring about high cost,
which has critical effects on the economy and sustainability of power engineering. Thus, cost prediction
is of great importance for expense saving [1]. However, the comparable projects are hard to collect due
to limited engineering in the same period as well as various influential factors such as the overall plan
of the power grid, total capacity, terrain features, design and construction level, and local economy [2].
Along with the less sample data, the difficulty of cost forecasting for substation projects has been
increased. Therefore, it is of great significance for the sustainability of electric power engineering
investment to study and construct the substation cost forecasting model and accurately forecast the
substation cost.

Nowadays, many scholars have published their momentous work to handle the cost forecasting
of engineering, but few studies have focused on substation projects. The approaches in regard to
engineering cost prediction are primarily separated into two kinds—traditional prediction methods
and intelligent algorithms. Traditional forecasting techniques primarily consist of time series [3],
grey prediction [4], regression analysis [5] and so on. Reference [3] designed a time series prediction
model for engineering cost based on bills of quantities and evaluation. The results indicated that this
proposed model controlled the error range within 5%. Reference [4] put forward an improved grey
forecasting method optimized by a time response function to predict main construction cost indicators
in power projects, where the constant C was determined through the minimum Euclidean distance
of an original series and constraints of simulation values. In reference [6], a forecasting technique
grounded on multiple structure integral linear regression was established in line with the characteristics
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of engineering cost composition. Principal component analysis was introduced here to address the
multicollinearity. In spite of their mature theories and simple calculations, the defects of these methods,
including narrow application scope and unideal forecasting accuracy, cannot be ignored.

With the burgeoning development of artificial intelligence, the application of intelligent algorithms
in the cost prediction of substation projects is of great significance. This kind of model is chiefly
composed of artificial neural networks (ANNs) and a support vector machine (SVM) [6], wherein
some ANNs are applicable to forecasting fields including a back propagation neural network (BPNN),
an extreme learning machine (ELM), a radial basis function neural network (RBFNN), and a general
regression neural network (GRNN) [7]. Reference [8] executed a three-layer BPNN to forecast the
cost of a transmission line project where the related influential factors were taken as the input.
The model was validated on the foundation of actual data. Reference [9] put up with an ELM-based
approach for medium and long term electricity demand prediction with the target of a low carbon
economy. Reference [10] evaluated the effectiveness of a BPNN and a RBFNN for engineering cost
prediction. The case study indicated that the RBFNN had a better performance in terms of forecasting
accuracy. In literature [11], a hybrid model which combined a GRNN with a fruit fly optimization
algorithm (FOA) was utilized in wind speed prediction, and good prediction results were obtained.
Nevertheless, the defects of slow convergence and getting stuck in local best in a BPNN brought
about a decrease of forecasting accuracy. To this end, an SVM was applied to refrain from network
structure selection and mitigate the premature convergence to local optimization in engineering
cost prediction [12]. Reference [13] investigated an SVM integrated with adaptive particle swarm
optimization (APSO) to forecast the cost of a practical substation project. In reference [14], a cuckoo
search algorithm (CS) was introduced to optimize the parameters in an SVM. The results showed that
the forecasting precision was obviously enhanced. Compared with a BPNN, the application of an SVM
can achieve better performance in cost prediction, but the transformation that converts the solution
into a quadratic programming problem by the use of a kernel function in an SVM resulted in the
decrease of efficiency and precision [15]. The aforementioned approaches belong to shallow learning
algorithms, whose ability to cope with complex function problems is limited. In addition, these models
cannot fully reflect information features in virtue of prior knowledge. Hence, some scholars tried to
develop a deep neural network (DNN) for prediction [16].

The real powerful computing capability of neural networks has been brought into play since the
creation of a DNN with “multi-layer structure and learning ability layer by layer” by Professor Hinton,
University of Toronto in Canada in 2006. The DNN has aroused great concern in both academia and
industry and has become a hot tool for data analysis in the big data era [17]. Additionally, this technique
has made breakthroughs in the fields of signal recognition, natural language processing, and so on;
it has also kept updating all kinds of records with amazing speed in diverse application areas [18].
In 2012, Krizhevsky et al. [19] put forward the concept of depth into traditional a convolutional neural
network (CNN) and proposed a deep convolutional neural network (DCNN). The DCNN, as the first
approach that successfully trains multi-layer networks, has been widely used owing to self-study of
data characteristics [20]. Thereinto, the CNN model realizes the optimization of a neural network
structure by self-convolution for local features, weight sharing, subsampling and multiple perception
layers. Additionally, the CNN technique not only reduces the number of neurons and weights but
also uses pooling operation to make input features invariable in displacement, scaling and distortion,
which contributes to the improvement of accuracy and robustness for network training [21]. The DCNN
has been employed in the area of prediction [22–25]. For instance, an original hybrid model on the basis
of the DCNN was built to forecast the deterministic photovoltaic power in reference [22], where the
DCNN was applied to nonlinear feature and invariant structure extraction presented in every frequency.
The computing results indicate that the novel models can improve forecasting precision with respect to
seasons along with various prediction horizons in contrast with conventional forecasting approaches.
In reference [24], the DCNN integrated with a concretely ordered feature came up for the intraday
direction forecasting of Borsa Istanbul 100 stocks. The results displayed that this established classifier
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is superior to logistic regression and the CNN in use of randomly ordered features. Thus, for the
purpose of training time and model complexity reduction, feature selection models can be employed.

Considering the influence of parameter selection on prediction performance of the DCNN,
it is indispensable to select a proper intelligent algorithm to optimize parameters [26]. The fruit
fly optimization algorithm (FOA), proposed by Dr. Pan Wenchao in June 2011, is a novel global
optimization algorithm on the foundation of swarm intelligence [27]. This technique is derived from
the simulation of foraging behaviors and is similar to the ant colony algorithm [28] and particle
swarm optimization [29]. Due to its simple structure, few parameters, and easy realization, scholars at
home and abroad have focused on this method and applied it to forecasting [30–35]. For example,
reference [31] combined the improved FOA with a wavelet least square support vector machine.
The case studies verified that the proposed method presents strong validity and feasibility in mid–long
term power load prediction compared with other alternative approaches. Reference [33] studied
monthly electricity consumption forecasting on the basis of a hybrid model that integrates the
support vector regression method with an FOA with a seasonal index adjustment. The experimental
results demonstrated this approach can be effectively utilized in the field of electricity consumption
forecasting. A novel hybrid forecasting model was constructed in reference [35] for annual electric
load prediction; here, an FOA was applied to automatically determine the appropriate parameter
values in the proposed approach. In reference [36], the authors applied a modified firefly algorithm
and a support vector machine to predict substation engineering cost. The case study of substation
engineering in Guangdong Province proved that the proposed model has a higher forecasting accuracy
and effectiveness. Remarkably, the potential weaknesses of premature convergence and easily trapping
into local optimum make a certain restriction in the performance of an FOA. Thus, quantum behavior
was utilized in this paper to modify the basic FOA. This improved approach, namely the MFOA,
was exploited to select features with a data inconsistency rate (DIR) and optimize parameters for the
DCNN model.

In view of the various influential factors of substation project cost, it is necessary to identify and
select proper features as the input to avoid data redundancy and increase computation efficiency [37].
The filter method gives a score to each feature by statistical methods, sorts the features by score,
and then selects the subset with the highest score. This method is only for each feature to be considered
independently, without considering the feature, dependence or correlation. Compared with the filter
method, the wrapper method takes the correlation between features into account by considering the
effect of the combination of features on the performance of the model. It compares the differences
between different combinations and selects the best combination of performance. The DIR model
determines complete characteristic selection by dividing the feature set and calculating the minimum
inconsistency of the subsets, as presented in reference [38]. The authors in reference [39] thought
that the key sequential of features could be identified by selecting the minimum inconsistency rate,
and the optimized feature subset could also be efficiently achieved based on the sequence forward
search strategy. The experiments showed that the proposed data classification scheme obtains good
performance. In reference [40], a discrete wavelet transform in combination with an inconsistency
rate model was designed to achieve optimal feature selection. The experiment verified that this
approach contributes to the reduction of redundancy in input vectors and outperforms other models
in short-term power load prediction. It can be seen the DIR takes advantage of data inconsistency to
eliminate redundant features. Furthermore, it allows for a correlation such that the selected optimal
characteristics are able to cover all data information. As a result, the DIR method is introduced for
feature selection in this paper.

Based on the aforementioned studies, this paper develops a novel hybrid approach for cost
forecasting based on the DIR, the DCNN and the MFOA. Firstly, the DIR integrated with the MFOA
is adopted for input feature selection. Simultaneously, the MFOA is utilized to realize parameter
optimization in the DCNN. Thus, the proposed method can be applied to cost forecasting of substation
projects on the foundation of the optimized input subset as well as the best parameters. The rest of the
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paper is organized as follows: Section 2 briefly introduces the established hybrid model including the
MFOA, the DIR, the DCNN, and the concrete structure. Section 3 verifies the developed technique via
a case study. Section 4 draws conclusions.

2. Methodology

2.1. Modified FOA

2.1.1. FOA

The FOA is a new optimization approach that simulates the foraging behaviors of a fruit fly
swarm [27,41]. Their sensitive smell and sharp vision contribute to the discovery of food sources over
40 km and correct flight to the location [42,43]. The food searching procedure of a fruit fly swarm can
be seen from Figure 1.
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Figure 1. Food searching procedure of a fruit fly swarm.

According to the food searching features, the following is the specific description of the FOA:

(1) Initialize the location of the fruit fly swarm according to Equation (1).

InitX_axis; InitY_axis (1)

(2) For an individual fruit fly, set the random direction and distance for food finding, as shown in
Equations (2) and (3):

Xi = InitX_axis + random() (2)

Yi = InitY_axis + random() (3)

(3) Estimate the distance between the origin point and the smell concentration of each individual
fruit fly Si as follows:

Disti =
√

X2
i + Y2

i (4)

Si = 1/Disti (5)

(4) Take the value of smell concentration into its judgement function; then, in light of Equation (6),
obtain the smell concentration Smelli at each location

Smelli = Function(Si) (6)
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(5) Find out the optimal smell concentration among the fruit fly swarm:

[bestSmell bestIndex] = max[Smelli] (7)

(6) Keep a record of the optimal smell concentration as well as its x, y coordinates. Afterwards, the
fruit flies can fly to the destination by the use of vision.

Smellbest = bestSmell, X_axis = X(bestIndex), Y_axis = Y(bestIndex) (8)

(7) The iterative optimization is carried out by a repeat of Step (2) to Step (5). At each iteration,
determine whether the smell concentration shows an advantage over the former one. If so, follow
Step (6).

2.1.2. MFOA

(1) The development of quantum mechanics has greatly promoted the application of quantum
computation in diverse fields. In quantum computation, a quantum bit is utilized to represent
quantum state, and the 0 and 1 binary method is adopted to express quantum information.
Here, the basic quantum state consists of the “0” and “1” states, and the state is able to achieve
random linear superposition between “0” and “1.” Therefore, these two states are allowed to exist
simultaneously, which issues a large challenge to the classic bit expression approach in classical
mechanics. The superposition of quantum state is described as Equation (9)∣∣∣ψ >= α

∣∣∣0 > +β|1 > , |α|2 +
∣∣∣β∣∣∣2 = 1 (9)

where |0 > and |1 > indicate two kinds of quantum states, α, and β is the probability amplitude.

The possibility at quantum state of |0 > and |1 > are expressed by |α|2 and
∣∣∣β∣∣∣2, respectively.

The update can be achieved through quantum rotating gate in the MFOA, and the adjustment is
expressed as Equation (10): (

α′i
β′i

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
αi
βi

)
(10)

Here, suppose U =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. From there, U and θ represent the quantum rotating

gate and the angle, respectively. θ = arctan(α/β).
(2) Initialize the location of fruit fly. Additionally, take advantage of the probability amplitude of

the quantum bit to code the current location of the individual fruit fly, as shown in Equation (11):

Pi =

[
cos(θi1) cos(θi2) · · · cos(θin)

sin(θi1) sin(θi2) · · · sin(θin)

]
(11)

where θi j = 2πrand(); rand() is equivalent to a random number between 0 and 1; i = 1, 2, · · · , m;
j = 1, 2, · · · , n; m represents the number of fruit flies; and n is the quantity of space.

As a result, the homologous probability amplitudes of the quantum state |0 > and |1 > are
presented in Equations (12) and (13).

Pic = (cos(θi1), cos(θi2) · · · cos(θin)) (12)

Pis = (sin(θi1), sin(θi2) · · · sin(θin)) (13)

(3) In the MFOA, the search is implemented in the actual space [a, b], while the position probability
amplitude is set in [0, 1]. Thus, it is indispensable to decode the probability amplitude into [a, b].
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Suppose
[
α

j
i , β

j
i

]T
represents the jth quantum bit of the individual fruit fly Pi; then, the related solution

space is converted in accordance with Equation (14):

X j
ic =

1
2
[bi(1 + α

j
i ) + ai(1− α

j
i )] i f rand() < Pid (14)

X j
is =

1
2
[bi(1 + β

j
i ) + ai(1− β

j
i )] i f rand() ≥ Pid (15)

where rand() is the random value in the range of [0, 1], X j
ic and X j

is partly equal the actual value of the
parameter in jth dimensional location when the quantum state of ith individual reaches |0 > or |1 > . ai
and bi represent the upper and lower limit, respectively.

Suppose the search of the MFOA is conducted in a two-dimensional space, namely j = 1, 2.
InitX_axis and InitY_axis represent the initialization of the location. The solution space is described in
Equations (16)–(19).

i f rand() < Pid:

Xi = X_axis +
1
2
[bi(1 + α1

i ) + ai(1− α1
i )] (16)

Yi = Y_axis +
1
2
[bi(1 + α2

i ) + ai(1− α2
i )] (17)

i f rand() ≥ Pid:

Xi = X_axis +
1
2
[bi(1 + β2

i ) + ai(1− β2
i )] (18)

Yi = Y_axis +
1
2
[bi(1 + β2

i ) + ai(1− β2
i )] (19)

(4) The distance Dist between the origin and location is estimated, and the judgement value

of smell concentration S(i), namely the reciprocal of distance, can be obtained—Disti =
√

X2
i + Y2

i ,
Si = 1/Disti.

(5) In accordance with Equation (20), the smell concentration Smelli of each fruit fly location
is acquired:

[bestSmell bestindex] = min(Smelli) (20)

(6) A quantum rotating gate is employed to update the individual location, as shown in
Equation (21):  αk+1

jd

βk+1
jd

 =
 cosθk+1

jd − sinθk+1
jd

sinθk+1
jd cosθk+1

jd


 αk

jd
βk

jd

 (21)

where αk+1
jd and βk+1

jd represent the probability amplitude of jth fruit fly at k + 1th iteration in

d-dimensional space and θk+1
jd equals the rotating angle, as presented in Equation(22):

θk+1
jd = s(αk

jd, βk
jd)∆θ

k+1
jd (22)

where s(αk
jd, βk

jd) and ∆θk+1
jd are equivalent to the direction and increment of the rotating

angle, respectively.
Here, the updated αk+1

jd and βk+1
jd need to be converted to solution space to conform with the

operation mechanism.

Xd
jc =

1
2
[b j(1 + αk+1

jd ) + a j(1− αk+1
jd )] i f rand() < Pid (23)

Xd
js =

1
2
[b j(1 + βk+1

jd ) + a j(1− βk+1
jd )] i f rand() ≥ Pid (24)
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i f rand() < Pid, d = 1

X j = X_axis +
1
2
[b j(1 + αk+1

jd ) + a j(1− αk+1
jd )] (25)

Y j = Y_axis +
1
2
[b j(1 + αk+1

jd ) + ai(1− αk+1
jd )] (26)

i f rand() ≥ Pid, d = 2

X j = X_axis +
1
2
[b j(1 + βk+1

jd ) + a j(1− βk+1
jd )] (27)

Y j = Y_axis +
1
2
[b j(1 + βk+1

jd ) + a j(1− βk+1
jd )] (28)

(7) The loss of population diversity during searching leads to a premature convergence, together
with an easy trapping into a local optimum. Thus, individual mutation is introduced in the MFOA to
address this problem, as presented in Equation (29):[

01
10

][
cos(θi j)

sin(θi j)

]
=

[
sin(θi j)

cos(θi j)

]
=

[
cos(π2 − θi j)

sin(π2 − θi j)

]
(29)

where Pm means the mutation probability and rand() equals a random number in [0, 1]. If rand() < Pm,
carry out mutation and make a change for the probability amplitude in the quantum bit. Thus,
the mutated individual is successfully converted into the solution space.

(8) Keep a record of the individual with the optimal concentration value as well as the
homologous coordinates.

X_axis = X(bestindex); Y_axis = Y(bestindex) (30)

Smellbest = bestSmell (31)

(9) Repeat Steps (4)–(7). If the smell concentration shows an advantage over the previous one,
go to Step (8).

2.2. DIR

In the light of various characteristics of the substation project cost, it is of great necessity to
select the most correlated features as the input to refrain from information redundancy and increase
cost forecasting precision. The discrete features of input can be accurately displayed via data
inconsistency [39]. Distinct features are divided into diverse patterns with corresponding frequency.
The value of the DIR is able to discriminate the classification capability of data categories. The value of
the DIR is positively correlated with the assortment ability of the feature vector.

Suppose there exist g features in substation project cost (e.g., main transformer capacity, area,
price), expressed as G1, G2, . . . , Gg. L represents the subset of the feature set Γ. According to the level
of substation project cost, set the standard M with c classifications and N as data instances. z ji and λi

equal the values of feature and classification M, respectively. Data instances are represented by
[
z j,λi

]
,

z j = [z j1, z j2, z j3, · · · , z jg]. According to Equation (32), the DIR can be derived by

τ =

p∑
k=1

(
c∑

l=1
fkl −max

l
{ fkl}

)
N

(32)

where fkl equals the number of data instances that belongs to the feature subset of xk and xk implies that
the number of feature division interval patterns existing in the data set equals p (k = 1, 2, . . . , p; p ≤ N).
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The steps of feature selection by the DIR are shown as follows:

(1) Initialize the best subset as Γ = {}, namely an empty set.
(2) Estimate the DIR of G1, G2, . . . , Gg that are made up of Γ subset with each residual feature.
(3) Select the feature with minimum inconsistency rate Gi as the optimal one. Then, update it in the

light of Γ = {Γ, Gi}.
(4) Make a list of the inconsistency rates of the feature subsets. After that, sort them in ascending order.
(5) Choose the feature subset L with fewer characteristics. If τL ≈ τΓ or τL′/τL is the minimum ratio

of all the adjacent feature subsets, L is able to be screened as the optimal one, where L′ represents
the adjacent previous subset.

Through the estimation of the inconsistency rate, the redundant features can be effectively
eliminated. Meanwhile, correlation can be considered, which guarantees the selected features on
behalf of all information.

2.3. DCNN

The DCNN is a kind of ANN with deep learning capability whose main characteristics are the
local connection and weight sharing of neurons in the same layer [44]. Multiple feature extraction
layers and the fully connected one are typically included in the network. Each feature extraction layer
consists of two units, that is a convolutional layer and a subsampling one. The framework of the
DCNN is shown in Figure 2. In the DCNN, the neural nodes between two layers are no longer fully
connected. Instead, layer spatial correlation is adopted to link the neuron nodes of each layer merely
to the ones in the adjacent upper layer. Hence, local connection is completed, and the parameter size of
the network is greatly reduced.
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Figure 2. The typical structure of a deep convolutional neural network (DCNN).

The typical CNN is made up of four layers, namely the input layer, the convolutional layer,
the subsampling layer and the full connection layer. In the convolutional layer, the convolutional
kernel is used for feature extraction, and the corresponding output can be obtained by a weighted
calculation through the activation function, as expressed in Equation (33)

xl
j = f

 k∑
j=m

xl−1
j wl

j + θl
j

 ( j = 1, 2, . . . , n; 0 < m ≤ k ≤ n) (33)

where f (I) = 1
1+e−I , I =

k∑
j=m

xl−1
j wl

j + bl
j( j = 1, 2, . . . , n; 0 < m ≤ k ≤ n), xl

j and xl−1
j equal the output in

Layer 1 and the input in Layer l− 1, respectively. j represents the local connection from the range of m
to k; wl

j and θl
j equal the weight and bias, respectively.
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The subsampling process is implemented on the features of the convolutional layer for
dimension-reduction. The characteristics are extracted from each n × n sampling pool by “pool
average” or “pool maximum,” as described in Equation (34):

xl
j = g(xl−1

j ) + θl
j (34)

where g(∼) is the function that completes the selection of the average or maximum value. The operation
of pooling is conducive to the complexity reduction of the convolutional layer and the avoidance of over
fitting. In addition, it ameliorates the fault tolerance ability of feature vectors for data-characteristic
micro deformation, and it enhances computational performance and robustness.

Finally, the attained data are linked to the fully connected layer, as expressed in Equation (35):

xl = f (Il), Il = Wlxl−1 + θl (35)

where Wl equals the weight from Layer l− 1 to Layer l and xl is the output.
In the aforementioned computation, every convolutional kernel acts on all the input through slide.

Multiple sets of output data are derived from the effects of diverse convolutional kernels in which the
same kernel corresponds to the uniform weight. Conflate the output of diverse groups. Afterwards,
transfer them to the subsampling layer. The range of values is further set, and the average or maximum
value can be treated as the specific one in the scope through slide. In the end, the data are integrated to
achieve dimension reduction, and the results are output through the full connection layer.

The application of the DCNN approach for cost prediction presents two merits: (i) The existence
of deformed data is permitted, and (ii) the quantity of parameters decreases by local connection
and weight sharing, so the efficiency and accuracy of cost prediction can be significantly improved.
Nevertheless, in substation project cost prediction, the constancy of the forecasting results cannot be
assured in virtue of the subjective determination of parameters. Thus, the MFOA is introduced here to
optimize the parameters in the DCNN.

2.4. Approach of MFOA–DIR–DCNN

The framework of the established technique MFOA–DIR–DCNN for substation project cost
prediction is displayed in Figure 3. The specific procedures of this novel method can be explained at
length as follows:

(1) Determine the initial candidate features of substation project cost. In the DIR, initialize the
optimal subset as an empty set Γ = {}.

(2) Complete parameter initialization in the MFOA. By trying a combination of multiple parameter
settings, the best parameter initialization supposes that the maximum iteration number equals
200; the scope of the fruit fly position and random flight distance are set as [0, 10] and [−1,
1], respectively.

(3) Calculate inconsistency. Compute the inconsistency of G1, G2, . . . , Gg that is made up of Γ subsets
with each residual feature. The feature with minimum inconsistency rate Gi is selected as the best
one, and the updated optimal feature is set as Γ = {Γ, Gi}.

(4) Derive the optimal feature subset along with the best values of parameters in the DCNN.
The feature subset at current iteration is brought into the DCNN, and both prediction accuracy
r( j) and fitness value Fitness( j) can be calculated for this training process. Then, determine
whether each iteration satisfies the termination requirements (reach the target error value or the
maximum number of iterations). If not, reinitialize the feature subset and repeat the above steps
until the conditions are met. It is noteworthy that the parameters in the DCNN also need to be
optimized, and the initial values of weight w and threshold θ are randomly assigned. Therefore,
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a fitness function based on both forecasting precision and feature selection quantity is set up,
as shown in Equation (36):

Fitness( j) = −(a + r( j) +
b

Num f eature( j)
) (36)

where Num f eature( j) represents the quantity of selected best characteristics in each iteration,
and a and b equal the constants in [0, 1].

(5) Forecast via the DCNN. When the iterative number reaches the maximum, the estimation stops.
Here, the optimal feature subset, the best values of w, and θ are taken into the DCNN model for
substation project cost forecasting.
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3. Case Study

3.1. Data Processing

This paper selected the cost data of 128 substation projects in various voltage levels and in different
areas from 2015 to 2018, as shown in Table 1; the statistics of the substation features are shown in
Table A1. In this paper, we selected the cost and corresponding influential factors of the first 66 projects
as a training set. Correspondingly, the remaining data were employed as a testing set.

Table 1. Original cost data of projects (Unit: CNY/kV·A).

Serial
Number Cost Serial

Number Cost Serial
Number Cost Serial

Number Cost

1 358.3 33 980.6 65 336.8 97 317.1
2 324.2 34 286.8 66 339.5 98 308.0
3 368.9 35 279.5 67 342.1 99 298.9
4 370.2 36 308.6 68 344.7 100 289.9
5 450.1 37 312.8 69 244.2 101 280.8
6 266.5 38 315.9 70 346.8 102 271.7
7 301.6 39 364.2 71 349.5 103 262.6
8 325.8 40 361.3 72 352.1 104 253.5
9 310.3 41 375.6 73 394.7 105 244.5

10 405.6 42 389.9 74 405.6 106 235.4
11 392.5 43 372.5 75 428.2 107 326.3
12 448.2 44 383.9 76 443.0 108 217.2
13 305.8 45 295.6 77 459.8 109 208.1
14 356.9 46 270.2 78 493.3 110 199.1
15 1058.6 47 260.8 79 289.4 111 390.0
16 501.2 48 240.7 80 293.7 112 280.9
17 337.1 49 223.3 81 297.9 113 285.1
18 304.5 50 239.3 82 402.2 114 476.5
19 291.8 51 381.7 83 491.5 115 449.3
20 279.2 52 406.9 84 491.3 116 470.4
21 299.3 53 315.6 85 212.6 117 491.8
22 285.6 54 285.5 86 452.6 118 306.4
23 305.5 55 252.5 87 353.7 119 310.7
24 208.6 56 214.5 88 254.8 120 274.9
25 356.2 57 325.8 89 155.9 121 319.2
26 401.5 58 328.4 90 375.9 122 283.4
27 378.6 59 311.1 91 375.9 123 369.5
28 369.5 60 333.7 92 397.0 124 373.8
29 253.8 61 336.3 93 418.1 125 398.6
30 300.5 62 309.0 94 344.3 126 244.8
31 272.7 63 341.6 95 335.3 127 256.9
32 423.4 64 334.2 96 326.2 128 472.9

Here, the construction types of substation projects can be divided into three categories:
New substation, extended main transformer, and extended interval engineering are valued at 1,
2 and 3, respectively. The substation types were decomposed into three types where the indoor,
the semi-indoor, and the outdoor were set as 1, 2 and 3, respectively. The landforms were parted into
eight kinds, namely hillock, hillside field, flat, plain, paddy field, rainfed cropland, mountainous region
and depression—these were valued at {1, 2, 3, 4, 5, 6, 7, 8}. In addition, the local GDP was employed
to represent the economic development level of the construction area. The proportion of bachelor
degree or above in the staff stood for the technical level of the designers. The difference between actual



Energies 2019, 12, 3043 12 of 21

progress and the schedule stipulated in the contract was utilized on behalf of construction progress
level. The data needed to be normalized with Equation (37).

Y =
{
yi
}
=

xi − xmin

xmax − xmin
i = 1, 2, 3, . . . , n (37)

where xi and yi represent the actual value and normalized value, respectively, while xmin and xmax

equal the minimum and maximum of the sample data, respectively.

3.2. Model Performance Evaluation

Four commonly adopted error criteria are presented in this paper to measure the forecasting
precision of substation project cost obtained by all involved approaches.

(1) Relative error (RE)

RE =
xi − x̂i

xi
× 100% (38)

(2) Root mean square error (RMSE)

RMSE =

√√
1
n

n∑
i=1

(
xi − x̂i

xi
)

2
(39)

(3) Mean absolute percentage error (MAPE)

MAPE =
1
n

n∑
i=1

∣∣∣(xi − x̂i)/xi
∣∣∣ · 100% (40)

(4) Average absolute error (AAE)

AAE =
1
n
(

n∑
i=1

|xi − x̂i|)/(
1
n

n∑
i=1

xi) (41)

where n is the number of testing samples, while x and x̂ represent the actual value and predictive
value of substation project cost, respectively. The aforementioned indicators are negatively
correlated with forecasting precision.

3.3. Feature Selection

The input of the forecasting techniques was determined on the basis of optimal feature subset
selection by the DIR. In reference [45], the authors divided the substation project cost into two main
types: Primary and secondary production cost and individual project costs associated with site, totaling
more than 20 factors. In reference [46], authors selected more than 26 variables including the area and
main transformer capacity as the influencing factors of substation cost. Based on the research of the
above references, this paper screened 33 variables as the main influencing factors of substation cost,
including area, construction type, voltage level of substation, main transformer capacity, transmission
line circuits in the low and high voltage sides, topography, schedule, substation type, the number
of transformers, the economic development level of the construction area, inflation rate, the price
and number of the circuit breaker in the high voltage side, the quantity of low-voltage capacitors,
the price of single main transformer, high-voltage fuse, current transformer, power capacitor, reactor,
electric buses, arrester, measuring instrument, relay protection device, signal system, automatic device,
the expense of site leveling and foundation treatment, the technical level of the designers, the number
of accidents, engineering deviation rate, construction progress level, rainy days, and snowy days.
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The program in this paper was run in MATLAB R2018b under Intel Core i5-6300U, 4 G and a Windows
10 system.

The iterative process of feature extraction is displayed in Figure 4, where the accuracy curve and
the fitness curve show the forecasting precision of the DCNN and fitness values in different iterations,
respectively, while option number indicates the quantity of best characteristics derived from the DIR
model, and feature reduction refers to the number of characteristics eliminated by the MFOA.Energies 2019, 12, x FOR PEER REVIEW  13 of 21 
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Figure 4. Convergence curves for feature selection. Note: (a) represents the fitness value, (b) represents
the forecasting accuracy, (c) represents the reduced number of candidate feature, and (d) represents the
selected number of optimization feature.

As we can see, the MFOA converged at the 39th iteration, and the homologous optimal fitness value
and prediction accuracy equaled −0.91% and 98.9%, respectively, This indicates that the fitting ability of
the DCNN can be enhanced, and the forecasting precision is able to reach the highest through learning
and training. Furthermore, the quantity of chosen characteristics was inclined to be steady when
the MFOA ran to the 51th time. Ultimately, the final selected characteristics embodied construction
type, voltage level, main transformer capacity, substation type, the number of transformers, the price
of single main transformer, and the area by eliminating 26 redundant features from 33 candidates.
The importance of these seven features derived from the DIR was ordered as (from important to
unimportant): The price of single main transformer, the number of transformers, main transformer
capacity, construction type, area, substation type, and voltage level.

3.4. Results and Discussion

After the accomplishment of feature selection, the input vector was brought into the DCNN model
for training and testing. Here, the wavelet kernel function [47], one of the most widely used kernel
functions, was applied, and the parameters optimized by MFOA equaled: γ = 43.0126, σ = 19.0382.

For the purpose of verifying the performance of the established approach, four other methods
incorporating the MFOA–DCNN, the DCNN, an SVM and the BPNN were used for comparison. In the
BPNN, the topology was set as 9-7-1. Tansig and purelin were exploited as the transfer function in
the hidden layer and the transfer function in the output layer, respectively. In this paper, we set the
maximum number of convergence as 200, while the learning rate and the error equaled 0.1 and 0.0001,
respectively. The initial values of weights and thresholds were decided by their own training. In the
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SVM, the penalty parameter c and kernel parameter σ were valued at 10.276 and 0.0013, respectively,
and ε in the loss function equaled 2.4375. In the DCNN, γ = 15, σ = 5. Table 2 lists the prediction
results of the substation project cost achieved by five different models.

Table 2. Actual and predicted values of the testing sample (Unit: CNY/kV·A).

Serial
Number

Actual
Value BPNN SVM DCNN MFOA–

DCNN
MFOA–DIR–

DCNN

97 317.1 335.3 298.3 324.3 326.7 308.0
98 308.0 292.9 322.4 318.8 298.7 298.8
99 298.9 316.3 283.1 310.5 308.7 305.9

100 289.9 306.6 273.4 278.8 298.9 297.2
101 280.8 265.2 273.0 270.9 290.1 286.5
102 271.7 288.0 284.7 266.1 281.1 278.0
103 262.6 281.0 271.5 253.2 257.3 269.0
104 253.5 270.9 259.8 257.5 261.9 251.6
105 244.5 261.1 230.3 234.7 253.5 240.9
106 235.4 248.7 244.8 229.6 243.1 230.2
107 326.3 312.0 334.1 314.3 337.9 330.8
108 217.2 232.5 222.4 225.9 203.9 222.5
109 208.1 222.8 199.6 216.0 215.1 203.8
110 199.1 212.8 191.0 191.2 205.4 194.7
111 390.0 412.0 372.3 403.8 383.8 393.9
112 280.9 297.5 273.8 290.7 271.2 273.3
113 285.1 300.8 271.1 295.3 294.6 293.1
114 476.5 504.8 495.9 459.6 492.4 490.0
115 449.3 424.1 469.9 456.0 456.9 462.7
116 470.4 479.0 493.3 453.7 484.6 468.8
117 491.8 465.7 466.3 511.1 507.0 503.6
118 306.4 328.1 292.3 317.4 316.8 298.0
119 310.7 328.0 323.9 298.3 300.6 309.1
120 274.9 294.0 286.4 285.3 277.1 275.6
121 319.2 340.2 305.5 323.8 308.8 309.7
122 283.4 303.3 271.2 294.7 292.6 291.4
123 369.5 396.0 352.3 383.5 381.0 373.7
124 373.8 399.2 351.6 382.3 385.1 363.1
125 398.6 426.2 415.1 413.6 401.8 399.5
126 244.8 260.9 234.3 248.3 236.9 237.5
127 256.9 274.9 245.8 267.2 265.2 264.2
128 472.9 506.9 451.0 490.8 487.6 478.4

For a more intuitive analysis, Figure 5 presents the predictive values and Figure 6 exhibits the values
of RE derived from the forecasting techniques. The forecasting error range of the MFOA–DIR–DCNN
was within [−3%, 3%], while the number of error points of the MFOA–DCNN and the DCNN in this
scope was 5 and 3 (that is, No.102, RE = −2.07%; No.121, RE = 1.44%; No.124, RE = 2.28%), respectively.
Among them, the number of error points obtained from the MFOA–DIR–DCNN controlled in [−1%,
1%] equaled 5 (namely No.104, RE = −0.77%; No.116, RE = −0.35%; No.119, RE = −0.50%; No.120,
RE = 0.23%; No.125, RE = 0.23%), while the corresponding number of the MFOA–DCNN and the DCNN
was 2 (No.120, RE = 0.79%; No.125, RE = −0.82%) and 0, respectively. It can be seen the error points of
the SVM mostly ranged in [−6%, −4%] and [4%, 6%], while there existed a large fluctuation in the errors
of the BPNN, mainly in [−7%, −5%] and [5%, 7%]. In addition, the minimum absolute values of RE for
the MFOA–DIR–DCNN, the MFOA–DCNN, the DCNN, the SVM and the BPNN were 0.23%, 0.79%,
1.44%, −2.52%, 2.83%, respectively, and the maximum absolute values of RE correspondingly equaled
2.99%, 6.12%, 6.51%, −6.94% and 7.17%, respectively. In this respect, these models can be sorted by the
forecasting accuracy from the superior to the inferior: the MFOA–DIR–DCNN, the MFOA–DCNN,
the DCNN, the SVM and the BPNN. This demonstrates that the application of the MFOA contributes
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to the enhancement of training and learning process as well as the improvement of global searching
ability for the DCNN. Simultaneously, the input derived from the MFOA–DIR can obtain satisfactory
prediction results. In contrast with the SVM and the BPNN, this indicates that the DCNN can achieve
a better forecasting performance than shallow learning algorithms.
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Figure 7 illustrates the comparative results gauged by the RMSE, the MAPE, and the AAE.
THis proves that the established hybrid model is superior to the other four techniques from the
perspective of the aforementioned error criteria. Concretely, the RMSE, the MAPE and the AAE of the
MFOA–DIR–DCNN were 2.2345%, 2.1721% and 2.1700%, respectively. Additionally, the RMSEs of the
MFOA–DCNN, the DCNN, the SVM and the BPNN were 3.1818%, 3.7103%, 4.5659%, and 6.2336%,
respectively, while the MAPE of the corresponding methods equaled 3.2073%, 3.7148%, 4.4318% and
5.8772%, respectively. Accordingly, the AAE of the MFOA–DCNN, the DCNN, the SVM and the
BPNN was equivalent to 3.1251%, 3.7253%, 4.4956% and 5.7347%, respectively. Owing to the fact
that the DCNN has advantages over shallow learning algorithms, the MFOA was able to complete
parameter optimization of the DCNN, and the DIR approach guarantees the completeness of the
input information while reducing the redundant data, which ameliorates the prediction accuracy
and robustness.
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For further verification that the proposed method is better, the case was predicted by the methods
proposed in Reference [8] (BP neural network), [14] (cuckoo search algorithm and support vector
machine), and [36] (modified firefly algorithm and support vector machine). The input of these three
models was 33—that is 33 candidate features—and the parameter settings were consistent with those
mentioned in the text. Table 3 displays the comparative forecasting results.

Table 3. Comparison with the prediction results of the references’ models.

Model RMSE MAPE AAE

Proposed model 2.2345 2.1721 2.1700
Ref. [8] 6.2336 5.8772 5.7347

Ref. [14] 3.3641 3.4502 3.3122
Ref. [36] 3.2794 3.3471 3.2098

According to Table 3, it can be concluded that the forecasting precision of the established approach
outperforms that of References [8,14,36]. The main reasons consist of three points. First, the feature
selection process can remove the low correlation factors, thereby reducing the input of the model and
reducing the training error of the model. Second, optimizing the parameters of the neural network or
the support vector machine can provide the training accuracy of the model. For example, the prediction
results of References [14] and [36] were superior to the prediction results of the SVM (mentioned in
Figure 7). Third, the DCNN model not only reduces the number of neurons and weights, it also uses
the pooling operation to make the input features have displacement, scaling and distortion invariance,
thus improving the accuracy and robustness of network training, which is better than the SVM and
the BPNN.

However, when training and testing the proposed model, it was found that the amount of sample
data in the training set had a relatively large impact on the test results. The larger the sample size of
the training set, the better the test results. Due to the limited number of new substation projects each
year, when applying the proposed model, it is necessary to collect more data on the cost of the previous
substation project cost to ensure that the DCNN can be fully trained.
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4. Conclusions

This paper developed a novel hybrid approach for cost forecasting based on the DIR, the DCNN
and the MFOA. Firstly, the DIR integrated with the MFOA was adopted for input feature selection.
Simultaneously, the MFOA was utilized to realize parameter optimization in the DCNN. Thus,
the proposed method could be applied to cost forecasting of substation projects on the foundation of
the optimized input subset, as well as the best value of γ and σ. The proposed model outperformed
the comparative approaches in terms of prediction precision. The case studies demonstrated that:
(a) The use of the DIR is conducive to the elimination of unrelated noises and the improvement of
prediction performance. (b) Improving the DCNN with the MFOA presents good performance mainly
due to the fact that the MFOA enhances the global searching capability of the method. (c) The ideal
prediction results were obtained by numerical examples of substation projects in different regions,
different voltage levels, and different scales, which shows that the adaptability and stability of the
proposed model are also strong. Therefore, this established approach for cost forecasting based on the
MFOA–DIR–DCNN, considering its effectiveness and feasibility, provides an alternative for this field
in the electric-power industry.

However, the feature selection methods have been researched more and more recently, and it is
very important for substation project cost forecasting. Thus, the new feature selection method will be
will be a research focus in the future.
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Abbreviations

Abbreviation Meaning
MFOA modified fruit fly optimization algorithm
FOA fruit fly optimization algorithm
DIR data inconsistency rate
DCNN deep convolutional neural network
ANNs artificial neural networks
SVM support vector machine
BPNN back propagation neural network
ELM extreme learning machine
RBFNN radial basis function neural network
GRNN general regression neural network
APSO adaptive particle swarm optimization
CS cuckoo search algorithm
DNN deep neural network
CNN convolutional neural network
RE relative error
RMSE root mean square error
MAPE mean absolute percentage error
AAE average absolute error
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Appendix A

Table A1. The statistics of substation feature.

Candidate Features Statistic Information

Area
Type <2000 m2 >2000 m2 and <4000 m2 >4000 m2

Statistics 26 78 24

Construction type Type New substation Extended main transformer Extended interval
engineering

Statistics 56 48 24

Voltage level Type 35 kV 110 kV 220 kV
Statistics 27 82 19

Main transformer
capacity

Type <30 MVA >30 MVA and <50 MVA >50 MVA
Statistics 32 78 18

High-voltage side
outlet number

Type <4 >4
Statistics 64 64

Low-voltage side
outlet number

Type <4 >4
Statistics 86 42

Topography Type Hillock, hillside
field and flat Plain, paddy field and rainfed cropland mountainous region

and depression
Statistics 64 52 10

Schedule
Type <90 days >90 days and <180 days >180 days

Statistics 57 35 36

Substation type Type Indoor Semi-indoor Outdoor
Statistics 82 20 26

Number of transformers
Type 1 2

Statistics 27 101

Economic
development level

Type <200 billion
CNY >200 billion CNY and <400 billion CNY >400 billion CNY

Statistics 16 92 20

Inflation rate
Type <2% <2% and >4% >4%

Statistics 11 111 6

Main transformer price Type <100,000 CNY >100,000 CNY
Statistics 26 102

High-voltage side circuit
breaker price

Type <10,000 CNY >10,000 CNY
Statistics 45 83

Number of high-voltage
side breakers

Type <2 >2
Statistics 68 60

Number of low
voltage capacitors

Type 1 >1
Statistics 56 72

High voltage fuse price Type <500 CNY >500 CNY
Statistics 59 69

Current
transformer price

Type <10,000 CNY >10,000 CNY
Statistics 23 105

Power capacitor price Type <100,000 CNY >100,000 CNY
Statistics 89 39

Reactor price Type <5000 CNY >5000 CNY
Statistics 57 71

Power bus price Type <2000 CNY/m >2000 CNY/m
Statistics 69 59

Arrester price Type <2000 CNY >2000 CNY
Statistics 76 52

Measuring
instrument price

Type <10,000 CNY >10,000 CNY
Statistics 39 89

Relay protection
device price

Type <10,000 CNY >10,000 CNY
Statistics 40 88

Signal system price Type <100,000 CNY >100,000 CNY
Statistics 44 84

Automatic device price Type <20,000 CNY >20,000 CNY
Statistics 90 38
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Table A1. Cont.

Candidate Features Statistic Information

Site leveling cost Type <500,000 CNY >500,000 CNY
Statistics 65 63

Foundation
treatment cost

Type <1,000,000 CNY >1,000,000 CNY
Statistics 76 52

Technical level of the
designers

Type <50% >50% and >80% >80%
Statistics 19 83 26

Number of accidents
Type 0 >0

Statistics 122 6

Engineering
deviatio rate

Type <15% >15%
Statistics 107 21

Construction
progress level

Type 0 day >0 day and <15 days >15 days
Statistics 96 15 17

Rainy and snowy days Type <7 days >7 days and <14 days >14 days
Statistics 48 67 13
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