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The following supplementary information provides the background information on how the 

thermophysical properties of the nanofluids were calculated, how the pressure drop data was 

analysed, and how the uncertainty of the experiments was estimated for this present study. 

1. Nanofluid Thermophysical Properties 

Although many equations exist for calculating the effective properties of nanofluids, the present 

study elected to use simple relationships—relationships which have been found to provide good 

approximations at low volume fractions [34-36]. For the specific heat capacity, the nanofluid was 

calculated using the following simple linear mixing model, as was suggested in [34] using the 

following: 

𝐶𝑃𝑛𝑓
= 𝜑𝐶𝑃𝑝

+ (1 − 𝜑)𝐶𝑃𝑏𝑓
 (S-1) 

The subscripts nf, p, and bf refer to the nanofluid, particle, and the base fluid, respectively. φ is 

the volume fraction of the particle. The viscosity (µ) was estimated using the Einstein Model, as was 

suggested in [35], with the following equation: 

𝜇𝑛𝑓

𝜇𝑏𝑓
= (1 + 2.5𝜑) 

                          

(S-2) 

And of the density (ρ) of the nanofluid in this study was calculated with the following equation 

linear mixing model [36]: 

𝜌𝑛𝑓 = 𝜑𝜌𝑃 + (1 − 𝜑)𝜌𝑏𝑓 (S-3) 

In each of equations (1)-(3), the ‘effective’ nanoparticle properties were first calculated (using 

these same equations), based on the electron microscope measurements for the relative volumes of 

the core and shell. For equations 1-3, an average outer particle diameter of 100nm was used and a 

shell thickness (approximately 30nm) was assumed (e.g. see Figure 3c of the main manuscript and 

[29]), along with the properties of each bulk material (silver and silica). 

The nanofluid volume % was found to be approximately 0.05%. Therefore, at the laboratory 

temperature (≈ 20𝑜𝐶) the physical properties of water and the calculated nanofluid properties using 

equation S1-3 can be seen in Table S1. 

Table S1. Comparison of the thermophysical properties of water and the nanofluid. 

Water Nanofluid 

𝝆 (𝒌𝒈/𝒎𝟑) 𝑪𝒑(𝑱/𝒌𝒈𝒐𝑲) 𝝁 (𝑷𝒂. 𝒔) 𝝆 (𝒌𝒈/𝒎𝟑) 𝐶𝑝(𝐽/𝑘𝑔𝑜𝐾) 𝜇 (𝑃𝑎. 𝑠) 

998.19 4180 0.0010005 1000.305 4178.23 0.0010017 



2. Pressure Drop Calculations 

As mentioned in Section 3 of the main text, the results of the pressure drop experiments were 

presented as dimensionless numbers where possible. This was done by plugging the data into the 

following equations. This process starts by calculating the friction factor from the measured pressure 

drop data [43]:  

𝑓 = ∆𝑃𝐿

𝐷ℎ

𝐿

2

𝜌𝑈2
 (S-4) 

where ∆𝑃𝐿, L, Dh, ρ, and U are the pressure drop along the microchannel, the length of the 

microchannel (30mm in this study), the hydraulic diameter, the fluid density, and the average fluid 

velocity, respectively. Hydraulic diameter, in turn, was calculated by the following: 

𝐷ℎ =
4𝐴𝑐

𝑝
=

2𝑊𝐻

(𝑊 + 𝐻)
 (S-5) 

where Ac, p, W, and H are the area of cross section, the wetted perimeter of the channel, the channel 

width, and the channel height, respectively. The Reynolds number was calculated as follows: 

𝑅𝑒 =
𝜌𝑈𝐷ℎ

𝜇
 (S-6) 

where µ is the dynamic viscosity of the fluid. Subsequently, the Poiseuille number was calculated 

using: 

𝑃𝑜 = 𝑓𝑅𝑒 =
2∆𝑃𝐿𝐷ℎ

2

𝐿𝑈𝜇
=

8∆𝑃𝐿

𝐿𝑉𝜇̇
 

𝑊2𝐻2

(𝑊 + 𝐻)2
 (S-7) 

where 𝑉̇ is the volumetric flow rate. 

3. Uncertainty Analysis 

A detailed analysis of the experimental uncertainty is critical to the interpretation of the 

experimental results [44, 45]. Based on the test procedure and measuring instruments mentioned in 

the main text, the uncertainty in Poiseuille number here can be determined from the following terms: 

𝛿𝑃𝑜 = [(
𝜕𝑃𝑜

𝜕∆𝑃
𝛿∆𝑃)

2

+ (
𝜕𝑃𝑜

𝜕𝑊
𝛿𝑊)

2

+ (
𝜕𝑃𝑜

𝜕𝐻
𝛿𝐻)

2

+ (
𝜕𝑃𝑜

𝜕𝑉̇
𝛿𝑉̇)

2

]

1
2

 (S-8) 

where 𝑉 ̇ and U are the volumetric flow rate and the average flow velocity, respectively, and each 

term is as follows: 
𝜕𝑃𝑜

𝜕∆𝑃
=

8 𝑊2𝐻2

𝜇𝐿𝑈(𝑊 + 𝐻)2
 (S-9) 

𝜕𝑃𝑜

𝜕𝑊
=

16 ∆𝑃 𝑊𝐻3

𝜇𝐿𝑈(𝑊 + 𝐻)3
 (S-10) 

𝜕𝑃𝑜

𝜕𝐻
=

16 ∆𝑃 𝑊3𝐻

𝜇𝐿𝑈(𝑊 + 𝐻)3
 (S-11) 

𝜕𝑃𝑜

𝜕𝑉̇
=

−8∆𝑃 𝑊2𝐻2

𝜇𝐿𝑈2(𝑊 + 𝐻)2
 (S-12) 

The PHD syringe pump accuracy was 1% of the experimented flow rate. The Keyence laser 

scanning microscope (VK-X210) has a display resolution of 0.012 μm and repeatability of 0.012 μm 

in height measurement, whereas the Zeiss microscope used for the width measurements has a 

resolution of 19.55 μm/px. The uncertainties of both height and width measurements can be 

determined by the following equations: 

𝛿𝐻sys = [(𝛿𝐻resolution)2 + (𝛿𝐻repeatability)
2

]

1
2
 (S-13) 



𝛿𝐻 = [(𝛿𝐻sys)2 + (𝑡95,𝑣

𝑆

√𝑛
)2]

1
2
 (S-14) 

𝛿𝑊 = [(𝛿𝑊sys)2 + (𝑡95,𝑣

𝑆

√𝑛
)2]

1
2
 (S-15) 

“Sys” subscript stands for the systematic error. The second term of δH and δW is the researcher’s t-

statistic with a 95% confidence level (remember: H and W were measured 10 times each). 

The differential pressure transducer used in the experiments has an accuracy of 0.08% (linearity, 

hysteresis, and repeatability combined). With a pressure range of 7000 Pa, the systematic error in the 

pressure drop measurement can be calculated as follows: 

𝛿∆𝑃𝐿,𝑠𝑦𝑠 = 7000 × 0.08% = ±5.6 𝑃𝑎 (S-16) 

Then, the uncertainty in the pressure drop measurements can be determined by combining the 

instrument error and the random error of the pressure drop measurement over the time interval. 

𝛿∆𝑃𝐿 = [(𝛿∆𝑃𝐿,𝑠𝑦𝑠)2 + (𝑡95,𝑣

𝑆

√𝑛
)2]

1
2
 (S-17) 

Regarding the temperature measurement, Tm calculated using the following (e.g. for calibrated, 

T-type thermocouples): 

𝑇𝑚 =
1

2
(𝑇𝑖 + 𝑇𝑜) (S-18) 

where i and o subscripts are inlet and outlet. For Ti and To also we have: 

𝛿𝑇𝑖 = [(𝛿𝑇𝑖,𝑠𝑦𝑠)2 + (𝑡95,𝑣

𝑆

√𝑛
)2]

1
2
 (S-19) 

𝛿𝑇𝑜 = [(𝛿𝑇𝑜,𝑠𝑦𝑠)2 + (𝑡95,𝑣

𝑆

√𝑛
)2]

1
2
 (S-20) 

So, for Tm we can write: 

𝛿𝑇𝑚 = [(
1

2
𝛿𝑇𝑖)

2 + (
1

2
𝛿𝑇𝑜)2]

1
2
 (S-21) 

As for efficiency, the uncertainty can be expressed using the following equation: 

𝛿𝜂 = [(
𝜕𝜂

𝜕𝐺
𝛿𝐺)

2

+ (
𝜕𝜂

𝜕𝑇𝑖
𝛿𝑇𝑖)

2

+ (
𝜕𝜂

𝜕𝑇𝑜
𝛿𝑇𝑜)

2

+ (
𝜕𝜂

𝜕𝑚̇
𝛿𝑚̇)

2

]

1
2

 (S-22) 

where: 
𝜕𝜂

𝜕𝐺
= (

𝑚̇𝐶𝑃∆𝑇

𝐴
) . (

−1

𝐺2
) (S-23) 

𝜕𝜂

𝜕𝑚̇
=

𝜕𝜂

𝜕(𝜌𝑉)̇
= (

𝜌𝐶𝑃∆𝑇

𝐴𝐺
) 

(S-24) 

𝜕𝜂

𝜕𝑇𝑖
= − (

𝑚̇𝐶𝑃

𝐴𝐺
) (S-25) 

𝜕𝜂

𝜕𝑇𝑜
= (

𝑚̇𝐶𝑃

𝐴𝐺
) (S-26) 

For the X-axis the following can be used: 

𝜕(
𝑇𝑚 − 𝑇𝑎

𝐺
)

𝜕𝑇𝑂
=

𝜕(
(((𝑇𝑜 + 𝑇𝑖)/2) − 𝑇𝑎)

𝐺
)

𝜕𝑇𝑜
=

𝑚̇𝐶𝑝

2𝐴𝐺
 (S-27) 



𝜕 (
𝑇𝑚 − 𝑇𝑎

𝐺
)

𝜕𝑇𝑖
=

𝜕 (
(((𝑇𝑜 + 𝑇𝑖)/2) − 𝑇𝑎)

𝐺
)

𝜕𝑇𝑖
=

−𝑚̇𝐶𝑝

2𝐴𝐺
 (S-28) 

𝜕(
𝑇𝑚 − 𝑇𝑎

𝐺
)

𝜕𝐺
=

−(𝑇𝑚 − 𝑇𝑎)

𝐺2
 (S-29) 

The light power meter had an accuracy of 1mW. The main contributors to the uncertainties of 

the pressure drop measurements and the efficiency are W, Ti and To, respectively. 


