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Abstract: The power quality of new energy resources has received tremendous attention recently.
The control approach for the inverter, an interface between the new energy resources, and the infinite
bus system is of vital importance. For the virtual synchronous generator (VSG), one of the research
hotspots in the inverter control field, there are some challenges remaining to be dealt with. First is the
contradiction between the rapid response and overshoot of active power output if VSG is connected
to the grid. Secondly, the active power is deeply influenced by the fluctuation of gird frequency and
this may bring power oscillation to VSG in weak grids. In this article, an active power controller for
power tracking of grid-connected VSG is designed based on linear active disturbance rejection control
(LADRC) by compensating for the lumped disturbance in a feedforward fashion. The parameters
of the controller are analyzed and tuned in the frequency domain to acquire a desirable control
performance. Moreover, the robustness of the control system is also considered. Simulation results
show that the designed control system can transmit active power to the grid in a timely manner with
no overshoot, as demanded. Additionally, it can output active power steadily according to the power
reference without using a phase-locked loop (PLL) when the grid frequency has different features
of fluctuation. In addition, the simulation results demonstrate that the improved VSG has strong
robustness to the model parameter perturbation and mismatch.
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1. Introduction

With the depletion of traditional energy sources and scalable applications of wind power and solar
power, the penetration of electronic power equipment has increased rapidly in the grid. Traditionally,
droop control strategy [1], active-reactive power (PQ) control strategy [2,3], and voltage-frequency
(Vf) control strategy [3,4] can be chosen for inverter control, where droop control is capable of both
the off-grid and on-grid modes. PQ control and Vf control are usually coordinated with each other
to operate in both island and grid-connected modes for inverters. However, the characteristics of
low inertia and damping of the three control strategies bring increasing uncertainty to the power
grid operation.

Previous studies [5,6] proposed the concepts of a virtual synchronous generator (VSG)
and virtual synchronous machine (VISMA) separately as alternatives, which emulate the active
power-frequency regulating characteristics of a synchronous generator (SG) and synchronous machine
(SM). The fluctuation of grid frequency is suppressed and the power quality is improved to a certain
extent. The stability of the operation of the power system is also enhanced. VSG is now a research
hotspot in microgrids.
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VSG does not work at the rated operation point while working in island mode, and its frequency
and voltage drop according to the droop characteristic curves of synchronous generators. If connected
to the infinite bus system, VSG embodies the rotor inertia characteristic of SG, which causes the
overshoot of active power, and thus the following transition process. The contradiction between the
adjusting time and overshoot of active power has received extensive attention in academia, such that
several different settling schemes have been put forward. One study [7] proposed a control strategy
for the frequency and power of VSG based on Bang-Bang control. The angular frequency of VSG
and its rate of change are considered to adjust the inertia momentarily, and the fluctuation is reduced.
The second order differential value of output angular frequency and the differential value of virtual
mechanical power were introduced in previous work [8] to adjust the inertia actively. The method of
adjusting the inertia dynamically can also be found in other studies [9–11]. The proposed strategies in
previous work [7–11] can indeed reduce the overshoot, however, the noise of the output power and
frequency would be amplified when taking derivatives and that may affect the dynamic performance of
VSG. Another study [12] proposed an improved VSG algorithm that is raised to increase stability and
decrease the overshoot of power by adding an angle frequency differential term. In another study [13],
a lead-lag item is introduced into the control structure and the pole-zero positions of closed-loop
transfer function are changed by adding a lead item to the original inertia block. The damping ratio
increases and the response accelerates in the presence of the added zero point in the left half of the S
plane. If the grid frequency falls to a lower value, the output current of conventional VSG will reach a
high value. This may cause the deviation between the power reference and the output power, and may
even result in the action of overcurrent protection [13]. Additionally, the characteristics of conventional
VSG will be deteriorated if the inverter has weak ties to the grid, and it is likely to result in output
power oscillation [14]. Therefore, to meet more requirements in different scenarios, it is necessary to
propose a supplementary or coordinated control strategy for VSG, which can handle output power
steadily according to the power reference generated by the dispatching center and have the offset of
power eliminated. To suppress the deviation of active power with consideration for the frequency
fluctuation of the grid, one study [15] proposed a control strategy that adds a feedforward block for the
deviation of frequency, where the conventional damping control in VSG is removed and a derivative
term is added into the transfer function from the active power reference to the output active power, thus
the steady-state error of power is eliminated when the grid frequency has a step change. Considering
the electricity quantity of the direct current (DC) side, one study [16] proposed a coordinated control
strategy that can switch between the conventional droop mode and the constant power control mode
based on VSG. However, there still exists overshoot in the adjustment period. In another study [17],
the grid frequency is tracked and that is set as the reference of the inverter instantaneously, and
that can eliminate the deviation of power. However, there are problems that remain to be solved in
phase-locked loop (PLL), such as the slow response speed and the complexity of designing parameters
for PLL. Hence, different types of improved PLL were proposed in previous work [18–20]. The existing
research studies focus on different aspects separately, such as reducing the active power overshoot or
suppressing the deviation of active power when the grid frequency fluctuates. It is observed that a
control strategy for VSG has not been put forward until now that can both track the power reference
smoothly without overshoot and realize the purpose of the offset-free regulation of power when the
disturbance exists. Hence, a smooth power tracking strategy for grid-connected VSG is proposed in
this article accordingly.

Active disturbance rejection control (ADRC) was proposed by Prof. Han, which does not rely on
the precise model of the controlled object [21,22]. The unmodeled parts and the outside disturbance in
the sum are seen as the lumped disturbance, which can be observed by the extended state observer (ESO)
and compensated by a feedforward controller. Compared with PID control, disturbance suppression is
more advanced for ADRC. However, a large number of parameters need to be tuned in ADRC and it
is difficult to demonstrate the stability of the control system by classical control theories. Prof. Gao
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proposed the linear active disturbance rejection control (LADRC). The controller is linearized and
parameterized in previous studies [23,24] that promote the application of ADRC in engineering.

On the basis of the above introduction, a smooth power tracking approach for grid-connected
VSG is proposed based on LADRC, which has three advantages, as follows:

1. The proposed control strategy based on LADRC can have VSG output active power to the grid as
demanded without overshoot in time compared with the conventional VSG.

2. This control strategy enables VSG to transmit power to the grid stably in accordance with the
power reference without PLL and it is insensitive to the gird frequency fluctuation.

3. The unmodeled parts can be seen as constituent parts of lumped disturbance and the improved
VSG has strong robustness to the parameter perturbation and model-plant mismatch.

This article is organized as follows. Section 2 introduces the basic principles of VSG briefly.
In Section 3, the drawbacks of transmitting active power to the grid are analyzed by deriving the
power transfer function based on the conventional VSG control strategy. Furthermore, the controlling
approach for active power of grid-connected VSG is stated based on LADRC, which illustrates the
details of modeling. The method for parameter tuning of the designed controller is obtained through
frequency domain analyses in Section 4, which contributes to parameter tuning and the performance
of the controller. Simulation results are shown in Section 5 to validate the proposed control strategy
for power control of grid-connected VSG and Section 6 gives the conclusion of this article with future
work proposals.

2. Basic Principles of VSG

To emulate the primary frequency modulation characteristic of SG, we assume that the number of
pole pairs is one, and the classical equations of the second-order VSG for inverters can be described as

Pm = Pref +
1
Kf

(ωn −ω) (1)

E∗ = E0 +
1

Kq
(Qref −Qe) (2)

{
J dω

dt = Pm−Pe
ω −D(ω−ωn)

θ =
∫
ωdt

(3)

where Pm, Pref, Pe, Qref, and Qe are the mechanical power, the active power reference, the output
power, the reactive power reference, and the output reactive power, respectively; ω and ωn are denoted
as the rotor angular frequency and the rated angular frequency, respectively; E∗ and E0 indicate the
voltage reference and the rated peak value of the three-phase voltage, respectively; Kf and Kq are
represented as the active power-frequency droop coefficient and the reactive power-voltage droop
coefficient, respectively; J is the virtual inertia, D is the damping coefficient, and θ is the electrical
angle. The topology and control structure of the grid-connected VSG are shown in Figure 1.

As shown in Figure 1, Udc is the constant voltage source containing wind power, solar power,
and energy storage system. Here, L1, L2, and C are the filter inductance, the line inductance, and the
filter capacitance, respectively; ICA, ICB, and ICC are the three-phase currents of the capacitance; EA, EB,
and EC, and UA, UB, and UC are introduced to represent the output three-phase voltages of the inverter
and the three-phase voltages of the capacitor separately; ICd and ICq, and Ud and Uq are the d-axis
and q-axis current of the capacitance, and d-axis and q-axis voltage of the capacitance, respectively;
ZL represents the local loads and the power is denoted as PLocal. The breaker is controlled to achieve the
switch between the on-grid and off-grid modes of VSG. Besides, the method for pre-synchronization of
VSG refers to previous work [25], which proposed the approach of orienting from the q-axis component
of grid voltage. The control block is shown in Figure 2, where U is the peak value of the three-phase
voltage of VSG, Ug is the three-phase voltage RMS of the grid, and ϕ is the initial phase angle of Ug.



Energies 2019, 12, 3024 4 of 24

Additionally, to realize better performance of VSG, a proportional-integral controller is introduced into
the reactive power control loop when the VSG is connected to the grid. The control block is shown in
Figure 2 [17,26,27] and the coefficients of proportionality and integration are 1/Kq and Kiq, respectively.
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Figure 1. Topology and general control structure of grid-connected inverter.
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Figure 2. Overall schematic control diagram of grid-connected virtual synchronous generator (VSG).

3. Control Strategies for VSG

3.1. Performance Analysis of Conventional Grid-Connected VSG

The equivalent topology of the gird-connected VSG and the grid can be illustrated as Figure 3.
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Figure 3. Equivalent diagram of grid-connected VSG.

As shown in Figure 3, the VSG is equivalent to a SG and it is connected to the grid by three-phase
transmission lines, where Z is the line impedance and Z = R + jωL2 = R + jX. Here, δ is the power
angle of VSG and U0 is modeled as the three-phase voltage RMS of VSG. In general, the line is inductive
owing to the presence of transformers and filter inductance, thus the apparent power transmitted to
the grid by VSG can be given by the following equation [28]:

S = 3U
∗

I = 3U
U0∠− δ−Ug∠0◦

jX
= Pe + jQe = 3

U0Ug

X
sin δ+ j (3

U0Ug

X
cos δ− 3

Ug
2

X
) (4)

where δ is generally seen as a small value, sin δ ≈ δ. Then, Pe in Equation (4) can be linearized as [12]:

Pe =
3U0Ugδ

X
(5)

Now, we let ω = ωn when calculating the torque deviation, and we also have the switching
of electronic devices, the fine adjustment process of voltage, and the current double closed loop
omitted. Combining Equations (1)–(3) with (5), the equivalent active power control block diagram of
the grid-connected VSG can be obtained as Figure 4.
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Here, ωg is the real-time angular grid frequency and C = 3
U0Ug

X . Letting ∆ωng = ωn − ωg,
therefore, the output active power can be modeled as:

Pe(s) =
CKf

Kf Jωns2 + (KfDωn + 1)s + CKf
Pref(s) +

C(Kf Jωns + KfDωn + 1)
Kf Jωns2 + (KfDωn + 1)s + CKf

∆ωng(s) (6)

We suppose that the grid frequency does not fluctuate, i.e., ωn = ωg. Then, Equation (6) can be
transformed into:

Pe(s) =
CKf

Kf Jωns2 + (KfDωn + 1)s + CKf
Pref(s) (7)

The coefficients of the characteristic equation in Equation (7) are all greater than zero, and the
system is stable. Further, the damping ratio of Equation (7) can be obtained as:

ξ1 =
D
2

√
ωn

JC
+

1
2Kf

√
1

JωnC
(8)
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It is clear that ξ1 increases, the overshoot decreases, and the system responds more slowly with the
increase of D. If J decreases, the overshoot will increase, and thus the response speed will accelerate.
There exists a contradiction to be solved between the rapid response and the overshoot of output power.

The final value theorem [29] can be applied to Equation (7), and the steady-state power output to
the grid can be calculated as Pe = Pref. However, in reality, the grid frequency is always fluctuating,
and it is difficult for VSG to operate stably at the rated frequency. Therefore,

Pe(s)
∆ωng(s)

=
C(Kf Jωns + KfDωn + 1)

Kf Jωns2 + (KfDωn + 1)s + CKf
(9)

Supposing ∆ωng is the unit step signal, the steady-state power deviation can be deduced as

∆Pe = Dωn +
1
Kf

(10)

It can be perceived from Equation (10) that there is a negative correlation between Kf and ∆Pe,
and a positive correlation between D and ∆Pe separately. However, under the condition that ωn , ωg,
the presence of the difference between Pe and Pref cannot be eliminated if Kf and D are changed to reduce
the deviation. The overload coefficient of the inverter shall not exceed 1.5 in practice generally, and if
∆ωng is too large, the actual output power of the VSG may exceed the maximum permissible power of
the inverter. As one example, the extreme operation of the VSG may trigger its overcurrent protection,
which will cause it to detach from the grid; as another example, if VSG is not disconnected from the
grid, the long period of overloading can shorten its life. Hence, a strategy that enables VSG output
power according to the reference is needed if ωg fluctuates or in some other extreme circumstances.

3.2. Control Strategy for Power of Grid-Connected VSG Based on LADRC

3.2.1. Principles of the Second-Order LADRC

It can be observed that the controlled object (6) is a second-order model, thus we design a
second-order LADRC power controller to solve the above problems accordingly. The second-order
LADRC controller consists of a linear extended state observer (LESO) and linear state error feedback
(LSEF). The advantage of LADRC is that LESO can regard the lumped disturbance as one of the variable
states of the system to be observed. Its basic control structure is shown in Figure 5 [30], where r is the
reference and y is the output of the controlled object. The estimation for the output of the controlled
object, the derivative value of the output, and the lumped disturbance are denoted as z1, z2, and z3,
respectively. Additionally, b is the gain of the controlled object, u is the compensated control value, e is
the difference between y and z1; l1, l2, and l3 are the different error feedback gain factors in LESO.
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Here, f is denoted as the lumped disturbance, and the time-domain expression of the controlled
object can be written as:

..
y = f (y,

.
y, w, t) + bu (11)

The model of LESO can be designed as:
e = y− z1
.
z1 = z2 + l1e
.
z2 = z3 + l2e + bu
.
z3 = l3e

(12)

Noticing Equation (11), the expression of the controlled object can be written in state space form
as: 

.
x1
.
x2
.
x3

 =


0 1 0
0 0 1
0 0 0




x1

x2

x3

+


0
b
0

u +


0
0
1

 f (13)

y =
[

1 0 0
]

y
.
y
f

 (14)

Combining Equation (12) with Equations (13) and (14), the expression of the three-order LESO
can be deduced as: 

.
z1
.
z2
.
z3

 =

−l1 1 0
−l2 0 1
−l3 0 0




z1

z2

z3

+


0
b
0

l1
l2
l3


[

u
y

]
(15)

Then, taking the Laplace transformation of Equation (15), we have:

Z(s) =
1

s3 + l1s2 + l2s + l3


bs l1s2 + l2s + l3

bs2 + bl1s l2s2 + l3s
−bl3 l3s2


[

U(s)
Y(s)

]
(16)

Based on the estimated states, LSEF can be designed as:

u =
Kp(r− z1) −Kdz2 − z3

b
(17)

where Kp and Kd are the gains of LSEF. According to Equations (16) and (17), it can be seen that:

U(s) =
1
b
[KpR(s)C(s) −Y(s)H(s)C(s)] (18)

where

C(s) =
s3 + l1s2 + l2s + l3

s3 + (l1 + Kd)s2 + (l1Kd + l2 + Kp)s
(19)

H(s) =
(Kpl1 + kdl2 + l3)s2 + (Kpl2 + kdl3)s + KPl3

s3 + l1s2 + l2s + l3
(20)

Combining Equation (11) with Equations (18)–(20), the simplified control structure can be drawn
in Figure 6.
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As shown in Figure 6, the control structure of active power does not become complicated, and it
can be deduced as the classical feedback control structure where the disturbance is considered. Based
on the estimations of output and disturbance, LSEF can compensate for the controlled variable in
feedback, which will quickly make the output track the reference without offset. If the observations are
reliable, then z1 → y , z2 →

.
y , z3 → f . According to Equations (12) and (17), the differential equation

can be derived as:
..
y = −Kd

.
y−Kpy + Kpr (21)

The closed-loop transfer function of the system can be deduced by the classical control theory as:

Y(s)
R(s)

=
Kp

s2 + Kds + Kp
(22)

A previous study [24] proposed a parameter tuning method for LADRC based on the bandwidths,
which can track the reference without overshoot in a timely manner. Therefore, l1, l2, and l3, and
Kp and Kd are relevant to the bandwidth of LESO and that of LSEF, which are noted as ωo and ωc,
respectively. The tuning details are given by:{

l1 = 3ωo, l2 = 3ω2
o, l3 = ω3

o
Kd = 2ωc, Kp = ω2

c
(23)

3.2.2. Control Strategy for Active Power of VSG Based on LADRC

According to Equation (11), Equation (6) can be derived in the time domain as:

d2Pe
dt2 = −

(KfDωn+1)
Kf Jωn

dPe
dt −

CPe
Jωn

+ C
d∆ωng

dt +
C(KfDωn+1)

Kf Jωn
∆ωng +

C
Jωn

Pref = f + C
Jωn

Pref = f + bu (24)

Thus, the equivalent control structure of power based on LADRC can be obtained according to
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Figure 7. Control structure for power of VSG based on LADRC.

Here, Pu is the compensated control value and the transfer function of power can be stated as:

Pe(s) =
N(s)
Q(s)

Pref(s) +
M(s)
Q(s)

[ωn(s) −ωg(s)] =
N(s)
Q(s)

Pref(s) +
M(s)
Q(s)

∆ωng(s) (25)

where
N(s) = CKfω

2
c(s

3 + 3ωos2 + 3ω2
os +ω3

o) (26)
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M(s) = bCKf Jωns4 + bC[Kf Jωn(3ωo + 2ωc) + KfDωn + 1]s3 + bC[Kf Jωn(6ωoωc + 3ω2
o +ω2

c)+

(KfDωn + 1)(3ωo + 2ωc)]s2 + bC(KfDωn + 1)(6ωoωc + 3ω2
o +ω2

c)s
(27)

Q(s) = q1s5 + q2s4 + q3s3 + q4s2 + q5s + q6 (28)

In Equation (28), q1–q6 are the constant values obtained by deducing the transfer function in
Figure 7. It is obvious that the transient process of power is influenced by two factors directly,
which are the power reference and ∆ωng, respectively. Besides, according to Equations (27) and (28),
the steady-state power output has no tracking offset if ∆ωng is a step change value. It indicates the ability
to suppress the disturbance under the LADRC control strategy for VSG. In addition, it can be further
seen in Equation (24) that ∆ωng is not the only part of the lumped disturbance. The influence of the
difference between power reference and the output active power and its differential value, the influence
of the difference of angular frequency reference, and the grid angular frequency and its differential
value are all taken as the components of the lumped disturbance. Furthermore, some other factors
that are unmodeled, which bring deviation to the active power, are all regarded as the components of
lump disturbance and compensated. If the lumped disturbance can be observed and compensated
precisely, an integrator series structure can be obtained. Therefore, the output can track the reference
without overshoot and deviation, even though the plant is not accurate enough. This further shows
the advantage that LADRC does not rely on the precise model of the controlled object.

4. Parameters Tuning for Controller

4.1. Nominal Performance Concerning

The stability of the control system is the premise for LADRC to achieve great performance in
the power control of the grid-connected VSG. The stability margin of LADRC should be determined
and the controller parameters need to be tuned first. According to previous work [24], there are three
parameters remaining to be determined: b, ωo, and ωc. Now, we combine Equation (24) with Table 1,
and b can be calculated as:

b =
C

Jωn
= 4597 (29)

Table 1. Key parameters of the system.

Parameter Symbol Value Parameter Symbol Value

Ug V 220 Udc V 800
D N ·m · rad−1 100 J kg ·m2 0.8
Kq — 3330 L1 mH 0.6
Kiq — 0.005 L2 mH 0.404
Kf — 0.0628 C1 µF 1500
R Ω 0.1 ωn rad−1

· s 314.16

In order to clarify the relationship between the parameters when the system is stable,
the characteristic equation of the closed loop transfer function can be obtained as:

q1s5 + q2s4 + q3s3 + q4s2 + q5s + q6 = 0 (30)

where
q1 = bKf Jωn (31)

q2 = bKf Jωn(3ωo + 2ωc) + b(KfDωn + 1) (32)

q3 = bKf Jωn(6ωoωc +ω2
c + 3ω2

o) + b(KfDωn + 1)(3ωo + 2ωc) + bCKf (33)

q4 = b(KfDωn + 1)(6ωoωc +ω2
c + 3ω2

o) + CKf(ω
3
o + 3ωoω

2
c + 6ωcω

2
o + 3bωo + 2bωc) (34)
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q5 = CKf(6bωoωc + 3bω2
o + bω2

c + 3ω2
oω

2
c + 2ωcω

3
o) (35)

q6 = CKfω
2
cω

3
o (36)

The Lienard–Chipard criterion can be applied to judge whether the system is stable or not.
The necessary and sufficient condition for stability is that the coefficients of the characteristic equation
and each odd (or even) order Hurwitz determinant are greater than zero separately. It is noticeable
that the coefficients of the characteristic equation are all greater than zero. Therefore, the necessary
and sufficient condition for the stability of the system can be simplified as [31]:

∆5 = (q2q3 − q1q4)(q4q5 − q3q6) − (q2q5 − q1q6)
2 > 0 (37)

Thus, preliminarily, the relationship between ωo and ωc can be determined when the system is
stable, according to the constraint in Equation (37). However, the Lienard–Chipard criterion cannot
reflect the degree of stability. To obtain the reliable parameters of LADRC further, it is necessary to
analyze the influence of different parameters on the performance of the LADRC controller. Combined
with the above analyses, the initial values are chosen as ωo0 = 300 and ωc0 = 300. The influence on the
performance of the controller will be discussed with the changes of ωo and ωc.

4.1.1. Parameter ωc Increases When ωo Remains Unchanged

The parameter ωc increases from 0.25ωc0 to 4ωc0 gradually. The pole-zero map of the transfer
function from Pref to Pe and the Bode diagram of the transfer function from ∆ωng to Pe are given in
Figures 8 and 9, respectively.
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As we can see in Figure 8, the closed-loop poles move away from the imaginary axis gradually
and the response of the output accelerates with the increase of ωc. However, the angle between the
dominant poles and the negative real axis increases first and then decreases, which can be perceived as
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the damping of the system experiencing the process of first decreasing and then increasing. When ωc

is determined as the smallest value of 0.25ωc0, the system has the largest damping value, which means
that a larger value of ωc may cause overshoot of the power output. In addition, it can be perceived
that ωc does not affect the position of the zero point. According to Appendix A, if the value of ωc is
too large, the high-frequency measurement noise would be amplified more obviously, and this will
deteriorate the control performance. In Figure 9, with the increase of the frequency from the band of 1
rad/s to 100 rad/s, the ability of anti-disturbance will be reduced. Besides, if ωc increases, the gain of
∆ωng will decrease, and the output is less sensitive to the low frequency disturbance. This is to say,
if the disturbance rejecting ability needs to be enhanced, we can increase ωc on the premise that the
measurement noise is bearable for the system.

4.1.2. Parameter ωo Increases When ωc Remains Unchanged

The parameter ωo increases from 0.25ωo0 to 4ωo0 gradually. The pole-zero map of the transfer
function from Pref to Pe and the Bode diagram of the transfer function from ∆ωng to Pe are given in
Figures 10 and 11, respectively.
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It can be seen from Figure 10 that the closed-loop poles move away from the imaginary axis
gradually with the increase of ωo, which is similar to Figure 8. The increase of ωo can also accelerate
the response speed of the system, which can track the power reference more rapidly. When ωo is small,
the closed-loop zero points and dominant poles form dipoles and the equivalent order of the system
can be reduced to some extent. However, with the increase of ωo, the dipoles no longer exist. Besides,
the ability of rejecting disturbance increases when ωo increases, as shown in Figure 11.

At the same time, as introduced in Appendix A, the measurement noise would be amplified more
evidently with the increase of ωo. Moreover, depending on the combinations of Figures 8 and 10,
a phenomenon can be seen showing that ωo has a deeper influence on the positions of dominant
poles and the dynamic characteristics of the system when the two parameters have the same change.
When the frequency of disturbance is 1 rad/s, the range of the gain of ∆ωng, which is a part of the
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lumped disturbance, is from 23.2 dB to 51.8 dB and from 15.6 dB to 59.4 dB in Figures 9 and 11,
respectively. When the values of the two parameters have the same change, the change of ωo has a
stronger influence on the ability to suppress the disturbance than the change of ωc.

Additionally, bs is the set value of b in the controller. In this article, the value of b can be calculated
out. Supposing the condition that the gain of the model is hard to obtain, we can draw the pole-zero

map of N(s)
Q(s) and the Bode diagram of M(s)

Q(s) as Figures 12 and 13, respectively. Therefore, the influences
of different values of bs on the control performance can be analyzed, letting ωo0 = ωc0 = 300 and bs

change from 0.05b to 3b.
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It can be seen in Figure 12 that when bs is smaller than 0.2b, the system will collapse. Further,
if bs is determined as a value greater than approximately 0.2b, the system will be stable. Moreover,
it can be seen in Figure 13 that when bs is a relatively large value, the gain of disturbance will increase.
In other words, there is a tradeoff between the stability of the system and the ability to suppress the
disturbance when the gain of the controlled object is hard to obtain. We need to tune bs from a large
value to a small value for stability consideration. When the system is stable, we can decrease the value
of bs concerning disturbance-rejection.

Above all, the tuning method for the parameters can be summarized as follows:

1. The appropriate initial values for ωo and ωc should not be too large, as stated in the constraints
given before. If the dynamic response speed is slow or the capability needs to be enhanced,
ωo and ωc can be increased until the overshoot exists or the influence of high-frequency noise
is obvious.

2. Owing to ωo having a more pronounced influence on the dynamic performance of the system,
we can reduce ωo first until the overshoot disappears or the influence of noise is controllable.
Then, we can increase ωc until the overshoot exists or the influence of the noise is obvious.
After this, the tuning sequences can be exchanged until the ideal performance requirement is met.
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3. If the gain of the controlled object is not clear, the reasonable initial value for bs should not be
too small for stability consideration. If the system is unstable, we can increase bs. Besides, if the
capability of rejecting the disturbance needs to be enhanced, we can then decrease bs.

4.2. Robust Performance Concerning

As far as the robustness of the control system is concerned, we can deduce the sensitivity function
S(s) and the complementary sensitivity function T(s) of the system as [32,33]:

S(s) =
Q(s) −N(s)

Q(s)
(38)

T(s) =
N(s)
Q(s)

(39)

The necessary and sufficient condition for the uncertain system’s robust stability is:

∀ω > 0, T( jω) <
1∣∣∣∆( jω)

∣∣∣ (40)

For application, the maximum magnitudes of S(s) and T(s) are denoted as:

MS = max
ω>0

∣∣∣S( jω)
∣∣∣ (41)

MT = max
ω>0

∣∣∣T( jω)
∣∣∣ (42)

As obtained in previous work [34], the range of MS is from 1.2 to 2.0 and the corresponding range
of MT is from 1 to 1.5. It is known that a smaller MS can make the output of the system more insensitive
to the uncertainties of the controlled plant, which can strengthen the system’s stability. If a model
is not precise enough, the reasonable values of MS and MT are recommended as smaller values in a
previous study [35]. Based on the above discussions, to guarantee robust operation, MS is determined
during the range from 1.1 to 1.2 and MT is determined during the range from 1 to 1.5. On the basis of
above analysis, we let ωo = 420 and ωc = 70, so that MS= 1.14 and MT = 1. The robustness can be
guaranteed and the robust performance of the system will be further testified in Section 5 under the
condition that the parameter of the controlled object perturbates.

5. Case Study

For clarification of this control approach, here we can include the operating procedures of the
improved VSG based on the proposed control strategy in this article (called “LADRC-VSG”). Figure 14
shows the flow chart of the operation of LADRC-VSG.

1. The VSG starts.
2. The VSG runs under island-mode and the breaker maintains “off” status. Meanwhile, the controller

detects the grid-connected power reference. If the grid-connected power reference does not exist,
continue with Step 2, otherwise the pre-synchronization starts and we proceed to the next step.

3. The system judges whether pre-synchronization is completed or not. If it is uncompleted,
the procedure continues pre-synchronization, or else it moves to Step 4.

4. The breaker is closed and the inverter runs under the mode of LADRC-VSG. Meanwhile, the system
detects whether the grid-connected power reference is still there or not. If it is, the procedure of
Step 4 continues, or else it goes back to Step 2.
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Simulations are carried out in the MATLAB/Simulink environment to verify the proposed control
strategy. The grid is set as an infinite bus power system and the internal impedance of the grid is
zero. The dynamic responses are studied separately based on the conventional VSG, the VSG based on
setting the grid frequency measured by PLL as the frequency reference of VSG [36] (called “PLL-VSG”),
and LADRC-VSG. The initial phase angle of the grid voltage is set as 15◦. Here, Pref is 0 kW, as is the
case in island mode, and Qref is 0 kvar. The VSG loads 20 kW at first, Pref changes to 40 kW at 0.5 s,
and it has a step change to 60 kW at 2 s. The lower limit of the control value of LADRC-VSG is set as 25
kW and the total simulation time is 3.5 s.

The simulation cases are divided into two parts, which include the nominal plant in Section 5.1
and the parametric perturbating plant in Section 5.2. Thus, the ability to suppress the disturbance and
the robustness of the system will be verified separately. As observed, the cases studied in previous
work [15,16] are based on the assumption that the form of grid frequency fluctuation is a step change.
Further, the universality of the analysis needs to be considered, thus the cases based on the step change,
ramp change, and sinewave form change of grid frequency are studied in Section 5.1, respectively.
Moreover, the performance of the mismatching model is studied. The condition of a step change of
grid frequency is introduced in detail, and other conditions are illustrated briefly.

5.1. Performance Based on the Nominal Model

5.1.1. Step Change of Grid Frequency

The grid frequency falls to 49.9 Hz at 2.5 s and is restored to normal at 3 s. The frequency of
LADRC-VSG and the grid frequency measured by the PLL are depicted in Figure 15, where the PLL
only works during the period of pre-synchronization to acquire the phase angle of the grid voltage
before the VSG is connected to the grid. The method for pre-synchronization refers to a previous
study [25], in which a PI controller is applied and the maximum frequency reaches the value of
50.7 Hz during the period. Additionally, the PLL withdraws after the switch of the breaker is closed for
conventional the VSG and LADRC-VSG. From 0 s to 0.5 s, the inverter runs under the droop mode of
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VSG and the frequency of VSG is lower than the rated frequency. Pre-synchronization control starts
at 0.5 s and the frequency of the VSG is identical to the grid frequency at about 1.16 s, thus VSG is
connected to the grid and outputs power according to the power reference from then onwards.

energies 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

 

Hz during the period. Additionally, the PLL withdraws after the switch of the breaker is closed for 
conventional the VSG and LADRC-VSG. From 0 s to 0.5 s, the inverter runs under the droop mode of 
VSG and the frequency of VSG is lower than the rated frequency. Pre-synchronization control starts 
at 0.5 s and the frequency of the VSG is identical to the grid frequency at about 1.16 s, thus VSG is 
connected to the grid and outputs power according to the power reference from then onwards.  

 
Figure 15. Frequencies of LADRC-VSG and grid measured by phase-locked loop (PLL). 

The difference between the conventional VSG and PLL-VSG is that the PLL-VSG adopts the 
grid frequency as the frequency reference. Therefore, when the frequency does not fluctuate, the 
conventional VSG shares almost the same waveform with PLL-VSG (0–2.5 s). Figure 16 shows the 
output power of VSG under different control strategies. From 0 s to 0.5 s, the output power has the 
same value of 20 kW as the load power. Between 1.16 s and 2 s, the grid frequency is normal and the 
grid frequency is equal to the VSG reference frequency. Under the condition that the grid frequency 
is normal (between1.16 s and 2 s), we define 

e

en ref
P

ref

(max)
100%

P P
P

s
-

= ´  (43) 

Under the circumstance that the grid frequency fluctuates (between 2.5 s and 3 s), we denote 
that 

eP ed ref(max)d P P= -  (44) 

where ePs  is the percent overshoot of eP  and en(max)P  is the maximum output value of power 

when the grid frequency is normal (from 1.16 s to 2 s); ePd  is the maximum deviation of eP , and 

ed(max)P  is the maximum output value of power when the grid frequency fluctuates (from 2.5 s to 3 
s). In Figure 16, we can see that the power overshoot of the conventional VSG and PLL-VSG still 

exists when connected to the grid with the damping ratio of 0.926. The en(max)P  of the 

conventional VSG and PLL-VSG is 43.9 kW and the ePs  is 9.7%, whereas obviously LADRC-VSG 

can track the power reference rapidly with no overshoot, and the ePs  of LADRC-VSG is equal to 
zero. The adjustment time of conventional VSG and PLL-VSG is 0.19 s, which certifies the excellent 
performance of tracking the power reference of the designed controller. The grid frequency drops by 
0.1 Hz from 2.5 s to 3 s, according to Equation (10), and the steady-state power output of the 
conventional VSG should be 79.74 kW at this time theoretically, which is in agreement with the 
simulation results. By contrast, the maximum output power of LADRC-VSG is 65.74 kW and there is 
no oscillation in the dynamic regulation process. As for PLL-VSG, the maximum output power is 

69.5 kW. Thus, the ePd  values of LADRC-VSG, conventional VSG, and PLL-VSG are 5.74 kW, 25.13 
kW, and 9.5 kW from 2.5 s to 3 s, respectively. In the process of grid frequency recovery, the 
regulating time of LADRC-VSG is less than 0.1 s, which is lower than that of 0.22 s for conventional 
VSG and PLL-VSG. Further, it can be seen in Figure 17, under the condition that the active power is 
controlled precisely, that the oscillation intensity of the reactive power of LADRC-VSG is lower than 

Island

Pre-syn

Figure 15. Frequencies of LADRC-VSG and grid measured by phase-locked loop (PLL).

The difference between the conventional VSG and PLL-VSG is that the PLL-VSG adopts the grid
frequency as the frequency reference. Therefore, when the frequency does not fluctuate, the conventional
VSG shares almost the same waveform with PLL-VSG (0–2.5 s). Figure 16 shows the output power of
VSG under different control strategies. From 0 s to 0.5 s, the output power has the same value of 20 kW
as the load power. Between 1.16 s and 2 s, the grid frequency is normal and the grid frequency is equal
to the VSG reference frequency. Under the condition that the grid frequency is normal (between1.16 s
and 2 s), we define

σPe =
Pen(max) − Pref

Pref
× 100% (43)

Under the circumstance that the grid frequency fluctuates (between 2.5 s and 3 s), we denote that

dPe = Ped(max) − Pref (44)

where σPe is the percent overshoot of Pe and Pen(max) is the maximum output value of power when
the grid frequency is normal (from 1.16 s to 2 s); dPe is the maximum deviation of Pe, and Ped(max) is
the maximum output value of power when the grid frequency fluctuates (from 2.5 s to 3 s). In Figure 16,
we can see that the power overshoot of the conventional VSG and PLL-VSG still exists when connected
to the grid with the damping ratio of 0.926. The Pen(max) of the conventional VSG and PLL-VSG is
43.9 kW and the σPe is 9.7%, whereas obviously LADRC-VSG can track the power reference rapidly
with no overshoot, and the σPe of LADRC-VSG is equal to zero. The adjustment time of conventional
VSG and PLL-VSG is 0.19 s, which certifies the excellent performance of tracking the power reference
of the designed controller. The grid frequency drops by 0.1 Hz from 2.5 s to 3 s, according to Equation
(10), and the steady-state power output of the conventional VSG should be 79.74 kW at this time
theoretically, which is in agreement with the simulation results. By contrast, the maximum output
power of LADRC-VSG is 65.74 kW and there is no oscillation in the dynamic regulation process. As for
PLL-VSG, the maximum output power is 69.5 kW. Thus, the dPe values of LADRC-VSG, conventional
VSG, and PLL-VSG are 5.74 kW, 25.13 kW, and 9.5 kW from 2.5 s to 3 s, respectively. In the process of
grid frequency recovery, the regulating time of LADRC-VSG is less than 0.1 s, which is lower than that
of 0.22 s for conventional VSG and PLL-VSG. Further, it can be seen in Figure 17, under the condition
that the active power is controlled precisely, that the oscillation intensity of the reactive power of
LADRC-VSG is lower than conventional VSG and PLL-VSG. All of the above results show that LADRC
is reliable in power control of the grid-connected VSG.
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Figure 18, Figure 19, and Figure 20 show the output current waveforms of LADRC-VSG,
conventional VSG, and PLL-VSG, respectively. The output current of VSG under LADRC control
strategy has no overshoot and the current is relatively smooth. From 2.5 s to 3 s, the steady-state
current of LADRC-VSG is 126.4 A and the current is almost not affected by the fluctuation of grid
frequency. At the same time, the steady-state error of current of PLL-VSG can also be eliminated,
whereas the maximum output current of the conventional VSG is up to 176 A and the steady-state
error of the current is nearly 49.6 A. The goals of disturbance suppression and fast tracking for the
power reference without overshoot are achieved.
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5.1.2. Ramp Change of Grid Frequency

The grid frequency has a ramp change from 50 Hz at 2 s to 49.9 Hz at 2.5 s, and the grid frequency
remains at 49.9 Hz after this point. The output active power waveforms of LADRC-VSG, conventional
VSG, and PLL-VSG are shown in Figure 21. From 2.5 s to 3 s, the dPe values of LADRC-VSG, conventional
VSG, and PLL-VSG are 0.6 kW, 19.8 kW, and 0.6 kW, respectively. The dynamic error of the power
of PLL-VSG and LADRC-VSG is suppressed to a low value and the active power shows no sudden
change when the grid frequency fluctuates. At this time, compared with PLL-VSG, the advantage of
LADRC-VSG is that it can track the power reference without rapid overshoot.

energies 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

 

 
Figure 19. Output current (Phase A) of conventional VSG. 

 

Figure 20. Output current (Phase A) of PLL-VSG. 

5.1.2. Ramp Change of Grid Frequency  

The grid frequency has a ramp change from 50 Hz at 2 s to 49.9 Hz at 2.5 s, and the grid 
frequency remains at 49.9 Hz after this point. The output active power waveforms of LADRC-VSG, 

conventional VSG, and PLL-VSG are shown in Figure 21. From 2.5 s to 3 s, the ePd  values of 
LADRC-VSG, conventional VSG, and PLL-VSG are 0.6 kW, 19.8 kW, and 0.6 kW, respectively. The 
dynamic error of the power of PLL-VSG and LADRC-VSG is suppressed to a low value and the 
active power shows no sudden change when the grid frequency fluctuates. At this time, compared 
with PLL-VSG, the advantage of LADRC-VSG is that it can track the power reference without rapid 
overshoot. 

 

Figure 21. Output power of VSG under different control strategies. 

5.1.3. Sinewave form Change of Grid Frequency  

The grid frequency has a sinewave form change with the amplitude of 0.05 Hz at 2 s, which 
returns to normal at 2.5 s. The cycle of the sinewave form fluctuation is 0.5 s. The performances of 
LADRC-VSG, conventional VSG, and PLL-VSG can be seen in Figure 22. 

Figure 21. Output power of VSG under different control strategies.

5.1.3. Sinewave form Change of Grid Frequency

The grid frequency has a sinewave form change with the amplitude of 0.05 Hz at 2 s, which
returns to normal at 2.5 s. The cycle of the sinewave form fluctuation is 0.5 s. The performances of
LADRC-VSG, conventional VSG, and PLL-VSG can be seen in Figure 22.
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The varying angular frequency of disturbance between 2.5 s and 3 s is 2× 2×π = 12.566 rad/s and
the output active power of LADRC-VSG has a slight fluctuation. This phenomenon can be explained
as the capability to suppress disturbance being reduced because the varying frequency of disturbance
increases, and this is consistent with the analysis in Section 4, even though the dPe of LADRC-VSG is
1.2 kW, which is less than the 10.2 kW value of the conventional VSG and 1.9 kW value of PLL-VSG
under the same condition. With different forms of disturbance of frequency, the deviation of power
can all be suppressed to an ideal low value, even as low as zero, which reveals that LADRC-VSG is not
sensitive to the change of the form of disturbance. The simulations in Sections 5.1.1–5.1.3 convince us
that the designed LADRC-VSG controller can reject the external disturbance reliably and it can achieve
steady VSG active output power according to the command.

5.2. Control Performance Based on the Parametric Perturbating Model

Section 5.1 reveals the effectiveness of the control method under the condition that the gird
frequency has different forms of fluctuation. In real situations, however, the parameters of the filters,
the transmission lines, and the inverters may be perturbed for various reasons, such as equipment
aging, failure, and other factors. Here, we take the perturbation of the parameter of L2 of the line
inductance as an example to illustrate the robust stability of the system.

Here, L2 changes from 0.404 mH to 0.1 mH and the damping ratio ξ1 decreases from 0.926 to 0.461.
For robustness testing, bs is not changed in the controller, other simulating conditions are as poor as
the conditions in Section 5.1.3, and the grid frequency has a sinewave form change. The amplitude of
change is 0.05 Hz and the cycle of the fluctuation is 0.5 s. The grid frequency recovers at 3 s and the
simulation results are presented in Figures 23–28.
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As we can see from Figure 23, with the perturbation of L2, the Pen(max) values of the conventional
VSG and PLL-VSG increases to 54.87 kW between 1.16 s and 2 s, whereas the LADRC-VSG can
continue transmitting active power to the grid without overshoot. The σPe values of LADRC-VSG,
conventional VSG, and PLL-VSG are 0, 37.17%, and 37.17%, respectively. Additionally, the dPe values
of LADRC-VSG, conventional VSG, and PLL-VSG are 1.44 kW, 11.6 kW, and 4.9 kW, respectively.
The adjustment time of LADRC-VSG is 0.12 s, which is much shorter than that the 0.8 s value for
conventional VSG and PLL-VSG. LADRC-VSG can output power stably in the case of grid frequency
fluctuations, which illustrates the advantage of LADRC, namely that it does not rely on a precise
model of the controlled plant. The output reactive power waveforms of LADRC-VSG, conventional
VSG, and PLL-VSG are shown in Figure 24. It can be seen that the oscillation of active power will
cause instability of the reactive power of conventional VSG and PLL-VSG owing to the presence of
coupling between active power and reactive power. Moreover, even though the three control strategies
all adopt the method of PI control for reactive power, the better performance of active power of
LADRC-VSG causes much less oscillation of reactive power. In addition, the corresponding output
angular frequencies of the inverter under different control strategies are shown in Figure 25, where
we can see that the angular frequency of LADRC-VSG has better performance. Compared with the
performance of the conventional VSG and PLL-VSG, the model mismatching parts in LADRC-VSG
can be seen as disturbance, and that can be observed by LESO and compensated by LSEF without
delay; thus, the strong robustness can be guaranteed. The estimates for Pe and dPe/dt and the lumped
disturbance are shown in Figures 26–28, respectively, where we can see that the observation for Pe is of
high-precision and the observed disturbance is unitless, as the disturbance is caused by a gathering of
many factors in Figure 28. The simulations carried out can illustrate the stability and robustness of the
system further, which testify to the validity of the proposed control strategy. The comparative analyses
of the controllers’ index are given in Tables 2 and 3.

Table 2. Comparison of dPe (2.5–3 s, one decimal place reserved).

Type of Disturbance LADRC-VSG (kW) VSG
(kW)

PLL-VSG
(kW)

Step change of frequency 5.7 25.1 9.5
Ramp change of frequency 0.6 19.8 0.6

Sinewave form change of frequency 1.2 10.2 1.9
Model mismatch; Sinewave form change of frequency 1.4 11.6 4.9

Table 3. Comparison of σPe (1.16–2 s, one decimal place reserved).

Type of Model LADRC-VSG (%) VSG (%) PLL-VSG (%)

Normal model 0 9.7 9.7
Mismatch model 0 37.2 37.2
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As seen in the analyses above, LADRC-VSG can track the power reference without overshoot
by compensating for the lumped disturbance, even though the model is mismatched. At the same
time, it is noteworthy that the steady-state accuracy of the active power is reduced a little when the
controlled object is mismatched, which can be perceived when comparing Figures 22 and 23. As shown
in the amplified picture in Figure 22, the steady-state output power is between 59.8 kW and 60.2 kW,
whereas under the same condition (the grid frequency does not fluctuate between 1.16 s and 2.5 s),
it can be observed that the steady-state output power is between 59.5 kW and 60.5 kW in the amplified
picture in Figure 23. This phenomenon reveals that we require a relatively more exact value for the
gain of the controlled object to achieve better performance of the controller when the precise model
of the controlled object has many uncertainties, so that the capability to reject disturbance can be
further enhanced.

6. Conclusions

A control strategy for power tracking of a grid-connected VSG based on LADRC is proposed in
this article. On the basis of deducing the power equation of the conventional grid-connected VSG,
this article clarifies that VSG has some shortcomings in the power regulation period, such as the
contradiction between the response speed of the power output and output overshoot. Additionally,
the overcurrent of VSG may cause its dispatch from the grid. Hence, the active power control strategy
based on LADRC is proposed. The lumped disturbance is compensated, including the simplified
part of the model, the influence of the difference of power reference and the output active power
and its differential value, and the difference of the angular frequency reference and the grid angular
frequency and its differential value. Then, by deriving the transfer function of the second-order LADRC,
the equivalent structure of the grid-connected VSG based on LADRC strategy is obtained. After that,
the influences of different parameters of LADRC on the dynamic characteristics of the system are
analyzed through frequency domain analysis methods and the robust stability of the control system
is analyzed further as well. The simulation results show that LADRC has great performance in
power control of the grid-connected VSG, which can improve the power quality of the grid-connected
inverters. When the grid frequency is normal, LADRC-VSG can output power according to the power
reference quickly and without overshoot. Moreover, LADRC-VSG can maintain robust stability when
the parameters perturbate and the analyses show that the LADRC-VSG has a greater performance
index. The future vision will be focused on the application of LADRC in the pre-synchronization
period of VSG and load-sharing control for VSGs in the microgrid.
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Appendix A

If the measurement noise is considered, the control structure can be drawn as Figure A1.
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Figure A1. Control structure for the power of the VSG based on LADRC when the measurement noise
is considered.

When ωc changes from 0.25ωc0 to 4ωc0, and ωo maintains the value of ωo0 as unchanged, the Bode
diagram of the transfer function from the measurement noise (Pnoise) to the output power (Pe) is
drawn as in Figure A2. When ωo increases from 0.25ωo0 to 4ωo0 and ωc maintains the value of ωc0 as
unchanged, the Bode diagram of the transfer function from Pnoise to the Pe is drawn as in Figure A3.
It can be seen in the two figures that the amplification of the high-frequency noise in the output
becomes more obvious with the increase of ωc and ωo. Thus, when the system is influenced by the
measurement noise or the performance of the system is challenged, we must decrease ωc, ωo, or both.

energies 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

 

 

Figure A1. Control structure for the power of the VSG based on LADRC when the measurement 
noise is considered. 

When cω  changes from c00.25ω  to c04ω , and oω  maintains the value of o0ω  as unchanged, 

the Bode diagram of the transfer function from the measurement noise ( noiseP ) to the output power (
eP ) is drawn as in Figure A2. When oω  increases from o00.25ω  to o04ω  and cω  maintains the 

value of c0ω  as unchanged, the Bode diagram of the transfer function from noiseP  to the eP  is 
drawn as in Figure A3. It can be seen in the two figures that the amplification of the high-frequency 

noise in the output becomes more obvious with the increase of cω  and oω . Thus, when the system 
is influenced by the measurement noise or the performance of the system is challenged, we must 

decrease cω , oω , or both. 

 

Figure A2. Bode diagram of 

e

noise

( )
( )

P s
P s  when cω  increases. 

 

Figure A3. Bode diagram of 

e

noise

( )
( )

P s
P s  when oω  increases. 

References 

1. Engler, A.; Soultanis, N. Droop control in LV-grids. In Proceedings of the 2005 International Conference on 
Future Power Systems, Amsterdam, The Netherlands, 16–18 November 2005; p. 6, 
doi:10.1109/FPS.2005.204224. 

+
−

+

−
+

+

−
+

−
+ +

+
−

+
+

+

c increasesω

c increasesω

o increasesω

o increasesω

Figure A2. Bode diagram of Pe(s)
Pnoise(s)

when ωc increases.

energies 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

 

 

Figure A1. Control structure for the power of the VSG based on LADRC when the measurement 
noise is considered. 

When cω  changes from c00.25ω  to c04ω , and oω  maintains the value of o0ω  as unchanged, 

the Bode diagram of the transfer function from the measurement noise ( noiseP ) to the output power (
eP ) is drawn as in Figure A2. When oω  increases from o00.25ω  to o04ω  and cω  maintains the 

value of c0ω  as unchanged, the Bode diagram of the transfer function from noiseP  to the eP  is 
drawn as in Figure A3. It can be seen in the two figures that the amplification of the high-frequency 

noise in the output becomes more obvious with the increase of cω  and oω . Thus, when the system 
is influenced by the measurement noise or the performance of the system is challenged, we must 

decrease cω , oω , or both. 

 

Figure A2. Bode diagram of 

e

noise

( )
( )

P s
P s  when cω  increases. 

 

Figure A3. Bode diagram of 

e

noise

( )
( )

P s
P s  when oω  increases. 

References 

1. Engler, A.; Soultanis, N. Droop control in LV-grids. In Proceedings of the 2005 International Conference on 
Future Power Systems, Amsterdam, The Netherlands, 16–18 November 2005; p. 6, 
doi:10.1109/FPS.2005.204224. 

+
−

+

−
+

+

−
+

−
+ +

+
−

+
+

+

c increasesω

c increasesω

o increasesω

o increasesω

Figure A3. Bode diagram of Pe(s)
Pnoise(s)

when ωo increases.

References

1. Engler, A.; Soultanis, N. Droop control in LV-grids. In Proceedings of the 2005 International Conference on
Future Power Systems, Amsterdam, The Netherlands, 16–18 November 2005; p. 6. [CrossRef]

2. Chen, M.R.; Wang, H.; Zeng, G.Q.; Dai, Y.X.; Bi, D.Q. Optimal PQ Control of Grid-Connected Inverters in a
Microgrid Based on Adaptive Population Extremal Optimization. Energies 2018, 11, 2107. [CrossRef]

3. Adhikari, S.; Li, F. Coordinated Vf and PQ control of solar photovoltaic generators with MPPT and battery
storage in microgrids. IEEE Trans. Smart Grid 2014, 5, 1270–1281. [CrossRef]

4. Lopes, J.P.; Moreira, C.L.; Madureira, A.G.; Resende, F.O.; Wu, X.A.; Jayawarna, N.A.; Zhang, Y.A. Control
strategies for microgrids emergency operation. In Proceedings of the 2005 International Conference on
Future Power Systems, Amsterdam, The Netherlands, 16–18 November 2005; pp. 57–78. [CrossRef]

http://dx.doi.org/10.1109/FPS.2005.204224
http://dx.doi.org/10.3390/en11082107
http://dx.doi.org/10.1109/TSG.2014.2301157
http://dx.doi.org/10.1109/FPS.2005.204226


Energies 2019, 12, 3024 23 of 24

5. Beck, H.P.; Hesse, R. Virtual synchronous machine. In Proceedings of the 2007 9th International Conference
on Electrical Power Quality and Utilisation, Barcelona, Spain, 9–11 October 2007; pp. 1–6. [CrossRef]

6. Visscher, K.; De Haan, S.W.H. Virtual synchronous machines (VSG’s) for frequency stabilisation in future
grids with a significant share of decentralized generation. In Proceedings of the CIRED Seminar 2008:
SmartGrids for Distribution, Frankfurt, Germany, 23–24 June 2008; pp. 1–4. [CrossRef]

7. Alipoor, J.; Miura, Y.; Ise, T. Power system stabilization using virtual synchronous generator with alternating
moment of inertia. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 451–458. [CrossRef]

8. Vaddipalli, R.K.N.; Lopes, L.A.; Rathore, A.K. Virtual Synchronous Generator with Variable Inertia Emulation
Via Power Tracking Algorithm. In Proceedings of the 2018 2nd International Conference on Power, Energy
and Environment: Towards Smart Technology (ICEPE), Shillong, India, 1–2 June 2018; pp. 1–6. [CrossRef]

9. Fan, W.; Yan, X.; Hua, T. Adaptive parameter control strategy of VSG for improving system transient stability.
In Proceedings of the 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia
(IFEEC 2017-ECCE Asia), Kaohsiung, Taiwan, 3–7 June 2017; pp. 2053–2058. [CrossRef]

10. Li, D.; Zhu, Q.; Lin, S.; Bian, X.Y. A self-adaptive inertia and damping combination control of VSG to support
frequency stability. IEEE Trans. Energy Convers. 2017, 32, 397–398. [CrossRef]

11. Rahman, F.S.; Kerdphol, T.; Watanabe, M.; Mitani, Y. Optimization of virtual inertia considering system
frequency protection scheme. Electr. Power Syst. Res. 2019, 170, 294–302. [CrossRef]

12. Haizhen, X.; Xing, Z.; Fang, L.; Fubin, M.; Rongliang, S.; Hua, N. An improved virtual synchronous generator
algorithm for system stability enhancement. In Proceedings of the 2015 IEEE 2nd International Future Energy
Electronics Conference (IFEEC), Taipei, Taiwan, 1–4 November 2015; pp. 1–6. [CrossRef]

13. Xu, H.; Zhang, X.; Liu, F.; Mao, F.; Shi, R.; Yu, C.; Yu, Y. Virtual Synchronous Generator Control Strategy
Based on Lead-lag Link Virtual Inertia. Proc. CSEE 2017, 37, 1918–1926. [CrossRef]

14. Li, X.; Hu, Y.; Shao, Y.; Chen, G. Mechanism analysis and suppression strategies of power oscillation for
virtual synchronous generator. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE
Industrial Electronics Society, Beijing, China, 5–8 November 2017; pp. 4955–4960. [CrossRef]

15. Li, M.; Wang, Y.; Zhou, H.; Hu, W. A phase feedforward based virtual synchronous generator control scheme.
In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio,
TX, USA, 4–8 March 2018; pp. 3314–3318. [CrossRef]

16. Yan, X.; Jia, J.; Li, Z.; Ge, Y. Power Control and Smooth Mode Switchover for Grid-connected Virtual
Synchronous Generators. Autom. Electr. Power Syst. 2018, 42, 91–99. [CrossRef]

17. Shintai, T.; Miura, Y.; Ise, T. Oscillation damping of a distributed generator using a virtual synchronous
generator. IEEE Trans. Power Deliv. 2014, 29, 668–676. [CrossRef]

18. Khan, S.; Bletterie, B.; Anta, A.; Gawlik, W. On Small Signal Frequency Stability under Virtual Inertia and the
Role of PLLs. Energies 2018, 11, 2372. [CrossRef]

19. He, X.; Geng, H.; Yang, G. A generalized design framework of notch filter based frequency-locked loop for
three-phase grid voltage. IEEE Trans. Ind. Electron. 2018, 65, 7072–7084. [CrossRef]

20. Du, H.; Sun, Q.; Cheng, Q.; Ma, D.; Wang, X. An Adaptive Frequency Phase-Locked Loop Based on a Third
Order Generalized Integral. Energies 2019, 12, 309. [CrossRef]

21. Han, J.-Q. Auto-disturbances-rejection controller and its’ applications. Control Decis. 1998, 1, 19–23.
[CrossRef]

22. Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906.
[CrossRef]

23. Gao, Z. Active disturbance rejection control: A paradigm shift in feedback control system design.
In Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 14–16 June 2006;
p. 7. [CrossRef]

24. Gao, Z. Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the 2003
American Control Conference, Denver, CO, USA, 4–6 June 2003; pp. 4989–4996. [CrossRef]

25. Lv, Z.; Sheng, W.; Zhong, Q.; Liu, H.; Zeng, Z.; Yang, L.; Liu, L. Virtual Synchronous Generator and Its
Applications in Micro-grid. Proc. CSEE 2014, 34, 2591–2603. [CrossRef]

26. Shintai, T.; Miura, Y.; Ise, T. Reactive power control for load sharing with virtual synchronous generator
control. In Proceedings of the 7th International Power Electronics and Motion Control Conference, Harbin,
China, 2–5 June 2012; pp. 846–853. [CrossRef]

http://dx.doi.org/10.1109/EPQU.2007.4424220
http://dx.doi.org/10.1049/ic:20080487
http://dx.doi.org/10.1109/JESTPE.2014.2362530
http://dx.doi.org/10.1109/EPETSG.2018.8658853
http://dx.doi.org/10.1109/IFEEC.2017.7992367
http://dx.doi.org/10.1109/TEC.2016.2623982
http://dx.doi.org/10.1016/j.epsr.2019.01.025
http://dx.doi.org/10.1109/IFEEC.2015.7361571
http://dx.doi.org/10.13334/j.0258-8013.pcsee.160205
http://dx.doi.org/10.1109/IECON.2017.8216855
http://dx.doi.org/10.1109/APEC.2018.8341578
http://dx.doi.org/10.7500/AEPS20171115021
http://dx.doi.org/10.1109/TPWRD.2013.2281359
http://dx.doi.org/10.3390/en11092372
http://dx.doi.org/10.1109/TIE.2017.2784413
http://dx.doi.org/10.3390/en12020309
http://dx.doi.org/10.13195/j.cd.1998.01.19.hanjq.004
http://dx.doi.org/10.1109/TIE.2008.2011621
http://dx.doi.org/10.1109/ACC.2006.1656579
http://dx.doi.org/10.1109/ACC.2003.1242516
http://dx.doi.org/10.13334/j.0258-8013.pcsee.2014.16.009
http://dx.doi.org/10.1109/IPEMC.2012.6258956


Energies 2019, 12, 3024 24 of 24

27. Zheng, T.; Chen, L.; Guo, Y.; Mei, S. Comprehensive control strategy of virtual synchronous generator under
unbalanced voltage conditions. IET Gener. Transm. Distrib. 2017, 12, 1621–1630. [CrossRef]

28. Hu, W.; Wu, Z.; Sun, C.; Song, Y.; Yuan, K. Modeling and parameter setting method for grid-connected
inverter of energy storage system based on VSG. Electr. Power Autom. Equip. 2018, 13–23. [CrossRef]

29. Chen, J.; Lundberg, K.H.; Davison, D.E.; Bernstein, D.S. The final value theorem revisited-infinite limits and
irrational functions. IEEE Control Syst. Mag. 2007, 27, 97–99. [CrossRef]

30. Zhang, F.; Chen, X.; Zhang, Y.; Jiang, H. Research on Power Transmission Capability of VSC-HVDC Based on
Second Order LADRC. Energy Procedia 2019, 158, 2592–2598. [CrossRef]

31. Yuan, D.; Ma, X.; Zeng, Q.; Qiu, X. Research on frequency-band characteristics and parameters configuration
of linear active disturbance rejection control for second-order systems. Control Theory Appl. 2013, 30,
1630–1640. [CrossRef]

32. Skogestad, S.; Postlethwaite, I. Multivariable Feedback Control: Analysis and Design, 2nd ed.; Wiley: New York,
NY, USA, 2007; p. 22.

33. Wu, M.; He, Y.; Yu, J. Robust Control Theory; Higher Education Press: Beijing, China, 2010; pp. 24–32.
34. Åström, K.J.; Panagopoulos, H.; Hägglund, T. Design of PI controllers based on non-convex optimization.

Automatica 1998, 34, 585–601. [CrossRef]
35. Sun, L.; Li, D.; Gao, Z.; Yang, Z.; Zhao, S. Combined feedforward and model-assisted active disturbance

rejection control for non-minimum phase system. ISA Trans. 2016, 64, 24–33. [CrossRef] [PubMed]
36. Liu, F. Research on Microgrid Inverter Control Strategy Based on Virtual Synchronous Generator. Ph.D. Thesis,

Hefei University of Technology, Hefei, China, April 2015.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/iet-gtd.2017.0523
http://dx.doi.org/10.16081/j.issn.1006-6047.2018.08.003
http://dx.doi.org/10.1109/MCS.2007.365008
http://dx.doi.org/10.1016/j.egypro.2019.02.008
http://dx.doi.org/10.7641/CTA.2013.30424
http://dx.doi.org/10.1016/S0005-1098(98)00011-9
http://dx.doi.org/10.1016/j.isatra.2016.04.020
http://www.ncbi.nlm.nih.gov/pubmed/27167989
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Basic Principles of VSG 
	Control Strategies for VSG 
	Performance Analysis of Conventional Grid-Connected VSG 
	Control Strategy for Power of Grid-Connected VSG Based on LADRC 
	Principles of the Second-Order LADRC 
	Control Strategy for Active Power of VSG Based on LADRC 


	Parameters Tuning for Controller 
	Nominal Performance Concerning 
	Parameter c  Increases When o  Remains Unchanged 
	Parameter o  Increases When c  Remains Unchanged 

	Robust Performance Concerning 

	Case Study 
	Performance Based on the Nominal Model 
	Step Change of Grid Frequency 
	Ramp Change of Grid Frequency 
	Sinewave form Change of Grid Frequency 

	Control Performance Based on the Parametric Perturbating Model 

	Conclusions 
	
	References

