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Abstract: In order to improve the restraint ability of electromagnetic energy in space and improve the
coupling efficiency, a magnetic coupler structure with composite magnetic shield is proposed. Firstly,
the model is established by using the finite-element simulation software. Then, according to the
limit of public exposure to time-varying electromagnetic fields pointed out in ICNIPR (International
Commission on Non-Ionizing Radiation Protection) guidelines, the characteristics and spatial magnetic
field distribution of magnetic couplers with a single shielding structure, double shielding structure,
and composite shielding structure are compared and analyzed. Finally, the experimental results
show that the structure of magnetic couplers with a composite magnetic shield has a good effect in
strengthening magnetic field concentration and reducing the electromagnetic interference of wireless
charging systems to the external environment. It also has the advantages of smaller volume, lighter
weight, and lower cost, and can effectively improve the transmission efficiency and enhance the
stability of wireless charging systems.
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1. Introduction

Wireless power transfer (WPT) is a system that uses a high-frequency electromagnetic field to
transmit energy in space. It is more convenient and safer since it does not need cables and bolts [1].
Magnetic flux leakage in WPT will not only harm the human body, but also interfere with other
electronic devices. At the same time, it will reduce the coupling coefficient and the system power [2,3].
Therefore, in order to reduce the effect of magnetic flux leakage from WPT system and improve the
coupling coefficient, it is very necessary to design of the magnetic coupler. The basic magnetic coupling
is composed of a receiving coil and a transmitting coil. In order to improve the coupling coefficient
and reduce the power loss, a ferrite core is usually added around the magnetic coupler to restrain the
electromagnetic field around the magnetic coupler.

Many studies have been done to improve the coupling coefficient of WPT systems. One type of
study is to add ferrite cores around the magnetic coupler and optimize it by changing the shape of
ferrite cores. The authors of [4] presented a square-embedded cross-shaped ferrite core structure for
DLDD (Double Layer Double D-type) coils, which could satisfy the requirements of mutual inductance
design and reduces the amount of ferrite. The authors of [5] designed and compared five different
magnetic-core distribution schemes for circular pads in the wireless charging systems of electric
vehicles. After considering power factor and volume of the magnetic coupler, the optimal structure
was obtained. The authors of [6] presented a new design method of WPT coil shielding structure based
on magnetic field characteristics of helical coils. A shielding structure called enhanced fans-shape was
established, and the simulation and experimental results showed that the new structure can effectively
reduce the volume of the magnetic coupler. However, it did not take into account the manufacturing
process and fragile properties of ferrite. In the work cited in [7], the expressions of equivalent magnetic
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circuits and coupling coefficients were deduced. A new core structure was designed and optimized for
DD coil, which effectively improved the coupling coefficient. There are also many studies that have
used thin metal plates to shield high-frequency electromagnetic fields. The authors of [8] studied the
effect of metal shielding by changing the geometric structure of metal plate and the coupling condition
of WPT and explored the application of the best shielding method of metal plate in WPT systems.
There are also many other types of shielding structures for reference in this paper [9–12].

At present, the shielding of magnetic couplers is generally divided into single ferrite shield
or double shield composed of a ferrite and an aluminum plate. It has many problems, such as
high magnetic energy loss, unsatisfactory shielding effect, relatively low efficiency, and high cost.
In this paper, based on the principle of inductively coupled wireless power transfer (ICPT) system,
a magnetic coupler structure with small size, light weight, low cost, and good shielding effect is
proposed. The influence of composite shielding on the magnetic field distribution around the energy
transfer mechanism is calculated by finite element simulation and compared with the traditional
shielding structure, which verifies the rationality of the design structure. In the experiment, it is
found that the magnetic coupler structure with composite magnetic shield not only strengthens the
magnetic field concentration in the energy transfer area, but also reduces the electromagnetic radiation
in the nonenergy transmission area, which has higher transmission efficiency than the traditional
shielding structure.

2. Shielding Structure Design of Magnetic Coupler

Figure 1 is the schematic diagram of the inductively coupled wireless power transfer system.
When the system is working, the power frequency alternating current (AC) of the power grid is converted
to DC by rectification and filtering, and then converted to high frequency AC by high-frequency
inverter. After reactive power compensation, the high-frequency alternating magnetic field is generated
in the transmitting coil. The high-frequency alternating magnetic field is coupled to the receiving coil
to generate induction voltage, then, though the reactive power compensation network, the DC or AC
power is outputted through rectifier filter circuit or rectifier filter inverter circuit to supply for the load
and realize wireless transmission of energy [13].
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Figure 1. The schematic diagram of the inductively coupled wireless power transfer (WPT) system. 

Parallel–series topologies are adopted in this circuit—transmitting coil and compensation 
network are in parallel; and the receiving coil and compensation network are in series. In Figure 1, LP 
and LS are the inductance of transmitting coil and receiving coil. RP and RS are the internal resistance 
of transmitting coil and receiving coil. Uin is the output voltage of electric energy after rectification 
and high-frequency inversion. M is the mutual inductance between transmitting coil and receiving 
coil. k is the coupling coefficient. RL is the load resistance. IL is the current of RL. IP is the current of the 
transmitting coil, QP and QS are the quality factor of the primary and secondary circuit. η is the 
efficiency of the wireless charging system. In the case of full reactive power compensation, the 
output power PO of the system can be expressed in Equation (1) [14, 15]. 

Figure 1. The schematic diagram of the inductively coupled wireless power transfer (WPT) system.

Parallel–series topologies are adopted in this circuit—transmitting coil and compensation network
are in parallel; and the receiving coil and compensation network are in series. In Figure 1, LP and
LS are the inductance of transmitting coil and receiving coil. RP and RS are the internal resistance
of transmitting coil and receiving coil. Uin is the output voltage of electric energy after rectification
and high-frequency inversion. M is the mutual inductance between transmitting coil and receiving
coil. k is the coupling coefficient. RL is the load resistance. IL is the current of RL. IP is the current of
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the transmitting coil, QP and QS are the quality factor of the primary and secondary circuit. η is the
efficiency of the wireless charging system. In the case of full reactive power compensation, the output
power PO of the system can be expressed in Equation (1) [14,15].

PO = IL
2ωM2

LS
QS = UinIPk2QS (1)

k =
M
√

LPLS
(2)

η =
1

1
k
√

QPQS
+ 1

(3)

According to Equations (1) and (3), it is obvious that the output power increases with the coupling
coefficient, and the efficiency of the wireless charging system is also influenced by the coupling
coefficient. The mutual inductance and coupling factor between the coils can be changed by changing
the design of the magnetic structure of the magnetic coupler.

Taking the flat disk magnetic coupler as an example, the flat disk magnetic coupler can generate a
uniform magnetic field in the energy transfer area. In order to reduce the magnetic field distribution in
the nonworking area and enhance the magnetic field concentration in the working area, the magnetic
coupler is usually designed. For magnetic couplers with shielding, the traditional ICPT shielding
structure is divided into single shield and double shielding, that is, single shield composed of ferrite
or double shield composed of a ferrite and an aluminum plate. The schematic diagram is shown in
Figures 2 and 3.
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Figure 3. Cross-section view of double shield magnetic coupler of WPT system.

When the ferromagnetic material exists, the self-inductance L of the resonator coil increases,
the resonance frequency f decreases, and the maximum transmission efficiency point of the system
shifts to the left (the frequency decreases). At the same time, due to the increase of M, the maximum
efficiency of the system also increases to a certain extent. At this time, if the switching frequency of the
power supply at the transmitter is unchanged, the transmission efficiency will be reduced. In light-load
systems, if the resonators are over-coupled, frequency splitting will occur, which will reduce the
overall output power of the system. When the non-ferromagnetic aluminum plate exists, the eddy
current generated in the aluminum plate produces a reverse magnetic field, which counteracts with the
magnetic field of the emission source and plays a shielding role. At this time, the self-inductance L of
the resonator coil decreases, the mutual inductance M of the system weakens, the resonance frequency
f of the system increases, and the maximum transmission efficiency point of the system shifts to the
right. For this reason, the combination of shielding materials should be considered in combination with
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the resonant frequency of the magnetic coupler, the switching frequency of the transmitting circuit,
the transmitting frequency of the harmonic wave and the coupling coefficient. Therefore, a new type
of magnetic coupler with multilayered shielding structure is proposed, as shown in Figure 4.
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Figure 4. Cross-section view of composite shield magnetic coupler of WPT system.

The first layer of the shield layer on the receiving coil side of the magnetic coupler shown
in Figure 4 is a ferrite sheet, the second layer is a nanocrystalline strip, and the third layer is an
aluminum foil. Ferrite is used to shield electromagnetic waves of the kHz level. The thickness of the
iron-based nanocrystalline strip is only 26 µm, the resistivity is only 137 µΩ·cm, and the saturation
magnetic induction is as high as 1.6 T [16]. The aluminum foil is used for high-frequency magnetic
field components that are not shielded from the first and second low-reluctance circuits. In real life,
the transmitting coil is generally buried deep under the bottom or fixed, so the shielding requirement
of the transmitting coil side is low, while the receiving side is usually moved. In order to save space
and reduce the volume of the equipment, the receiving circuit board will be placed above the receiving
coil, so the shielding requirement on the receiving side is higher.

3. Magnetic Coupler Structure

In this paper, a three-dimensional structure model of magnetic coupling for the small fruit and
vegetable juicer is established. As shown in Figure 5, coil parameters are shown in Table 1; and shielding
geometry parameters are shown in Table 2.
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Table 1. Parameter of the coil.

Parameter Data

Outer-diameter of transmitting coil 122 mm
Inner-diameter of transmitting coil 42 mm

Outer-diameter of receiving coil 37 mm
Inner-diameter of receiving coil 16 mm

Length of receiving coil 54 mm
Turns of transmitting coil 28

Turns of receiving coil 30
Transmission distance 18 mm

Table 2. Geometry parameters of shielding material.

Material Size/mm Number

Ferrite A 10*5*19 4
Ferrite B 51*17*5 6
Ferrite C 12*5*15 6
Ferrite D 51*5*19 2
Ferrite E
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Based on the field conditions satisfied by the working area of the energy transfer mechanism,
a three-dimensional finite element simulation analysis is performed to obtain a magnetic flux density
distribution diagram, as shown in Figure 6. It illustrates that the double shielding structure effectively
reduces the distribution of the nonworking area, while the magnetic field of the working area is also
reduced. For the composite shielding structure, the magnetic field of the nonworking area above the
receiving coil is lowered while the magnetic field of the working area is enhanced.
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Figure 6. Simulated magnetic flux density distribution in a cross-section of different types of
magnetic coupler.

In order to suppress the influence of the electromagnetic field produced by the coil on the circuit
board, it is necessary to know the radial nonworking area flux density at 10 mm above the receiving
coil, and in order to suppress the radiation effect of the magnetic field on the human body, considering
the packaging of the products and the user’s habits, the simulated measuring position is 250 mm from
the center of the magnetic coupler to the outer axis of the magnetic coupler. The schematic diagram is
shown in Figure 7.
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Figure 7. Schematic diagram of simulated measurement position. (a) Radial position 10 mm above the
receiving coil. (b) Axial position 250 mm outside the magnetic coupler.

As shown in Figure 8, from −68 mm to 68 mm is the working area of magnetic coupler. When the
coil is not shielded, the maximum magnetic flux density at 10 mm above the coil is 1.519 mT, the mutual
inductance between the coils is 19.2 µH, and the coupling coefficient is 0.317. Due to the poor constraint
on the magnetic field, the magnetic field in the nonworking area is still very strong. When ferrite is not
added directly above the receiving coil, the maximum magnetic flux density at 10 mm above the coil
is 2.556 mT.
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When ferrite is added along the flux path, the magnetic domain of ferromagnetic material will
move because of its high conductivity (relative permeability 2800 H/m) and small magnetic resistance,
and the magnetic field generated by current will be applied to ferromagnetic material as an external
magnetic field, which will increase the magnetic domain consistent with the magnetic field; and decrease
the magnetic domain which is inconsistent with the direction of magnetic field, thus, forming a strong
magnetization vector and its induced magnetic field. A large amount of flux in the air passes through
ferrite, resulting in a decrease in the flux leakage in the air. Because of the high permeability of Ferrite,
the flux lines in the air are attracted to the Ferrite in large quantities. Additionally, because of the
existence of aluminum, the magnetic lines cannot penetrate through the aluminum plate and can only
gather around the edge of the ferrite, which results in the high flux density of the edge of the magnetic
coupler. The smaller the flux in the air, the better the shielding effect of the magnetic coupler.

As shown in Figure 8, as far as the single layer shielding structure is used above the receiving
coil, the magnetic shielding effect using 5 mm ferrite core is best, but not much different from that
of using 2.5 mm ferrite. Considering the cost, weight, and volume, the design requirements can be
met by using 2.5 mm ferrite. As the ferrite thickness increases, the shielding effect increases slowly.
The shielding effect of double shield is better than that of single shield, but the addition of aluminum
plate will lead to the decrease of mutual inductance and coupling coefficient. The choice of aluminum
plate thickness is not the thicker the better. The thinner the aluminum plate, the worse the shielding
effect; and the thicker the aluminum plate, the slower the shielding effect enhancement. Table 3 shows
the parameters of different types of shielding structures.

Table 3. Parameters of different types of shielding structure for receiving coil.

Magnetic Coupler Parameter Value

single shield magnetic coupler ferrite thickness 2.5 mm

double shield magnetic coupler ferrite thickness 2.5 mm
aluminum plate thickness 2 mm

composite shield magnetic coupler
ferrite thickness 1 mm

nanocrystalline strips 26 µm
aluminum foil thickness 0.1 mm

Due to the ultra-high permeability of nanocrystalline materials (relative permeability of 8000 H/m),
a large amount of magnetic flux in the air is attracted by nanocrystals to the working area, which reduces
the magnetic flux in the nonworking area and reduces the influence of aluminum foil on the mutual
inductance of magnetic couplers.

Figure 9 shows the magnetic flux density versus simulated measurement position at axial 250 mm
outside the magnetic coupler. The working frequency of the magnetic coupler studied in this paper
is 20 kHz, and, under this frequency, the limit value of the flux density of the public exposed to
time-varying electromagnetic fields is 27 µT. From the simulation results, the thickness of magnetic
couplers with single shielding structure has no obvious effect on the shielding effect, and the use of
single shielding structure cannot meet the requirements of the guidelines for limited time-varying
electric and magnetic field exposure issued by ICNIRP in 2010 [17]. For the magnetic couplers with
double shielding structure, the thinner the aluminum plate is, the better the effect is. This is because the
existence of the aluminum plate hinders the path of the magnetic flux line, which makes the magnetic
flux line gather at the edge of the aluminum plate, resulting in a large flux density in air. The maximum
flux density of the composite magnetic coupler in the working area is 24.2 µT, which meets the limit
requirements of ICNIPR 2010.
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Figure 9. Magnetic flux density versus simulated measurement position at axial 250 mm outside the
magnetic coupler. (a) Single shield magnetic coupler with different ferrite thickness. (b) Double shield
magnetic coupler with different aluminum thickness. (c) Comparison of different shielding types.

The data in Table 4 show that the magnetic lines in space diverge in all directions without shielding,
and the flux density at the measured position is small. Only after adding ferrite to the side of the
transmitting coil is most of the flux in the air concentrated around the working area through the ferrite
of the transmitting coil, while the receiving coil has no ferrite guiding the magnetic field, so the flux
density above the magnetic coupler is high. The shielding effect of the single shielding structure is
increased by 33.02% at 10 mm above the receiving coil and 2.33% at 250 mm outside the magnetic
coupler. The coupling coefficient is increased by 45.11% with respect to the magnetic coupler without
shielding. The shielding effect at 10 mm above the receiving coil and 250 mm outside the magnetic
coupler are improved by 61.22% and 16%, respectively, by using double shielding structure, and the
coupling coefficient is increased by 29.33%. The shielding effect at 10 mm above the receiving coil is
increased by 54.8% and that at 250 mm outside the magnetic coupler is increased by 19.33%, and the
coupling coefficient is increased by 39.11% by using the composite shielding structure. Compared with
the axial shielding effect of the magnetic coupler, the shielding effect above the magnetic coupler is
more obvious after using flat magnetic shielding. In terms of shielding effect, the effect of the composite
shielding structure is significantly better than that of the single shielding structure. Compared with the
double shielding structure, the shielding effect of the double shielding structure at the radial position
10 mm above the receiving coil is slightly better than that of the composite shielding structure, but the
composite shielding effect is better in terms of the improvement of the coupling coefficient.
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Table 4. Data of different magnetic coupling structures.

Shielding Type

The Maximum Radial
Flux Density of 10

mm above the
Receiving Coil/mT

Maximum Axial
Flux Density of

Magnetic Couplers
in 250 mm/µT

Mutual
Inductance/µH

Coupling
Coefficient

Magnetic coupler
without shielding 1.519 27.4 19.2 0.317

Non-shield on
receiving coil 2.556 30 37.5 0.408

Single shield 1.712 29.3 57.1 0.460
Double shield 0.991 25.2 46.8 0.410

Composite shield 1.155 24.2 53.9 0.441

The layers of nanocrystals of the composite structure are optimized, and the magnetic coupler
composed of two, four, six, and eight layers of nanocrystalline materials is modeled and simulated.
Similarly, the magnetic flux density distribution at the radial direction of 10 mm above the receiving
coil is obtained from the simulation results, as shown in Figure 10. The shielding effect of the composite
magnetic shielding structure with two, four, six, and eight layers of nanocrystals increases by 52.46%,
54.81%, 55.56%, and 55.71%, respectively, at the radial 10 mm above the receiving coil. The shielding
effect of the eight-layer nanocrystalline structure in the working area is slightly better than that of
the other multilayered nanocrystalline structure, but the shielding effect at the edge of the magnetic
coupler is the same as that of the four-layer nanocrystalline structure. For axial results, the number of
nanocrystalline layers has little effect on the magnitude of magnetic flux density. Therefore, in order to
save cost, the four layers of nanocrystalline structure should be chosen.
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4. Experimental Validation

In order to verify the finite element simulation results, this paper takes the magnetic coupler of
the composite shielding structure in the simulation as an example and produces the experimental
model, as shown in Figure 11. Among them, the switching frequency is 20 kHz, output power is 450 W,
and the load resistance is 136 Ω, which is obtained by impedance matching and is the optimal load of
the magnetic coupler.
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Figure 11. Experimental setup of the WPT system.

The experimental coil is wound by Litz wire, and a composite shielding layer is formed using
a 1 mm thick MnZn ferrite, 4 layers of nanocrystals, and 0.1 mm thick aluminum foil for the coil
to form a composite shielding magnetic coupler. As shown in Figure 12a, iLp is the current flowing
through the transmitting coil and uCp is the voltage across the compensation capacitor in parallel with
the transmitting circuit. In this paper, a single switching resonant converter is used. The P-S type
of reactive power compensation circuit uses parallel compensation on the primary side and series
compensation on the secondary side. As the equivalent input power supply on the primary side is not
a pure sinusoidal, the shape of the primary side current is not a sinusoidal wave too. As shown in
Figure 12b, ugs is the switching transistor driving voltage, and uds is the voltage between the drain
and the source. Before the switch control signal ugs comes, the voltage uds between the drain and
source of the switch has been reduced to zero, achieving zero voltage turn-on and reducing switching
losses. At the resonant frequency, the approximate value of the (DC-DC) efficiency of the whole
system is obtained by using the oscilloscope to measure and calculate the voltage and current on
the original rectifier module and the load. The efficiency of the WPT system with single shielding
magnetic couplers is 79%, the efficiency of the WPT system with double shielding magnetic couplers
is 68%, and the efficiency of the WPT system with composite shielding magnetic couplers is 87%.
Therefore, the composite structure magnetic couplers can effectively improve the efficiency of the
magnetic couplers under the circuit parameters.
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As shown in the Figure 13, the 10 mm radial flux density curve above the coil and the 250 mm
axial flux density curve of the magnetic coupler are received. Due to the influence of the experimental
environment, there is a slight error between the test results and the simulation results.
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position 10 mm above the receiving coil with composite shielding coupler on receiving coil coupler.
(b) Axial 250 mm outside the magnetic coupler with composite shielding coupler on receiving coil.

5. Conclusions

In this paper, the finite element analysis of the magnetic coupling mechanism of the wireless
power transfer system is carried out, and the magnetic flux density distribution of the magnetic coupler
is obtained. The magnetic shielding of the composite shielding structure and the traditional single
shielding structure and double shielding structure are compared and analyzed. The results show
that the maximum radial nonworking area flux density at 10 mm above the receiving coil decreases
from the original 2.556 mT to 1.155 mT, the axial nonworking area maximum flux density at 250 mm
outside the magnetic coupler decreases from the original 30 µT to 24.2 µT, the leakage flux in the
nonworking area decreases obviously, the magnetic flux in the working area is effectively constrained,
the mutual inductance of the magnetic coupling mechanism increases by 2.8 times, and the coupling
coefficient increases by 39.11%. The efficiency of the system is 87%. At the same time, the composite
shielding structure is optimized, and the composite shielding magnetic coupler with four layers
of nanocrystalline structure is selected considering the shielding effect and cost. The experimental
verification is carried out. Compared with the traditional magnetic shielding structure, the composite
structure magnetic couplers are only 75% of the traditional magnetic couplers, and the aluminum
content is only 5% of the traditional magnetic couplers. The shielding effect is slightly better than
the traditional shielding structure, it is flexible and easy to operate, and it can be used in any kind of
shielding structure.
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