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Abstract: Reaction kinetics is an important field of study in chemical engineering to translate
laboratory-scale studies to large-scale reactor conditions. The procedures used to determine kinetic
parameters (activation energy, pre-exponential factor and the reaction model) include model-fitting,
model-free and generalized methods, which have been extensively used in published literature to
model solid-gas reactions. A comprehensive review of kinetic analysis methods will be presented using
the example of carbonate looping, an important process applied to thermochemical energy storage
and carbon capture technologies. The kinetic parameters obtained by different methods for both the
calcination and carbonation reactions are compared. The experimental conditions, material properties
and the kinetic method are found to strongly influence the kinetic parameters and recommendations
are provided for the analysis of both reactions. Of the methods, isoconversional techniques are
encouraged to arrive at non-mechanistic parameters for calcination, while for carbonation, material
characterization is recommended before choosing a specific kinetic analysis method.

Keywords: kinetics; solid-gas reactions; carbonate looping; calcium looping; thermochemical energy
storage; carbon capture and storage

1. Introduction

Reaction kinetics is essential to study a wide variety of processes. The main objectives are to
obtain information about the reaction mechanism and determine kinetic parameters (such as activation
energy and pre-exponential factor). Identifying the reaction mechanism can prove useful in modifying
the course of the reaction or predicting the behavior of similar reactions, while calculating kinetic
parameters may allow reaction rates to be obtained at different experimental conditions [1]. This is of
particular value during the scale-up of thermal processes from laboratory to reactor scale [2].

Common methods of kinetic analysis (such as model-fitting and model-free methods) are applicable
to numerous chemical processes, including the thermal decomposition of solids, thermal degradation
of polymers and crystallization of glasses [3]. However, throughout the practical application of kinetic
analysis to heterogeneous reactions (such as solid-gas reactions), concerns have been raised about
the suitability of some kinetic methods, disparity in calculated kinetic parameters and the quality of
experimental data [1].

This review will comprehensively evaluate the methods used in solid-gas reactions, including
model-fitting, model-free and generalized methods, and discuss the advantages and disadvantages
of each of them. At the end of the review of solid-gas kinetic methods, example studies for the
carbonate looping cycle will be discussed. This review analyses the disparity in results and provides
recommendations for the application of kinetic methods.
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2. Carbonate Looping Technologies

Carbonate looping technologies are based on the equilibrium reaction of a metal oxide (MeO) with
its related metal carbonate (MeCO3) and CO2. This equilibrium is expressed by the following equation:

MeCO3 (s)
MeO (s) + CO2 (g) (1)

where pairs of MeCO3/MeO are commonly CaCO3/CaO [4–6], MgCO3/MgO [7–9], SrCO3/SrO [4,10],
BaCO3/BaO [9], CaMg(CO3)2/CaMgO2 [11] and La2O2CO3/La2O3 [12]. In particular, the CaCO3/CaO
system, referred to as calcium looping (CaL), consists of the following reversible reaction [5]:

CaCO3 (s)
 CaO (s) + CO2 (g) (2)

where the reaction enthalpy at standard conditions is −178.4 kJ mol−1. Generally, CaL systems show
high adaptability in fluidized bed applications and possesses suitable adsorption and desorption
kinetics [13]. For these reasons, CaL has been extensively studied for carbon capture and storage
technologies (CCS) [4,14–16] and thermochemical energy storage (TCES) [4,5,17,18].

In the CaL-CCS system, CaO is used as a regenerable sorbent subjected to a flue gas stream
(pre-combustion/post-combustion) from a coal combustion power plant [19,20]. Other industrial
plants, such as cement manufacture, iron/steel making or natural gas treatment could also be coupled
with CaL-CCS [19]. Many laboratory-scale studies include the use of inert supports, particularly
calcium aluminates, which is widely documented to decrease sintering with thermal cycling [21,22].
An alternative to CCS is the utilization of CO2, referred to as CCS+U, which includes using the captured
and stored CO2 as a technological fluid, for fuel production or for energy generation and storage [19].
Several CaL demonstration projects have also been tested in recent years [18,23–25] and some have
been coupled with solar thermal energy [26].

Reaction kinetics is a key consideration in the design of reactors for CaL systems, for which several
system configurations exist. A typical configuration consists of two interconnected circulating fluidized
beds: a calciner and carbonator [27–30]. In the case of solar-driven CaL, the calciner and carbonator
reactors are generally separated and several solar-driven reactors have been proposed [26,31,32].
Carbonation typically uses a fluidized bed reactor and kinetic reaction models suitable for the
conditions of interest in CaL have been specifically studied [28,33–35], as well as single particle models,
which consider kinetics, thermal transport and mass transfer [36,37]. Models such as these have helped
in the design of carbonator reactors [27,29,30,38–40].

As well as CCS+U, the CaL systems can also be used as TCES integrated with concentrating
solar thermal (CST) power plants to increase their efficiency and reduce their costs [4]. While
calcination proceeds in a similar way to CCS, in TCES the released heat from the carbonation reaction
(Equation (2)) is used to drive a power cycle [41]. Various TCES systems have been explored using
equilibrium reactions from hydroxide looping, metal oxides based on reduction-oxidation reactions
and chemical-looping combustion [4,42]. Recently, CaL-TCES has been shown to be promising in terms
of cost and compatibility with efficient power cycles [4]. It has large energy storage densities [4,5,17,18]
and has been modelled for the MW-scale [17].

3. Kinetics of Solid-Gas Reactions

Solid-gas reactions involve the transformation of one solid into a gas and another solid, and vice
versa [43]. Figure 1 shows a schematic of a solid-gas reaction.
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Figure 1. Schematic of a solid-gas reaction, i.e., A(s)  B(s) + C(g). AB is the reactant-product interface. 
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absorption of a gas and, therefore, X(t) can be obtained by using weight changes. X(t) is frequently 
described using the fractional weight change, which is obtained using the initial mass (m0), the mass 
at time t (mt) and the final mass (mf) [21]. Different expressions of X(t) will be used depending on 
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where w is the weight fraction of the mass of the solid effectively contributing to the reaction. As X(t) 
may not necessarily reach unity, (which would indicate reaction completion), the extent of conversion 
(α) is commonly used in the analysis of solid-gas reaction kinetics. α is obtained from Equation (3), 
where w is assumed to be unity. The mass is normalized by the maximum weight obtained in the 
process to obtain values in the range of 0 to 1, regardless of the maximum X(t): 

0
0 0 max

0

0
0 max

0

weight loss      for 

weight gain     for 

t
t

f

t
t f

f

m mm m m m
m m
m mm m m m
m m

α

− > → = −
 − < → =
 −

 (4)

These values of X(t) and α usually change over the course of the reaction with respect to time 
and can have characteristic shapes [44]. Solid-gas kinetic models are used to understand these shapes 
and relate them to different mechanisms involved [45]. The reaction rate (dα/dt) of a solid-gas 
reaction is commonly described by the equation:  
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where A is the pre-exponential or frequency factor (min−1), Ea is the activation energy (J mol−1), R is 
the universal gas constant (J mol−1 K−1) and T is the temperature (K). Substituting Equation (6) into 
(5) leads to the differential form of dα/dt:  

Figure 1. Schematic of a solid-gas reaction, i.e., A(s)→ B(s) + C(g). AB is the reactant-product interface.

The way in which these processes occur (fast, slow, linear, and non-linear) is expressed by the
variation of conversion with time, X(t). The nature of the solid-gas reactions involves the release or
absorption of a gas and, therefore, X(t) can be obtained by using weight changes. X(t) is frequently
described using the fractional weight change, which is obtained using the initial mass (m0), the mass
at time t (mt) and the final mass (mf) [21]. Different expressions of X(t) will be used depending on
whether the process involves decomposition (weight loss) or product formation (weight gain):

X(t)

 weight loss m0 > mt →
m0−mt

m0w
weight gain m0 < mt →

mt−m0
m f w

(3)

where w is the weight fraction of the mass of the solid effectively contributing to the reaction. As X(t)
may not necessarily reach unity, (which would indicate reaction completion), the extent of conversion
(α) is commonly used in the analysis of solid-gas reaction kinetics. α is obtained from Equation (3),
where w is assumed to be unity. The mass is normalized by the maximum weight obtained in the
process to obtain values in the range of 0 to 1, regardless of the maximum X(t):

α

 weight loss m0 > mt →
m0−mt
m0−m f

for m0 = mmax

weight gain m0 < mt →
mt−m0
m f−m0

for m f = mmax
(4)

These values of X(t) and α usually change over the course of the reaction with respect to time and
can have characteristic shapes [44]. Solid-gas kinetic models are used to understand these shapes and
relate them to different mechanisms involved [45]. The reaction rate (dα/dt) of a solid-gas reaction is
commonly described by the equation:

dα
dt

= k(T)h(P) f (α) (5)

where k(T) is the temperature-dependent reaction rate constant, expressed in min−1; f (α) is the reaction
model describing the mechanism; and h(P) is the pressure dependence term. The Arrhenius equation
is often used to describe k(T):

k(T) = A exp
(
−Ea

RT

)
(6)

where A is the pre-exponential or frequency factor (min−1), Ea is the activation energy (J mol−1), R is
the universal gas constant (J mol−1 K−1) and T is the temperature (K). Substituting Equation (6) into (5)
leads to the differential form of dα/dt:

dα
dt

= A exp
(
−Ea

RT

)
h(P) f (α) (7)
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The pressure dependence term h(P) is rarely used in most kinetic methods, but depending on the
atmosphere, may have a significant effect as the reaction progresses [3]. A recent work suggests that
the equilibrium pressure, P0 (kPa), of the gaseous product has a significant influence on dα/dt and the
effective Ea for decomposition reactions under temperature swing cycling [46]. Various forms of the
pressure dependence term (also known as the accommodation function) have been derived and used
in solid-gas systems [47,48]. The following h(P) function is derived by considering the contribution of
the reverse reaction (e.g. product pressure) in the overall reaction rate and accounts for the influence of
P0 and the total pressure P(kPa) [49]:

h(P) =
(
1−

P
P0

)
(8)

If a solid-gas reaction is reversible such as in Equation (1), then P0 is equal to the equilibrium
constant Keq [49,50] leading to:

P0 = Keq = exp
(
−

∆Gr
0

RT

)
(9)

where ∆Gr
0 is the Gibbs free energy (kJ mol−1).

An alternative form of the accommodation function was developed by Koga et al. after finding
that the conventional function (Equation (8)) did not universally describe various reaction induction
period processes in the thermal decomposition of solids [47]. A generalized form was proposed to
describe kinetic behavior under different pressure conditions:

h(P) =
(PS

P

)a
1− (

P
P0

)b (10)

where a and b are constants and PS (kPa) is the standard pressure (introduced to express all pressure
terms in the same units) [47].

Methods of solid-gas kinetic analysis are either differential, based on the differential form of the
reaction model, f (α); or integral, based on the integral form g(α). The expression for g(α) is obtained by
rearranging Equation (7) and then integrating, leading to the general expression of the integral form:

g(α) =
∫ α

o

dα
f (α)

= A
∫ t

0
exp

(
−Ea

RT

)
h(P)dt (11)

Experimentally, the solid-gas reactions can be performed under isothermal or non-isothermal
conditions. An analytical solution to Equation (11) can be obtained for isothermal experiments because
the integrand is time independent [51]. However, the accuracy of isothermal techniques has been
questioned because the reaction may begin during the heating process. Furthermore, the range
in temperature where α is evaluated is much smaller, which exaggerates errors in the calculation
of the kinetic parameters [52]. For these reasons, non-isothermal experiments are preferred over
isothermal experiments. Non-isothermal experiments employ a heating rate (β in K min−1), which is
constant with time. Equation (11) is therefore transformed to express α as a function of temperature,
Equation (12a) [53]. Equation (12b) is the starting equation for many integral methods of evaluating
non-isothermal kinetic parameters with constant β:

dα
dT

=
A
β

exp
(
−Ea

RT

)
h(P) f (α) (12a)

g(α) =
A
β

∫ T

0
exp

(
−Ea

RT

)
h(P)dT (12b)
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Similarly, to Equation (11), Equation (12b) has no analytical solution under non-isothermal
conditions and algebraic expressions must be used as approximations. Commonly used kinetic
methods can be classified depending on the type of approximations used and/or assumptions made:

• Model-fitting methods, where expressions of f (α) and g(α) are approximated to defined linear or
non-linear expressions dependent on α and the order of reaction n. These methods provide global
values of Ea and A corresponding to kinetic mechanisms [3].

• Model-free methods assume that the dα/dt at a specific value of conversion is only a function of
temperature [54] and do not fit experimental data to assumed reaction models [55]. The model-free
methods often begin with Equation (12b), which is linearized to obtain Ea. This method, however,
cannot obtain independent values of A without making assumptions about f (α). A posteriori
application of a model fitting method of f (α) can be applied to obtain A [3].

• Generalized kinetic models allow for the reaction to consist of a simultaneous combination
of multiple steps. In the case of simultaneous multi-step reactions, neither model-free nor
model-fitting methods can be used to determine Ea and A. Therefore, a specific physicochemical
model should be applied for the reaction in question [56]. These methods have the benefit of
combining mass and heat transfer effects into a single model. However, they can be complicated
to implement [57], leading to long simulation times. In addition, these methods are purely based
on other empirical parameters (e.g., porosity, bulk density, void fraction) that may vary with
synthesis conditions.

As mentioned at the beginning of this section, solid-gas kinetics ultimately rely on measuring
the changes in weight of a solid sample to obtain the values of α required to solve Equations (7), (11)
or (12b). Thermogravimetric analysis (TGA) is a popular means of obtaining quantitative weight
changes [58]. One of the critical issues is to obtain good quality data from the TGA. Experimental
factors such as particle size, sample mass and gas flow rate must be controlled to reduce the influence of
external and internal mass transfer limitations [59,60]. Reducing particle sizes and dispersing particles
can minimize inter-particle mass transfer limitations, while adopting high gas flow rates can minimize
external mass transfer limitations. The choice of the gas flow rate is commonly limited by the type of
TGA analyser used.

It has been suggested that g(α) methods are better suited to analyzing integral data collected by
TGA, and f (α) methods better suited to data collected using differential scanning calorimetry (DSC) [3].
This is because differentiating integral data tends to magnify noise. However, modern thermal analysis
equipment usually employs good numerical methods with enough data points to reduce noise [3].
Therefore, modern kinetic methodologies can use either f (α) or g(α) methods depending on the desired
results. The following sections (Sections 4–6) will describe the theoretical expressions of f (α) and g(α)
leading to different approximations of Equations (7), (11) and (12b) commonly used in kinetic analysis
of solid-gas reactions.

4. Model-Fitting Kinetic Reaction Models

Model-fitting methods are based on fitting experimental data to various known solid-state reaction
models and in this way obtaining Ea and A [3]. The general principle is to minimize the difference
between the experimentally measured and calculated data for the given reaction rate expressions in
Table 1 [3].
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Table 1. Classification of model-fitting kinetic expressions for reaction mechanisms [45].

Reaction Model Code f (α) g(α)

Zero-order F0 1 α
First-order F1 (1− α) − ln(1− α)

Second-order F2 (1− α)2 1
(1−α) − 1

Third-order F3 (1− α)3 1
2

[
(1− α)−2

− 1
]

Avrami-Erofeyev A2 2(1− α)[− ln(1− α)]1/2 [− ln(1− α)]1/2

Avrami-Erofeyev A3 3(1− α)[− ln(1− α)]2/3 [− ln(1− α)]1/3

Avrami-Erofeyev A4 4(1− α)[− ln(1− α)]3/4 [− ln(1− α)]1/4

Prout-Tompkins B1 α(1− α) ln[α(1− α)] + cα

Power law P2 2α1/2 α1/2

Contracting area R2 2(1− α)1/2 1− (1− α)1/2

Contracting volume R3 3(1− α)2/3 1− (1− α)1/3

1-D diffusion D1 1/(2α) α2

2-D diffusion D2 − ln(1− α) ((1− α) ln(1− α)) + α

3-D diffusion D3 3(1−α)2/3

2−(1−α)1/3 (1− (1− α)1/3)
2

Ginstling-Brounshtein D4 3
2

1
(1−α)−1/3

−1 1− (2/3)α) − (1− α)2/3)

Table 1 categorizes kinetic models for reaction mechanisms and provides the algebraic functions
for f (α) and g(α). The general expression for g(α) is given when f (α) is approximated as (1 − α)n [61]:

g(α) = [1− (1− α)1−n]/(1− n) (13)

for all values of n except n = 0, which corresponds with the zero-order model (F0), and for n = 1, which
corresponds with the first-order model (F1):

g(α) = − ln(1− α) (14)

In order-based models (F0–F3), the reaction rate is proportional to α, the conversion degree, raised
to a power, which represents the reaction order. These types of models are the simplest of all the kinetic
models and are similar to those used in homogeneous kinetics [45]. Figure 2 depicts the functions f (α)
and g(α) over α for the order-based methods.
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Figure 2. Order-based reaction models: (a) f (α)plots; (b) g(α) plots.

The Avrami-Erofeyev (A2–A4) models are referred to as nucleation-based models (see Figure 3).
Nucleation models describe the kinetics of many solid-state reactions, including crystallization,
crystallographic transition, decomposition and adsorption [45]. These methods are frequently applied
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to solid-gas reactions. They are described by the general Equation (15) and vary depending on the
order, described by the exponent n:

g(α) = [− ln(1− α)]1/n (15)
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A non-Avrami based nucleation and isotropic growth kinetic model was developed specifically 
for the decomposition of CaCO3 in powder form by Bouineau et al. [62]. This model was based on 
one first proposed by Mampel [63] and assumes that the rate-limiting step of growth occurs at the 
internal interface between CaO particles. The model of Bouineau, however, does not assume that the 
extent of conversion of the powder is identical to that of a single particle. The extent of conversion 
can be obtained by the following expression  

Figure 3. Formation and growth of nuclei of reaction products: (a) nucleation sites; (b) first nuclei
formed; (c) growth and further nucleation; (d) overlap of nuclei; (e) ingestion of a nucleation site;
(f) continued growth.

Note that the first order model (F1) corresponds to the case when n = 1 in Equation (15) [45].
For Avrami nucleation, the graph of α versus time is sigmoidal with an induction period at the

beginning of the reaction (see Figure 4). Orders of nucleation are classified as either A2, A3 or A4 to
reflect the exponential terms in the reaction models (see Table 1). When n is equal to 4, the reaction
mechanism is often interpreted as autocatalytic nucleation [43]. This occurs if nuclei growth promotes
a continued reaction due to the formation of defects such as dislocations or cracks at the reaction
interface. Autocatalytic nucleation continues until the reaction begins to spread to material that has
decomposed [45].
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A schematic of nucleation and growth in Avrami models is shown in Figure 3. The Avrami models
identify that there are two restrictions on nuclei growth. After the initial growth of individual nuclei
(Figure 3a–c), the first restriction is driven by the ingestion (Figure 3d,e) [1]. The ingestion facilitates the
elimination of a potential nucleation site by growth of an existing nucleus. The second is coalescence
(Figure 3e,f), the loss of the reactant-product interface when two or more growing nuclei merge or
ingestion occurs [1,45].

A non-Avrami based nucleation and isotropic growth kinetic model was developed specifically
for the decomposition of CaCO3 in powder form by Bouineau et al. [62]. This model was based on one
first proposed by Mampel [63] and assumes that the rate-limiting step of growth occurs at the internal
interface between CaO particles. The model of Bouineau, however, does not assume that the extent
of conversion of the powder is identical to that of a single particle. The extent of conversion can be
obtained by the following expression

α(t) = 4πr0
2γ

∫ t

0
αt exp

(
−4πr0

2γt
)
dt (16)
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where γ is the number of nuclei that appear (m2 s−1)
The Prout-Tompkins model (B1) also assumes a sigmoidal relationship between α and time, like

the Avrami-Erofeyev models. It assumes that nucleation occurs at the same rate as “branching”, which
occurs during autocatalysis if nuclei growth promotes a continued reaction due to the formation of
defects at the reaction interface [45]. The power law model (P2) is employed for a simple case where
nucleation rate follows a power law and nuclei growth is assumed to be constant [45].

The geometric contraction (R2-R3) models assume that nucleation occurs rapidly on the surface
of the solid. The reaction is controlled by the resulting reaction interface progressing towards the
center. If the solid particle is assumed to have a cylindrical shape, the contracting area (R2) model is
used, while if a spherical or cubical shape is assumed, the contracting volume (R3) model is employed
(see Figure 5).
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As the mathematical derivation of the geometric models involves the radius of the solid particle,
k(T) will be a function of particle size, which will also be the case for the diffusion models (see next) [45].
Reaction functions for geometric models are depicted in Figure 6.
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Figure 6. Geometry-based reaction models: (a) f (α) plots; (b) g(α) plots.

Diffusion often plays a role in solid-state reactions because of the mobility of constituents in
the systems. While reactant molecules are usually readily available to one another in homogeneous
systems, solid-state reactions often occur between crystal lattices. In these lattices, motion can be
restricted and may depend on lattice defects. A product layer may form and increase in thickness
where the reaction rate is controlled by the movement of the reactants to, or products from, the reaction
interface. In diffusion processes, α decreases proportionally with the thickness of the product layer.
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The one-dimensional (D1) diffusion model is based on the rate equation for an infinite flat plate that
does not involve a shape factor (see Figure 7).
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The two-dimensional diffusion model (D2) assumes that the solid particles are cylindrical, and
that diffusion occurs radially through a cylindrical shell with an increasing reaction zone. The
three-dimensional diffusion model is known as the Jander equation (D3) and assumes spherical solid
particles. It is derived from a combination of the parabolic law which reflects the one-dimensional
oxidation of models, reformulated taking spherical geometry into consideration [64]. McIlvried and
Massoth argue that the expression in Table 1 is only a good approximation at very low extents of
conversion [64] and should instead be correctly expressed as:

g(α) = 3− 3(1− α)2/3
− 2α (17)

The Ginstling-Brounshtein model (D4) is a three-dimensional diffusion model based on a different
mathematical representation of the product layer thickness [45]. The reaction model consists of a
sphere of component A with a homogeneous matrix of component B and the formation of a number of
intermediate phases in a concentric layer [65]. Diffusion-based reaction models are depicted in Figure 8.

Energies 2019, 12, x FOR PEER REVIEW 
 9 of 36 

where the reaction rate is controlled by the movement of the reactants to, or products from, the 
reaction interface. In diffusion processes, α decreases proportionally with the thickness of the product 
layer. The one-dimensional (D1) diffusion model is based on the rate equation for an infinite flat plate 
that does not involve a shape factor (see Figure 7).  

 
Figure 7. Schematic of 1D diffusion through a flat plate, where A and B are reactants, AB is the product 
interface, l is the thickness of the product layer, and x is the distance measured from interface Q into 
AB. 

The two-dimensional diffusion model (D2) assumes that the solid particles are cylindrical, and 
that diffusion occurs radially through a cylindrical shell with an increasing reaction zone. The three-
dimensional diffusion model is known as the Jander equation (D3) and assumes spherical solid 
particles. It is derived from a combination of the parabolic law which reflects the one-dimensional 
oxidation of models, reformulated taking spherical geometry into consideration [64]. McIlvried and 
Massoth argue that the expression in Table 1 is only a good approximation at very low extents of 
conversion [64] and should instead be correctly expressed as: 

2/3( ) 3 3(1 ) 2g α α α= − − −  (17) 

The Ginstling-Brounshtein model (D4) is a three-dimensional diffusion model based on a 
different mathematical representation of the product layer thickness [45]. The reaction model consists 
of a sphere of component A with a homogeneous matrix of component B and the formation of a 
number of intermediate phases in a concentric layer [65]. Diffusion-based reaction models are 
depicted in Figure 8. 

  
(a) (b) 

Figure 8. Diffusion-based reaction models: (a) f(α)plots; (b) g(α) plots. 

4.1. Integral Approximation 

Figure 8. Diffusion-based reaction models: (a) f (α)plots; (b) g(α) plots.

4.1. Integral Approximation

Integral approximations are commonly employed in non-isothermal kinetic analyses [53]. Integral
approximations are based on Equation (11) and generally omit the pressure dependency term h(P). The
integral from Equation (12b) can be approximated by replacing x with Ea/RT [53]:∫ T

0
exp

(
−Ea

RT

)
dT =

( R
Ea

)
T2 exp

(
−Ea

RT

)
Q(x) (18)
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where Q(x) is a function which changes slowly with x and is close to unity [53]. It can alternatively be
expressed in terms of p(x): ∫ T

0
exp

(
−Ea

RT

)
dT =

(Ea

R

)
p(x) (19)

where p(x) is used to transform the integration limits from T to x [53]:

p(x) =
∫
∞

x

( 1
x2

)
exp(−x) dx (20)

The following relationship between p(x) and Q(x) can be obtained by equating Equations (18) and
(19) and rearranging for p(x):

p(x) =
( 1

x2

)
exp(−x)Q(x) (21)

An expression for g(α) can then be obtained by substituting Equation (21) into Equation (19) and
then into Equation (12b):

g(α) =
A
β

∫ T

0
exp

(
−Ea

RT

)
dT =

(
A
β

)(Ea

R

)
p(x) =

(
AEa

βR

)( 1
x2

)
exp(−x)Q(x) (22)

As Q(x) has no analytical solution, many approximations are available, including the Agarwal
and Sivasubramanium (A&S) [66] and the Coats-Redfern (CR) approach [53]. The CR method utilizes

the asymptotic series expansion and approximates Q(x) to be (x−2)
x , leading to the following expression

of g(α):

g(α) =
AR
Eaβ

T2 exp
(
−Ea

RT

) (x− 2)
x

(23)

Therefore, plots of ln[g(α)/T2] versus 1/T (Arrhenius plots) will produce a straight line for which
the slope and intercept allow an estimation of Ea and A [61]:

ln
[

g(α)
T2

]
= −

(Ea

R

)( 1
T

)
+ ln

[
AR
Eaβ

](
1−

2RTav

Ea

)
(24)

Tav is the average temperature over the course of the reaction [55]. One pair of Ea and A for each
mechanism can be obtained by linear data-fitting and the mechanism is chosen by the best linear
correlation coefficient. However, careful considerations should be taken as selecting the best expression
of g(α) that produces the best fit could lead to wrong conclusions. As for all model-fitting methods, CR
should not be applied to simultaneous multi-step reactions, although it can adequately represent a
multi-step process with a single rate-limiting step [3].

4.2. Master Plots

Master plots are defined as characteristic curves independent of the condition of measurement
which are obtained from experimental data [67]. One example of a master plot is the Z(α) method,
which is derived from a combination of the differential and integral forms of the reaction mechanism,
defined as follows:

Z(α) = f (α)g(α) (25)

An alternative integral approximation for g(α) to the CR approximation in Section 4.1 is π(x)
x ,

where π(x) is an approximation made by a polynomial function of x (Ea/RT) [68–70]:

π(x) =
x3 + 18x2 + 88x + 96

x4 + 20x3 + 120x2 + 240x + 120
(26)
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By including π(x) and x in Equation (12b) and integrating with respect to temperature, we can
obtain an approximation to the integral form of g(α):

g(α) =
A
β

∫ T

0
exp

(
−Ea

RT

)
dT =

A
β

Ea

RT
T
(
exp(−x)

π(x)
x

)
=

A
β

(
T2

T
exp(−x)π(x)

)
(27)

If Equation (7) is rearranged to produce:

f (α) =
1

A exp(−x)
dα
dt

(28)

the expression used for the Z(α) method is obtained by substituting Equations (27) and (28) into
Equation (25):

Z(α) =
dα
dt

T2
[
π(x)
βT

]
(29)

For each of the reaction mechanisms, theoretical Z(α) master plot curves (Equation (25)) can be
plotted using the approximate algebraic functions in Table 1 for f (α) and g(α), as shown in Figure 9.
A plot of experimental values can be produced with Equation (29). The experimental values will
provide a good fit for the theoretical curve with the same mechanism. As the experimental points
have not been transformed into functions of the kinetic models, no prior assumptions are made for the
kinetic mechanism.
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5. Model-Free Methods of Kinetic Analysis

Model-free methods calculate Ea independently of a reaction model and require multiple data
sets [71] and assumptions about a reaction mechanism are avoided. Another benefit of these methods
is that multi-step processes can be identified [3]. The kinetic parameters (Eα and Aα) depend on the
values of α and are typically obtained over the range of 0.05 < α < 0.95. Model-free methods include
differential and integral isoconversional methods and the Kissinger method [3].
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5.1. Differential Isoconversional Methods

Differential isoconversional methods draw on the differential form of the kinetic equation:

dα
dT

=
A
β

exp
(
−Ea

RT

)
h(P) f (α) (30)

If the pressure dependence has been considered in the kinetic analysis, the differential form of the
kinetic equation will be:

dα
dT

=
A
β

exp
(
−Ea

RT

) (P0 − P)
P0

f (α) (31)

The isoconversional principle is based on the temperature dependence of the reaction rate, which
can be used to evaluate the isoconversional Ea related to a given α. Following this principle, the
Friedman isoconversional model is carried out by taking the logarithmic derivative of the reaction rate:

ln
(
βi

dα
dT

)
α,i

= ln[ f (α)Aα] −
Eα

RTα,i
(32)

At each value of α, the value of Eα is determined from the slope of a plot of ln(dα/dT)α,i against
1/Tα,i as in Equation (32). For non-isothermal experiments, i represents an individual heating rate and
the Tα,i is the temperature at which the extent of conversion is reached in the temperature program [3].
In this method, the h(P) term could be negligible or included as a pressure correction in the following
expression [49]:

Eα(P) = Eα + ∆Hr
P0

(P0 − P)
(33)

where Eα and Eα(P) denote the activation energy before and after applying the pressure correction,
respectively. ∆Hr is the standard enthalpy (kJ mol−1) over the temperature range of the reaction and
can be evaluated using the van’t Hoff equation:

ln Keq = −
∆Hr

RT
+

∆Sr

R
(34)

where ∆Sr is the entropy change (J mol−1 K−1) of the system and Keq is the equilibrium constant of the
solid-gas reaction, which is equal to P0 in stoichiometric reactions as per Equation (1) (see Section 3).
Aα can be obtained using the compensation effect (see Section 6).

5.2. Integral Isoconversional Methods

Integral isoconversional methods apply the same linearization principle as differential
isoconversional methods to the integral equation (Equation (11)). The general form is now:

ln

 βi

TB
α,i

 = Const−C
( Eα

RTα

)
(35)

where B (in TB
α,i) and C are the parameters determined by the type of temperature integral approximation.

Several approximations can be applied and one is the Flynn and Wall and/or Ozawa (FWO) equation [72]
that approximates B = 0 and takes the form:

ln(βi) = Const− 1.052
( Eα

RTα

)
(36)

Numerical methods of solving the integral approximation have since been developed which
display greater accuracy [3].
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5.3. Kissinger Method

The Kissinger method, a multi-heating rate method, has been applied extensively to determine Ea

because of its ease of use. The basic equation of the method is derived from Equation (7) under the
condition of maximum reaction rate:

d2α

dt2 =

[
Eaβ

RTmax2 + A f ′(αm) exp
(
−

Ea

RTmax

)](dα
dt

)
max

= 0 (37)

where f’(α) = df (α)/dα and the subscript max refers to the maximum value. After differentiating and
rearranging, the Kissinger equation is obtained:

ln

 β

T2
m,i

 = ln
(
−

AR
Ea

f ′(αm)
)
−

Ea

RTm,i
(38)

The limitations of the method are that an accurate value of Ea requires f’(αmax) to be independent of
the heating rate β, which is not fulfilled in some reaction models and hence violates the isoconversional
principle. Another limitation is that the Kissinger method (unlike Friedman and FWO) produces a
single value of activation energy, regardless of the complexity of the reaction [49]. Additionally, the use
of approximations mean that FWO and Kissinger methods are potentially less accurate than differential
methods (Friedman) [3].

6. Combination of Model-Fitting and Model-Free Methods

Model-free methods allow Eα to be evaluated without determining the reaction model. However,
it is possible to determine the reaction model (and A) by combining the results of a model-free method
and a model-fitting method. The reaction can be reasonably approximated as single-step kinetics if Eα
is nearly constant with α. However, if Eα varies with α, the reaction can be split into multiple steps and
model-fitting can be carried out for each step [3].

In this combination of model-fitting and model-free methods, the Friedman method is first
performed, which gives a range of values of Eα over the extent of reaction α. Then, if the value of Eα
does not vary considerably with α, an average value E0 can be calculated. A corresponding value of A0

can then be determined using the compensation effect [3]. The compensation effect assumes a linear
correlation Ea and A. Therefore, values of Ea and A obtained from model-fitting (denoted as Ei and Ai)
can be used to determine the constants a and b [3]:

ln Ai = aEi + b (39)

Different functions of f (α) produce widely different values of Ei and Ai, however, they all
demonstrate a strong linear correlation based on the parameters a and b [3]. Therefore, the average
value E0 can be used to determine the model-free estimate of the pre-exponential factor, A0, using the a
and b constants:

ln A0 = aE0 + b (40)

The integral form of the reaction model can then be reconstructed by substituting E0 and A0 into
Equation (12b), which can then be plotted and compared with the theoretical g(α) curves (see Table 1)
to suggest a reaction mechanism [3]:

g(α) =
A0

β

∫ Tα

0
exp

(
−E0

RT

)
dT (41)
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7. Generalized Kinetic Models

Some solid-gas reactions display an ever-changing mixture of products, reactants, and
intermediates [73]. These can consist of multiple reactions occurring simultaneously, and in these
cases, using model-fitting and model-free methods will produce erroneous kinetic parameters and
lead to mistaken conclusions about the reaction mechanisms [54]. Additionally, model-fitting and
model-free methods do not consider any of the morphological properties in the reacting sample that
could be relevant to the reaction kinetics [56]. For example, nucleation and growth are reduced to
Avrami relationships, (which assume that nucleation occurs in the bulk of the solid) without taking
into account the fact that nucleation also occurs at the surface [56].

In light of these challenges, Pijolat et al. describe the use of a “generalized approach,” which is
useful for modelling gas-solid reactions, regardless of its individual morphological characteristics and
the type of reaction [56]. Unlike the models in Sections 4 and 5, these morphological models do not
assume that the k(T) varies with temperature through an Arrhenius dependence, or that there is an f (α)
dependence on α [56]. This generalized approach leads to a rate equation with both thermodynamic
“variables” (e.g., temperature and partial pressures) and morphological variables. The physical models
that determine the variation in the reaction rate with time are referred to as geometrical models.

If the rate-determining step is a reaction such as adsorption, desorption or an interfacial reaction,
its kinetic rate is described by the following equation, where dξ/dt refers to the absolute speed of
reaction (mol s−1):

dξ
dt

(surface or interface) = vsS (42)

where S (m2) is the surface area of the reactional zone where the rate-determining steps takes place
and vs is the rate for a rate-determining step located at the surface or an interface (mol m−2 s−1) [56].

If the rate-determining step is a diffusion step, vs is replaced with the diffusion flux J:

dξ
dt

(diffusion) = JS = D∆CGDS (43)

where D (m2 s−1) is the diffusion coefficient of the diffusing species, ∆C (mol m−3) is the difference in
concentrations of the diffusing species at both interfaces and GD (dimensionless) is the function of the
particle symmetry (equal to 1 in the case of a surface or interfacial rate-determining step). J depends
only on the thermodynamic variables, while both GD and S depend on morphological variables which
vary as a function of time [56].

The reaction rate can be expressed in terms of the geometrical models (see next section) which
vary depending on assumptions of nucleation, growth, particle symmetry and rate-determining step
localization. The rate is then expressed in terms of fractional conversion, where φ is a function
(mol m−2 s−1), which depends only on thermodynamics and Sm (m2 mol−1) on both kinetic and
geometrical assumptions (taking into account nucleation, growth and morphological features) [56]:

dα
dt

= φSm (44)

In contrast to model-fitting and model-free methods, generalized kinetic models are specific to the
reaction system considered. In the next section, the application of these models to carbonate looping
systems will be explained in detail.

8. Generalized Kinetic Models Applied to Carbonate Looping Systems

In the carbonate looping systems, the calcination reaction commonly follows a thermal
decomposition process that can be approximated by model-fitting and model-free methods. However,
carbonation reactions involve several mechanisms such as nucleation and growth, impeded CO2

diffusion or geometrical constraints related to the shape of the particles and pore size distribution of the
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powder [74]. Therefore, instead of using a purely kinetics-based approach for analysis of carbonation,
functional forms of f (α) have been proposed to reflect these diverse mechanisms. Numerous studies
suggest that the carbonation reaction takes place in two stages: an initial rapid conversion (kinetic
control region) followed by a slower plateau (diffusion control region) [60]. These studies have been
performed for the CaL system and studies on the carbonation of other metal oxides have not been
carried out. Many works examined the deactivation and sintering of CaO through CaL [33,75–78],
although these studies are beyond the scope of this review.

The kinetic control region of the carbonation reaction occurs by heterogeneous surface chemical
reaction kinetics. The driving force for this kinetic control region is generally seen to be the difference
between the bulk CO2 pressure and equilibrium CO2 pressure [59]. This region is generally described
by the kinetic reaction rate constant ks (m4 mol−1s−1), which is an intrinsic property of the material.
Intraparticle and transport resistances [16] may mean that the kinetic analysis determines an effective
value instead of an intrinsic property.

Following this initial stage, the diffusion control region takes place because a compact layer of the
product CaCO3 develops on the outer region of the CaO particle (at the product-reactant interface, see
Figure 1) [79]. The diffusion region is described by the product layer diffusion constant D (m2 s−1) (see
Equation (43)). A schematic of product layer formation during the reaction cycles is shown in Figure 10.Energies 2019, 12, x FOR PEER REVIEW 
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Figure 10. Schematic representation of a CaO particle undergoing carbonation-calcination
cycling reactions.

The formation and growth of the CaCO3 product layer is often considered to be the most important
rate-limiting reaction step. The layer of CaCO3 impedes the ability of CO2 to further diffuse to the bulk
and will also result in the plugging of the porous structure [80].

There are four major groups of generalized models which describe how the particles change
during the carbonation of CaL system (see Figure 11). The shrinking core model is a form of the
simple homogeneous particle model and separates the surface chemical reaction from the product
layer diffusion reaction. Pore models assume that the initial reaction stage is driven by the filling of
small pores, before a diffusion process takes over. Grain models focus on how grain size distribution
changes as the reaction progresses, while the nucleation and growth model represents the reaction
through the nucleation of product CaCO3. A simplified generalized model (the apparent model) has
also been developed for the carbonation reaction, which does not consider morphological properties.
These models are described in detail in the following sections.
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8.1. Shrinking Core Model

The shrinking core model (SCM) is derived from the homogeneous particle model [13] and
was first introduced by Yagi and Kunii [81], with further zone-reaction models proposed by authors
such as Ishida and Wen [82]. The SCM describes the particle as a non-porous sphere [83] and
discriminates between product layer diffusion and reaction at the surface of the unreacted core as
possible rate-determining steps [84].

The equations governing the kinetic and diffusion control regions are described by the following
equations respectively [13,85]:

t =
ρr

ksC

[
1− (1−X(t))1/3

]
(45)

t =
ρr2

6DC

[
1− 3(1−X(t))2/3 + 2(1−X(t))

]
(46)

where r is the radius of the CaO particle, ρ is the density of CaO (kg m−3), ks is the kinetic reaction rate
constant (m4 mol−1 s−1), D is the product layer diffusion constant (m2 s−1), C is the molar concentration
of CO2 (mol m−3), X(t) is the extent of carbonation conversion (see Equation (3)) and t is the time (s).

8.2. Pore Models

The pore models focus on the evolution of the voids (pores) in the particle, and consider the solid
form to be the continuous phase [13]. The random pore model (RPM) correlates the reaction behavior
with the internal pore structure [21] and was developed by Bhatia and Perlmutter [86]. Applied to
carbonation, the RPM considers structural parameters and CO2 partial pressure to be the driving forces
for the reaction. It is proposed that the carbonation reaction in the kinetic region is governed by the
filling of small pores, while in the diffusion region the reaction continues in larger pores with a much
smaller specific surface area [86]. The following expressions were developed to describe the kinetic
and diffusion control regions respectively [13,86]:

1
ψ

[√
1−ψ ln(1−X(t)) − 1

]
=

ksS0t(Cb −Ce)

2(1− ε0)
(47)

1
ψ

[√
1−ψ ln(1−X(t)) − 1

]
=

S0

√
MCaODCt

4.352ρ

2(1− ε0)
(48)

where ks is the kinetic reaction rate constant (m4 mol−1 s−1) and D is the product layer diffusion constant
(m2 s−1). Cb and Ce are the bulk and equilibrium concentrations of CO2, while C is the concentration
of the diffusing species on the pore surface. MCaO is the molar mass of CaO (kg mol−1), X(t) is the
conversion and ρ is the density of CaO (kg m−3). ψ is a structural parameter, related to S0, the initial
surface area per unit volume (m2 m−3), ε0, the initial porosity of the sorbent, and L0, the pore length
per unit volume (m m−3), as described by Equation (46):

ψ =
4πL0(1− ε0)

S2
0

(49)

Although the RPM has been shown to predict carbonation kinetics well, the requirement of
structural parameters makes it complex to use [13]. A number of modifications have also been made to
the RPM [13], including simplifications [87] and extensions to take into account CO2 partial pressure,
carbonation temperature and particle size [35].

8.3. Grain Models

The grain models assume that the material is composed of non-porous solid grains of CaO,
randomly located in the particle and dispersed in gas, and are based on the modelling studies of
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solid-gas reactions by Szekely and Evans [88]. A CaCO3 product layer is formed on the outside of each
CaO grain during carbonation [13,21]. The gas is the continuous phase instead of the solid phase as
considered in the pore models. Grain models also consider convection heat transfer in the surface of
the particle versus heat conduction in the particles [21] and numerical models have been developed to
model conversion and reaction rates [36,37]. The changing grain size (CGS) model considers the system
composed by a set of particles as non-porous spherical grains of uniform initial radius which change
as the reaction progresses [83]. This model considers the grain size distribution and the overlapping
effect of grains.

The overlapping grain model (OGM) also takes into account the structural changes in the particles.
The kinetic control region is described by:

dX

dt(1−X(t))2/3
= 3k (50)

where k is the grain model reaction rate (min−1), which is assumed to be constant over the kinetic
control region [59] and X(t) is the conversion. In integral form, the reaction rate can be expressed as:[

1− (1−X(t))1/3
]
= kt (51)

8.4. Nucleation Model (Rate Equation Theory)

A rate equation was derived by Li et al. to replace the assumption of a critical product layer [80].
In this model, nucleation and growth describes the kinetic behavior of the reaction which display
a sigmoidal relationship for conversion versus time [80]. Nucleation involves the development of
product “islands”, which is generally not discussed in other carbonation models [13]. The kinetic and
diffusion control regions are described as follows:

Fn = kn(Cb −Ce)Nmolecular (52)

Di = D0i exp
(
−

Ei
RT

)
(53)

where Fn is the chemical reaction rate for nucleation (mol m3 s−1), kn is the chemical reaction rate
constant for nucleation (m3 s−1), Nmolecular is Avagadro’s number, Di (m2 s−1) is the diffusion constant
at temperature T and D0i (m2 s−1) is the initial diffusion constant.

8.5. Apparent Model

The simplest form of model for a solid-gas reaction is the apparent model. This model employs
a simple rate expression which may include the maximum carbonation conversion, the reaction
rate constant and the average CO2 concentration (the difference between the bulk and equilibrium
concentrations) [80].

Apparent models provide a simple description of reaction kinetics using a semi-empirical approach
and avoiding the need for morphological measurements. A simple model equation to describe the
apparent kinetics of CaO-carbonation was provided by Lee [57]:

X(t) = Xu

[
1− exp

(
−

k
Xu

t
)]

(54)

X(t) =
Xut

(Xu/k) + t
(55)

where Xu is the ultimate conversion of CaO to CaCO3 and k is the reaction rate (min−1).
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9. Calcination of Carbonate Looping Systems

The calcination of carbonate looping systems has been carried out using a variety of model-fitting
and model-free methods. The vast majority of experiments are carried out for the calcination of
CaCO3 (one of the most well-studied solid-gas reactions [60]), although other metal carbonates
have also been studied. To obtain the experimental data needed to perform a kinetic analysis, TGA
experiments are conducted under an atmosphere of either N2, air, Ar, CO2 or a mixture of N2 and CO2.
Experiments which have been carried out using alternative methods to TGA, including the use of
differential reactors [89] and single crystal studies using an electrobalance [90] are outside the scope of
this review. Table 2 shows the result of calcination experiments, including experimental conditions
(atmosphere and temperature range), method of kinetic analysis, the kinetic parameters obtained and
the suggested mechanism.

Several major rate-limiting mechanisms have been identified, although a consensus has not been
reached on which are most important. Table 2 gathers possible reaction mechanisms for the processes
of calcination and carbonation, including [80]:

• Heat transfer (thermal transport) through the particle to the reaction interface
• External mass transfer through the particle
• Mass transport of the CO2 desorbed from the reaction surface through the porous system

(Internal mass transfer or CO2 diffusion inside the pore)
• CO2 diffusion through the product layer
• Chemical reaction
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Table 2. Classification of kinetic models for reaction mechanisms. NS = not specified. For Coats-Redfern (CR)/Agarwal and Sivasubramanium (A&S) methods, kinetic
parameters are average values from all heating rate experiments.

Material & Ref. Atmosphere Initial Sample Size (mg)
Particle Sizes

Decomposition
Range (◦C) Method Ea (kJ mol−1) A (s−1)

Reaction Order or
Model

CaCO3
[61] N2 NS NS CR 180.1212 1.18 × 107 R2

CaCO3
[69] NS NS ~640–900 CR 187.1 NS R3

CaCO3
[66] N2 NS 400–960 CR 190.46 3.4 × 107 F1

CaCO3
[51] N2 NS 400–960 A&S 224.46 3 × 104 D2

CaCO3
[46] N2 17 ~550–800 Friedman 171–147

Average: 164 2.5 × 105–2.9 × 105 NS

CaCO3
[91] Air NS ~600–810 FWO & model-fitting

(method NS)

FWO:
205 (for α < 0.2)
176 (for α > 0.2)
Model-fitting:

D1: 203
F1: 180

D1: 8.02 × 107

F1: 3.98 × 107
α < 0.2 D1
α > 0.2 F1

CaCO3
[92]

N2/CO2 mixture
(5–90% CO2) NS 830–900

isothermal

Data fitting of α vs t
curves from XRD
CaCO3/CaO wt%

150 NS B1/A2–A4

CaCO3
(pellets)

[93]
Air/ CO2 (0–100% CO2)

455
Particle diameters

<56 µm
790–850

General rate equation:
r0ρ0f = kt

where f = fractional
thickness of reacted

material

169.9 NS

R3
Double interface
decomposition

mechanism

L (type A and B)
[28] Air/ CO2 (0–10% CO2) NS

Particle diameters < 300 µm 820–910 RPM

A (CaCO3 ε = 0.044):
112.4

B (CaCO3 ε = 0.02):
91.7

NS Chemical reaction

L
[94]

0.4–1.3
Mean particle diameters:

7.5, 57 & 90 µm
780 isothermal Modified RPM NS NS Chemical reaction and

mass transport

CaCO3
(spheres)

[95]
N2/CO2 (0–21% CO2

NSParticle diameters:
2,5 & 7mm

700, 800, 900
isothermal SCM 152.5–163.7 179–529 kg m−1 s−1 Chemical reaction

(assumed first order)

ML, SAD & BL
[83] N2/CO2 (0–80% CO2)

2
Particle diameters:

50–75 µm

775–960
isothermal

CGSM for ML & SAD
SCM for BL

ML: 131
SAD: 114
BL: 166

NS Chemical reaction and
mass transport
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Table 2. Cont.

Material & Ref. Atmosphere Initial Sample Size (mg)
Particle Sizes

Decomposition
Range (◦C) Method Ea (kJ mol−1) A (s−1)

Reaction Order or
Model

CaCO3
4 types of L

[62]
CO2 5 700isothermal Modified Mampel

model NS NS Nucleation & growth

CL
PL

(spheres)
[96]

N2

0.1–0.5 g (Fluidized bed
experiments)

Particle diameters:
CL: 1.4–1.7 mm

PL: 0.7–0.81 & 1.4–1.7 mm

750, 850, 875, 900
isothermal

Pore
model/experimentally
determined function

CL: 175
PL: 186 NS

CL: Chemical reaction
PL:

<825◦C: Chemical
reaction
>825 ◦C:

Mass transport

CaCO3
[97]

Air/CO2 (pp. CO2
1.3–20 kPa) 25 ~700–900 Model fitting 187 4.43 × 107 Assumed R3

CaCO3
[98] CO2 4 906

isothermal CR 2104.6 1090 n = 2

CaCO3
[52] CO2 16 ~700–977 CR 1037.6 3.98 × 1040 n = 2/3

R3

CaCO3
[46] CO2 17 ~900–980 Friedman

530–171
Average:

307
6.63 × 1032–6.2 × 102 NS

D
[11] N2 NS ~687–840 CR 123.684 5.53 × 105 n = 0.15

SrCO3
[66] N2 NS 810–1000 CR 238.32 7.3 × 107 F1

SrCO3
[51] N2 NS 810–1000 A&S 238.32 5.9 × 104 D4

SrCO3
[99] Ar 10 727–1077 Non-mechanistic

integral approx. 210 2.17 × 106 n = 0.42

SrCO3
[100] Air 30 875–1250 Kissinger α-phase: 255

β-phase: 227
α: 15.8 × 107

β: 8.4 × 107

α: R3
β: chemical reaction,

n = 1/3

BaCO3
[66] N2 NS 930–1155 CR 292.98 1.4 × 108 F1

BaCO3
[51] N2 NS 930–1155 A&S 292.98 1.4 × 105 D2

MgCO3
[66] N2 NS 510–750 CR 140.16 2.0 × 106 F1

MgCO3
[51] N2 NS 510–750 A&S 181.16 2.1 × 103 D2

Acronyms: ML: Mequinenza limestone; SAD: Sierra de Arcos dolomite; BL: Blanca limestone; L: Limestone; D: Dolomite; CL: Compostilla limestone; PL: Purbeck limestone; SCM: Shrinking
core model; CGSM: Changing grain size model; α-phase: orthorhombic phase of SrCO3; β-phase: hexagonal phase of SrCO3.
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Comparison of Calcination Kinetic Analysis

Although the calcination of CaCO3 has been extensively studied, a consensus on the reaction
mechanism has not been established. The intrinsic chemical reaction is considered to be the rate-limiting
step by most authors (see Table 2). However, another work considered the initial diffusion of CO2

as a rate-limiting step [91] and some studies indicate that mass transport is significant [83,94,96].
Experiments conducted in CO2 show that decomposition of CaCO3 occurs more rapidly in an
atmosphere with the highest thermal conductivity, which implies that the mechanism of decomposition
is thermal transport [98]. This is because thermal transport is more effective at higher temperatures
due to the T4 dependence involved in the radiation effects. However, in more recent studies, most
authors do not consider heat transfer to be the rate-limiting step [83].

Most analyses employed integral approximation model-fitting methods (CR or A&S; see Section 4.1)
to obtain kinetic parameters. Using the CR approximation, calcination of commercial or synthetic
CaCO3 or natural limestone generally produced Ea values ranging from 180–190 kJ mol−1 (see Table 1).
Using the A&S approximation resulted in a slightly higher Ea of 224.5 kJ mol−1 [51]. The suggested
reaction mechanisms were predominantly R2/R3, although F1 [66] and D2 [51] were also suggested.

Another integral approximation, although model-free (FWO; see Section 5.2), was used by
Rodriguez-Navarro et al. [91] and compared with an unspecified model-fitting method. Both methods
suggested that the reaction was initially governed by D1 (Ea ~204 kJ mol−1), before transitioning to a
F1 mechanism (Ea ~178 kJ mol−1). The transition in rate-changing mechanism is postulated to be due
to the formation of macropores through which CO2 can easily escape, which reduces resistance against
CO2 diffusion.

An alternative method was used by Valverde et al. [74]. The extent of conversion of the calcination
reaction was evaluated by calculating the time evolution of the CaCO3/CaO weight fraction from the
XRD analysis. The best-fitting reaction mechanism was found to be the Prout-Tompkins rate equation
(B1) or Avrami equations (A2–A4). The authors suggest that this is due to the existence of an induction
period and that the chemical reaction originates in structural defects, and a slightly lower activation
energy of 150 kJ mol−1 was obtained. Ingraham et al. studied die-prepared pellets of CaCO3 and
used a general rate equation which depended on the fractional thickness of the reacted product (see
Table 2) [93]. The authors suggested that the reaction could follow a geometric contraction model (R3)
or potentially a double interface decomposition mechanism.

García-Labiano et al. used morphological methods based on microscopy observations to examine
two types of limestone and one type of dolomite [83]. The calcination of one limestone was modelled
using a CGS model (see Section 8.3), while the other used a SCM (Section 8.1). Chemical reaction and
mass transport in the particle system were the main rate-limiting factors in this study, and values of
Ea were significantly lower than those obtained by the integral approximations (114–166 kJ mol−1).
Lee et al. also used a SCM to determine the kinetic parameters of limestone particles with three
different particle sizes, assuming first-order chemical reaction control [95]. Other studies which used
morphological methods include those of Bouineau et al., which used a modified Mampel method [62]
(see Section 4) and Martínez et al., which used the RPM to determine the kinetic parameters of two
different types of natural limestone [28]. Khinast et al. used a modified RPM and examined the effects
of experimental conditions on calcination reaction rates and mechanisms [94].

A novel approach was taken by Dai et al. to model the calcination of limestone, which had
previously undergone CaL [96]. It used a pore model to describe intraparticle mass transfer of CO2

through the pores of limestone coupled with an experimentally-determined function to describe pore
evolution as a function of conversion from CaCO3 to CaO. This model produced excellent agreement
with experimental results [96].

The model-fitting study by Criado et al. studied the effects of increasing concentrations of CO2

on the kinetic parameters on the kinetic parameters [97]. With increasing CO2 partial pressure, the
calcination reaction shifts to higher temperatures and reaction rates decrease. However, sharper DTG
peaks mean that the kinetic parameters can be overestimated if a pressure correction is not applied [97].
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Applying a pressure correction (see Section 3), an average Ea of 187 kJ mol−1 was obtained, similar
to the studies under inert atmospheres. However, CO2 partial pressures higher than 20 kPa were
not studied.

A study by Fedunik-Hofman et al. used the Friedman isoconversional method to obtain a range
of Ea [46] under two different atmospheres, N2 and CO2. Under N2, an average activation energy of
164 kJ mol−1 was obtained (see Figure 12), similar to other analysis methods and much closer to the
enthalpy of reaction of the calcination reaction (~169 kJ mol−1 [46]). Activation energies were much
higher under CO2, despite the application of pressure correction and a much larger variation in Ea

(see Figure 12) was calculated over the course of the reaction (170–530 kJ mol−1), which was attributed
to the major morphological changes in the material under CO2 [46].

Energies 2019, 12, x FOR PEER REVIEW 
 22 of 36 

[97]. Applying a pressure correction (see Section 3), an average Ea of 187 kJ mol−1 was obtained, similar 
to the studies under inert atmospheres. However, CO2 partial pressures higher than 20 kPa were not 
studied. 

A study by Fedunik-Hofman et al. used the Friedman isoconversional method to obtain a range 
of Ea [46] under two different atmospheres, N2 and CO2. Under N2, an average activation energy of 
164 kJ mol−1 was obtained (see Figure 11), similar to other analysis methods and much closer to the 
enthalpy of reaction of the calcination reaction (~169 kJ mol−1 [46]). Activation energies were much 
higher under CO2, despite the application of pressure correction and a much larger variation in Ea 

(see Figure 11) was calculated over the course of the reaction (170–530 kJ mol−1), which was attributed 
to the major morphological changes in the material under CO2 [46].  

  
(a) (b) 

Figure 11. Isoconversional values of Eα for CaCO3 calcination: (a) under N2; (b) under CO2. [46]. 

In other studies carried out under 100% CO2, (which use the CR approximation), activation 
energies can reach up to 2000 kJ mol−1. Caldwell et al. attribute this to the fact that the temperature 
range of decomposition becomes higher and narrower as the percentage of CO2 increases, resulting 
in a higher apparent activation energy [98]. They also suggest a possible change in reaction 
mechanism [98], although this is disputed by Criado et al. [97]. Additionally, no pressure correction 
appears to have been applied, so the activation energies may be overestimated. In another study 
carried out under 100% CO2 by Gallagher and Johnson, Ea values were seen to increase as the heating 
rate and sample size decreased, supporting the theory of thermal transport controlled decomposition, 
although it is difficult to distinguish between the effects of thermal transport and mass transport [52].  

For other alkaline earth metal carbonates, Ea was found to be proportional to molecular mass by 
Maitra et al., who utilized a different model-fitting approximation (A&S, see Section 4.1) [51]. 
Decomposition of all four carbonates (Ca, Sr, Ba and Mg) was observed to follow diffusion-controlled 
mechanisms, but the order of the diffusion varied among the carbonates (D2 and D4). On the 
microstructural scale, the migration rate of the strontium and barium oxides formed away from the 
reactant-product interface was relatively slow due to their higher molecular masses [51].  

Activation energies ranging from 210–255 kJ mol−1 were obtained for the decomposition of SrCO3 

[99, 100], and there is no consensus for the reaction mechanism. The decomposition incorporates a 
phase transformation from α-SrCO3 (orthorhombic) to β-SrCO3 (hexagonal), which occurs between 
900 and 1000 °C [100]. This decreases the activation energy and changes the mechanism of the process 
in the study by Ptáček et al. [100], although another study does not report a change in reaction 
mechanism [99].  

Kinetic parameters vary depending not only on the experimental atmosphere, but also on the 
different types of CaCO3 used. For example, the different types of limestone studied by Bouineau et 
al. exhibited different reaction rates, which was attributed to the different impurities present in each 
sample [62]. The differing porosities of the two types of limestone in the study of Martínez et al. [28] 
may also have influenced the activation energies. The disparity in results suggests that sample 
morphology plays an important role in determining decomposition kinetics.  

Figure 12. Isoconversional values of Eα for CaCO3 calcination: (a) under N2; (b) under CO2 [46].

In other studies carried out under 100% CO2, (which use the CR approximation), activation
energies can reach up to 2000 kJ mol−1. Caldwell et al. attribute this to the fact that the temperature
range of decomposition becomes higher and narrower as the percentage of CO2 increases, resulting in a
higher apparent activation energy [98]. They also suggest a possible change in reaction mechanism [98],
although this is disputed by Criado et al. [97]. Additionally, no pressure correction appears to have
been applied, so the activation energies may be overestimated. In another study carried out under
100% CO2 by Gallagher and Johnson, Ea values were seen to increase as the heating rate and sample
size decreased, supporting the theory of thermal transport controlled decomposition, although it is
difficult to distinguish between the effects of thermal transport and mass transport [52].

For other alkaline earth metal carbonates, Ea was found to be proportional to molecular mass
by Maitra et al., who utilized a different model-fitting approximation (A&S, see Section 4.1) [51].
Decomposition of all four carbonates (Ca, Sr, Ba and Mg) was observed to follow diffusion-controlled
mechanisms, but the order of the diffusion varied among the carbonates (D2 and D4). On the
microstructural scale, the migration rate of the strontium and barium oxides formed away from the
reactant-product interface was relatively slow due to their higher molecular masses [51].

Activation energies ranging from 210–255 kJ mol−1 were obtained for the decomposition of
SrCO3 [99,100], and there is no consensus for the reaction mechanism. The decomposition incorporates
a phase transformation from α-SrCO3 (orthorhombic) to β-SrCO3 (hexagonal), which occurs between
900 and 1000 ◦C [100]. This decreases the activation energy and changes the mechanism of the process
in the study by Ptáček et al. [100], although another study does not report a change in reaction
mechanism [99].

Kinetic parameters vary depending not only on the experimental atmosphere, but also on the
different types of CaCO3 used. For example, the different types of limestone studied by Bouineau et
al. exhibited different reaction rates, which was attributed to the different impurities present in each
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sample [62]. The differing porosities of the two types of limestone in the study of Martínez et al. [28]
may also have influenced the activation energies. The disparity in results suggests that sample
morphology plays an important role in determining decomposition kinetics.

Sample and particle sizes can also influence the reaction mechanism, as well as CO2 partial
pressure. In a decomposition mechanism where the reaction advances inwards from the outside of the
particle, smaller particles will decompose more quickly. Larger particles with a prolonged calcination
time will begin to sinter, leading to decreased porosity, increased CO2 diffusional resistance and lower
active surface areas [95]. It has been suggested that the slower calcination reaction rates at higher
CO2 partial pressures mean that the reaction mainly depends on available active surface area, so
chemical reaction control is dominant. At lower CO2 partial pressures, particle diffusion becomes more
dominant. This would increase the influence of the sample size (interparticle transport) and individual
particle sizes (intraparticle transport), meaning that the reaction could be mass transport controlled [94].
However, Martínez et al. found that particle size did not influence calcination rates, suggesting that
internal mass transfer was negligible at the specified sizes (~60 µm) [28]. Dai et al. used larger particles
(~0.8 mm diameters) and were able to conclude from the obtained kinetic parameters that the particles
were not severely affected by intraparticle mass transfer for one form of limestone, although tests with
another limestone with larger diameters (~1.7 mm) indicated mass transfer limitations on the reaction
rate (see Table 2) [96].

Additionally, some of the studies suggest that there is a correlation between the method of kinetic
analysis (type of approximation used) and the reaction mechanism obtained. For instance, all analyses
performed by Maitra et al. using the CR integral approximation suggest that the reaction mechanism
is F1 [66], while when the A&S approximation is used the suggested reaction mechanism is D2 or
D4 [51], even for different alkaline earth metal carbonates.

10. Carbonation of CaO-Based Systems

Carbonation kinetics are typically evaluated by carrying out several experiments at different
isothermal temperatures and/or under different CO2 partial pressures. Arrhenius plots are then
produced using data points from different experimental conditions, and the kinetic parameters thus
evaluated. Expressions can also be developed for the kinetic and diffusion rate constants using the
models described in Section 8.

A summary of experimental conditions, Ea and reactions rates/constants are summarized for the
CaO-based materials in Table 3. As kinetic and diffusion rate constants are a function of temperature,
values are average rate constants over the carbonation isotherms are given or provided at specified
temperatures. Alternatively, the order of the reaction is provided. For non-morphological analyses
(Friedman and apparent models), reaction rates (min−1) are provided. The following sub-sections
review the literature based on morphological reaction models and are followed by a comparative
discussion of carbonation modelling of CaO-based materials.
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Table 3. Classification of kinetic models for reaction mechanisms. NS = not specified.

Material & Ref. Atmosphere
Initial Sample Mass

(mg)
Particle Sizes

Carbonation
Temperatures

(◦C)
Method Kinetic Region Ea

(kJ mol−1)

ks, (m4 mol−1 s−1)/ Reaction
Order/Kinetic Reaction Rate

(min−1)

Diffusion Region
Ea

(kJ mol−1)

D (m2 s−1)/Reaction
Order/Diffusion Rate

(min−1)

CaO
[86]

N2/CO2
(0.2–0.4 atm)

1.3
Particle sizes:
81 & 137 µm

500–725 RPM 0 5.95 × 10−10 m4 mol−1 s−1

CO2 < 10%: F1
<961◦C: 89
>961◦C: 180 0.0595 cm4 gmol−1 s−1

IL
KL
[35]

Air/CO2
(0.01–0.1 MPa CO2) 5–20 550–750 RPM

IL:
21.3
KL:
19.2

IL:5.559 × 10−10 m4 mol−1 s−1

KL:
5.293 × 10−10 m4 mol−1 s−1

F1 (pCO2 < 100 kPa)
F0 (pCO2 > 100 kPa)

IL:
163
KL:
163

I: 3.37 × 10−6 m2 s−1

K: 4.32 × 10−6 m2 s−1

L
[101]

CO2 & O2/air mixture
(5–85 kPa CO2) 3 650, 700 & 800 RPM 21.3 3.335 × 10−9 m4 mol−1 s−1 140 3.37 × 10−5 m2 s−1

Com. CaO
[102] N2/CO2 (7–50% v/v CO2) NS 550–700 RPM 46.42 CO2 < 10%: F1

CO2 > 10%: F0 137.7 10−16 cms−1

L
D

[34]

N2/CO2 mixture (25–80%
v/v CO2)

2.9
Particle size:

38–45 µm
550–850 Pore model - - L: 215

D: 187
F1 (pCO2 < 10kPa)
F0 (pCO2 > 10kPa)

CaO/MY
[21]

N2/CO, (0.005–0.015 MPa
CO2)

10Particle size:
50–75 µm 500–700 RPM 28.4 5.44 × 10−6 m s−1 88.7 1.03 × 10−14 m2 s−1

CaO/CA
[87]

N2/CO2
(25%v/v CO2) 25 550–650 Simplified

RPM - - 96.01 NS

L
[16] N2/CO2 (0.002–0.01 MPa) 15 NS Homogeneous

particle model NS 3.2–8.9 × 10−10 m4 mol−1 s−1 - -

CaO
[80] N2/CO2, (14%v/v CO2)

8–10
Particle size:

20 µm
515–743

Rate
(nucleation)

model
NS 1.33 × 10−5 m3 s−1 (515 ◦C) - -

CaO
[103] He/ CO2, (2–30 kPa CO2) 10 650

Surface nucleation
& isotropic growth

model

Temperature
coefficient: 23.15 5.9 × 10−5 m3 s−1 - -

CaO
[79] N2/CO2 (1–11.7 atm)

3
Particle size:

15–20 µm
550–1100 Grain model - - 238 6.5 × 10−5 m2 s−1 (1000 ◦C)

L
D

[59]

N2/CO2 mixture (25–80%
v/v CO2)

2.9
Particle size:

38–45 µm
550–850

Grain model
(intrinsic rate

constants)

L: 29
D: 24

F1 (pCO2 < 10 kPa)
F0 (pCO2 > 10 kPa) - -

CaO/MY
[21]

N2/CO, (0.005–0.015 MPa
CO2)

10
Particle size:

50–75 µm
500–700 OGM 32.3 1.67 × 10−5 m/s 113.1 2.74 × 10−13 m2 s−1

CaO
[57]

Data from [86] & [104]

N2/CO2
(0.2–0.4 atm)

1.3
5–20 500–725 Apparent model

[86] 72
A (s−1): 1.03 × 104

[104] 72
A (s−1): 1.16 × 104

0.858 min−1

(650◦C)

[86] 102.5
A (s−1): 2.33 × 105[104]

189.3
A (s−1): 1.57 × 1010

0.375 min−1

(650 ◦C)

CaO
[46] CO2 17 ~890–720

(850 isotherm) Friedman
573–414
Average:

350
1 × 10−2 min−1 1237 4 × 10−3 min−1

CaO
[46] N2/CO2 (25 %v/v CO2) 17 ~775–500

(650 isotherm) Friedman
262–149
Average:

205
8 × 10−3 min−1 269 2 × 10−3 min−1

Acronyms: Com.: Commercial; ks (kinetic control reaction rate constant); D (product layer diffusion constant); L: Limestone; D: Dolomite IL: Imeco limestone; KL: Katowice limestone;
MY: Mayenite; CA: Calcium Aluminate.
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10.1. Pore Models, Homogeneous Particle Models and Rate Equation Theory

Bhatia and Perlmutter studied the effects of the product layer on carbonation kinetics and examined
a range of experimental conditions, including temperature, gas composition and particle size [86]. The
initial rapid chemical reaction was found to follow F1 at low CO2 partial pressures (pCO2 < 10%) and
the Ea was established to be 0 kJ mol−1. Grasa et al. applied the RPM (see Section 8.2) to estimate
the kinetic parameters for two types of limestone [35]. Ea values of approximately 20 kJ mol−1 were
obtained and the reaction was found to be F1 up to pCO2 = 100 kPa. Ea of the diffusion region was
approximately 160 kJ mol−1 for both materials. A further study obtained the kinetic parameters under
recarbonation conditions [101]. A simplified RPM was used by Nouri et al. to model carbonation of
limestone [102], which showed a similar relationship between reaction order and pCO2 to Bhatia and
Perlmutter [86], although Ea in the kinetic control region was larger(~47 kJ mol−1). Values of Ea in the
diffusion region were calculated to be ~140 kJ mol−1 [102].

Sun et al. proposed a new pore model to describe the entire carbonation period, tracing the pore
evolution along with the reaction [34]. For both limestone and dolomite samples (see Table 3), intrinsic
kinetic data from a previous study [59] were utilized. In this case, F0 was identified at pCO2 greater
than 10 kPa.

Zhou et al. studied the kinetics of a synthetic CaO-based sorbent supported with 15 wt% mayenite
(Ca12Al14O33) using the RPM and the results were compared with those obtained using the OGM [21].
For the RPM model, the conversion was also divided into the two typical regions: kinetic and diffusion
control. Ea in the kinetic control region was similar to that of limestone (~28 kJ mol−1), but was much
lower in the diffusion region (89 kJ mol−1). The model was used to simulate the extent of carbonation
conversion/CO2 uptake, and showed a good fit with experimental data. Compared to the limestone
analyzed in the other studies, values of ks were seen to be approximately one order of magnitude
smaller. Values of D were significantly smaller compared to the limestone in other studies [35,101] (see
Table 3). Jiang et al. used a simplified RPM to evaluate the kinetics of a calcium aluminate-supported
CaO-based synthetic sorbent, and the diffusion region was also found to be lower than those of
limestone/CaO [87].

Grasa et al. used a more basic model based on the homogeneous particle model to values of ks

with cycling, which was also a function of specific surface area [16]. The values determined for ks were
very similar to those calculated using the RPM by Bhatia and Perlmutter [86].

A nucleation model based on rate equation theory was used by Li et al. [80] to determine kinetic
parameters, but the different underlying assumptions mean it cannot be directly compared with models
such as RPM and particle models. Rouchon et al. developed a surface nucleation and isotropic growth
kinetic model to determine the effects of temperature and CO2 partial pressure on the kinetic control
region, which they described using several reaction steps [103]. They obtained a temperature coefficient
which was a sum of the intrinsic activation energy and the enthalpies of reaction of two steps: CO2

adsorption on the CaCO3 surface and the external interface reaction with the creation of an interstitial
CO2 group in the CaCO3 phase [103].

The effects of other gases on carbonation kinetics has also been examined (results are not included
in Table 3). Nikulshina et al. tested the effects of water vapor on the kinetics of CaO carbonation
as part of a thermochemical cycle to capture CO2 using CST [105]. Carbonation reaction kinetics
were fitted using an unreacted shrinking core model which encompassed both the intrinsic chemical
reaction followed by intra-particle diffusion. Kinetic parameters were determined with and without
the presence of water vapor. No Arrhenius-based dependency was obtained for the diffusion region
and hence kinetic parameters were not determined. Water vapor was found to enhance the carbonation
of CaO, which results in a reaction rate which is 22 times faster than the dry carbonation of CaO [105].
Water vapor was also shown to enhance the carbonation rate in studies of mesoporous MgO [106].

Symonds et al. examined the effects of syngas on the carbonation kinetics of CaO in the kinetic
control region by applying a grain model [107]. The presence of CO and H2 were found to increase the
reaction rate by 70.6%, which was attributed to the CaO surface sites catalysing the water-gas shift
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reaction and increasing the local CO2 concentration. Activation energies also increased from 29.7 to
60.3 kJ mol−1, which was postulated to be due to the formation of intermediate compounds [107].

10.2. Grain Models

Mess et al. studied product layer diffusion during the carbonation reaction, using microscopy to
confirm the formation of a nearly homogeneous product layer [79]. The carbonation rate was described
by a model where CO2 pressure-independent grain boundary diffusion and diffusion through the
carbonate crystals act in parallel. An Ea of 238 kJ mol−1 was established for the diffusion region.

Sun et al. used a grain model to develop an intrinsic kinetic model for both limestone and dolomite
sorbents with the aim of determining the Ea of the kinetic control region [59]. They argued that the
zero activation energy proposed by Bhatia and Perlmutter [86] was unlikely. Values of Ea between
24–29 kJ mol−1 were established. The reaction order was found to be dependent on the CO2 partial
pressure, and a shift in reaction order (from F1 to F0) was observed in the experimental results when the
difference between total CO2 pressure and at equilibrium exceeded 10 kPa. The authors also calculated
a kinetic control Ea of 41.5 kJ mol−1 using the equilibrium constant proposed by Baker et al. [108].
However, they suggest that the higher value is due to the assumption of chemical equilibrium at the
initial point of carbonation being invalid [59]. Zhou et al. used an OGM (see Section 8.3) to study a
synthetic CaO-based sorbent supported with 15 wt% mayenite and compared the results with the
RPM [21] (see Section 10.1). For the OGM model, both the kinetic and diffusion control region were
considered as a whole using an adaptation of the method of Szekely and Evans [88]. Both the RPM and
OGM modelled the carbonation of the sorbent accurately. An Ea of ~32 kJ mol−1 was calculated in the
kinetic control region, similar to that of limestone/CaO. In the diffusion control region, a lower value of
~113 kJ mol−1 was calculated [21]. Values of ks and D were approximately one order of magnitude
higher when calculated with the OGM.

Modelling extent of conversion is also a focal point of carbonation kinetics, specifically for carbon
capture applications. Butler et al. used a modified grain model for CO2 adsorption modelling through
pressure swing cycling [109]. They found that extent of conversion in the kinetic control region to be
influenced by CO2 pressure, while reaction rates in the diffusion region were independent of pressure
and temperature [109]. Yu et al. also modelled extent of conversion using an adapted CGS model
for the carbonation of a synthetic CaO-based sorbent supported by a framework of 25% MgO [110].
Conversion was found to be dependent on reaction temperature and morphology, and heat transfer
due to convection in the particles was significant [110]. Liu et al. investigated the kinetics of CO2

uptake by a synthetic CaO-based sorbent supported with mayenite using an OGM, which was found
to be accurately account for changes in rate and extent of reaction [111]. As these studies used kinetic
parameters from previous literature studies, they are not included in Table 3.

10.3. Apparent and Isoconversional Models

Lee used an apparent (semi-empirical) model for carbonation using literature-reported data [86,104]
for CaO carbonation conversion [57]. A kinetic analysis was carried out for both the kinetic control
and diffusion regions. The carbonation conversion was found to be dependent on k, indicating that k
can be regarding as the intrinsic chemical reaction rate constant [57] as well as the reaction constant in
the diffusion region, although the different units mean that it cannot be directly compared with ks for
pore models and grain models. Ea values in the kinetic control region were somewhat larger than the
results in the literature (~72 kJ mol−1). This was attributed to intra-particle diffusion limitations due to
the relatively low temperatures of carbonation and hence low carbonation conversion [57]. Diffusion
Ea of one of the limestones (using [86]) was found to be lower than average (~100 kJ mol−1), while
the other had a more typical value of Ea (~190 kJ mol−1). It was postulated that this was due to the
microporous material’s susceptibility to pore plugging, which would limit diffusion [104].

Fedunik-Hofman et al. used an isoconversional (Friedman) method to determine kinetic
parameters and reaction rates over the course of the carbonation reaction under two different
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experimental atmospheres (see Table 3 and Figure 13) [46]. The gradient of the curve of Eα vs α
suggests that the reaction is initially controlled by surface chemical reaction kinetics, before becoming
diffusion controlled [44]. Under 100% CO2, the Ea ranged from 573–414 kJ mol−1 in the kinetic control
region, while a peak activation energy of 1237 kJ mol−1 was obtained for the diffusion region. Under
an atmosphere of 25% v/v CO2, Ea values between 262–149 kJ mol−1 were calculated for the kinetic
control region. Ea reaches a maximum of 269 kJ mol−1 around the transition to diffusion control. These
values are much higher than typical. An overestimation of the Ea could be the result of the incomplete
conversion of the carbonation reaction, as a significant percentage of the material is unutilized CaO
which does not participate in the carbonation reaction [46]. As for calcination in N2, the Ea is found
to be closer to the enthalpy of reaction (see Section 8). This suggests that higher pCO2 displace the
apparent Ea from the enthalpy of reaction due to greater morphological variation [46]. Reaction rates
were 1–3 orders of magnitude smaller than those of Lee et al. [57], indicating slower reaction kinetics.Energies 2019, 12, x FOR PEER REVIEW 28 of 36 
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10.4. Comparison of Carbonation Kinetic Analysis

In the kinetic control region, Ea has been reported to be independent of material properties, while
morphological effects have a greater influence in the diffusion control region, leading to a greater
disparity in diffusion activation energies [13]. For the kinetic control region, activation energies of
~20 [35] –29 kJ mol−1 [59] were obtained using the morphological models for natural limestone, while
for commercial CaO a larger value of 46 kJ mol−1 [102] is obtained. Synthetic sorbents supported with
calcium aluminate mostly indicate Ea of ~30 kJ mol−1 [21,59]. This indicates that material properties in
fact exhibit an effect on values of Ea in the kinetic control region.

The studies which show significantly greater Ea values used apparent and isoconversional
methods [57]. This can be attributed to an overestimation of Ea due to morphological variations in the
material. In particular, a 100% CO2 atmosphere accelerates the sintering of particles [15], which could
exacerbate the morphological changes in the study by Fedunik-Hofman et al. [46]. It is also possible
that the rapid nature of the kinetic control region is not accurately modelled by these methods due to
data fitting limitations. The rapid reaction leads to consistently high values of dα/dT over the short
reaction. For the Friedman method, this results in a high gradient in graphs of ln(β dα/dT) versus T,
and hence higher Ea values [46].

Lower Ea values are generally determined for dolomite, which is attributed to structural differences
in the materials. MgO in dolomite could act as an impurity and reduce strain energy between grains
and in this way reduce effective activation energy [59]. For synthetic CaO/calcium aluminate lower
values of ~90 [21] to 113 kJ mol−1 [21] are reported. A possible explanation for the lowered Ea in the
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supported materials is that the introduction of the calcium aluminate introduces defects through which
the diffusing species can travelling, reducing effective Ea.

There is some disagreement regarding the reaction order for the kinetic control region. Some
studies find the reaction to be F1 up to a pCO2 of 10 kPa [59,86,102]. However, Grasa et al. report
that the carbonation reaction is F1 up to 100 kPa, before transitioning to F0 at higher CO2 partial
pressures [35]

For diffusion, Ea values range between ~100 [57] and ~270 kJ mol−1 [57] for CaO and natural
limestones. Not only is there a disparity in Ea, there is also a lack of consensus on the diffusion
mechanism (gas or solid state diffusion), as well as the diffusing species (CO2 gas molecules, CO3

2−

ions or O2− ions) [60]. It is also suggested that the diffusion mechanism may change depending on
whether the sample is porous or non-porous. If the sample material is porous CaO, the kinetic analysis
tends to produce higher values of Ea and the suggested mechanism is CO2 gas diffusing through the
CaCO3 product layer [60], while when the sample is non-porous CaO, this suggests that the reaction is
governed by the diffusion of CO2 on grain boundaries [60]. The mechanism may also change with
temperature. At low temperatures (< 515 ◦C), Bhatia and Perlmutter conclude that the diffusion process
cannot be governed by the diffusion of the CO2 gas molecules, but instead by solid-state diffusion of
the CO3

2− anion [86].
The effect of different experimental conditions on the kinetic parameters should also be considered.

Sample mass has been found to have an influence on experimental TGA curves and hence on kinetic
parameters due to heat and mass transfer effects [112,113]. Initial sample sizes less than 10 mg have
therefore been recommended by Koga et al. for decomposition of CaCO3 using TGA [114]. However,
undesired effects due to diffusion resistance through the CaCO3 samples became apparent only
using initial samples masses ~40 mg [114]. Hence, the studies in Table 3 using initial sample sizes
<25 mg should not be discounted. Particle sizes will also be influential due to mass transport effects
(see Section 9). It has been suggested that if particle size is sufficiently small, the carbonation reaction
will theoretically be completed within the chemical reaction control region and no diffusion region
will take place [115], which has not been observed in these literature experiments. Several studies
reported that varying particle sizes within the ranges specified did not appreciably affect reaction
kinetics [21,86] and Sun et al. found that limiting particle sizes to smaller than 53–63 µm eliminated
the effects of intraparticle mass transfer [59].

11. Recommendations and Conclusions

Kinetics of solid-gas reactions are reviewed here together with their application to carbonate
looping reactions used in CCS and TCES. The different methods were reviewed, and the following
recommendations can be made:

• Quality of the measured data is critical to obtain reproducible results and lead to similar conclusions.
It is important that TGA analysis is performed carefully for kinetic analysis and experimental
errors should be detailed.

• Different kinetic methods should be performed in parallel and compared against each other.
In particular, it has been found to be very useful to perform model-free methods (e.g., Friedman)
before model-fitting methods (integral approximations or master plots). This combination should
be considered for further studies of solid-gas reactions showing a single step. This recommendation
is supported by the International Confederation for Thermal Analysis and Calorimetry (ICTAC)
Kinetics Committee, which recommends the use of multi-heating rate experiments over single
heating-rate experiments [2].

• If the previous methodology cannot reproduce the experimental results, then a generalized method
should be performed. In addition, the generalized methodology should be considered when the
kinetic analysis is performed on particles instead of powder form samples and where simultaneous
multi-step reactions are applicable, as the previous methods will lead to the wrong conclusions.
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After the kinetics review, a revision of kinetic methods applied for carbonate looping systems
has been given, comprehensively comparing the different methodologies. For both calcination and
carbonation reactions, disparate results have been observed and the following recommendations can
be made to reduce future inconsistency:

• For calcination reaction studies the disparity in results suggests that sample morphology plays
an important role. Overall, the use of a multiple heating-rate isoconversional methods, such as
Friedman, should be carried out to validate the model-fitting methods. This will allow comparison
of the average values of Ei from model-fitting with isoconversional values of Eα, which could
reveal several reaction steps. The model-free method of determining a reaction mechanism can
then be employed, which could reduce the disparity in reaction mechanisms observed.

• For carbonation reaction studies, generalized models show better representation of the phenomena
shown in the two reaction regions. For the kinetic control region, it is recommended that
morphological methods of kinetic analysis such as pore models and grain models are recommended,
as opposed to apparent or isoconversional methods. For the diffusion region, the kinetic
parameters obtained are seen to vary considerably based on material properties. Therefore,
material characterization such as porosimetry and scanning/transmission electron microscopy is
recommended prior to the kinetic analysis. Nonporous materials evidently will not suit the use of
pore models, while microporous materials may be better suited to the use of an apparent model
rather than pore models.
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Nomenclature

A Pre-exponential factor, min−1

Ai Model-fitting estimate of pre-exponential factor, min−1

A0 Model-free estimate of pre-exponential factor, min−1

C Concentration of diffusing gases, mol m−3

Cb Bulk concentration of diffusing gases, mol m−3

Ce Equilibrium concentration of diffusing gases, mol m−3

D Product layer diffusion constant, m2 s−1

Ea Activation energy, kJ mol−1

Eα Isoconversional activation energy (function of α), kJ mol−1

Ei Model-fitting estimate of activation energy, kJ mol−1

E0 Model-free estimate of activation energy, kJ mol−1

Fn Chemical reaction rate for nucleation, mol m3 s−1

GD Function of the particle symmetry, dimensionless
∆Hr Reaction enthalpy, kJ mol−1

J Diffusion flux, mol m−2 s−1

k(T) or k Reaction rate constant, min−1

kn Chemical reaction rate constant for nucleation, m3 s−1

ks Kinetic reaction rate constant, m4 mol·s−1

L0 Pore length per unit volume (m m−3)
M Molar mass, g mol−1

m0 Initial sample mass, g
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mf Sample mass after reaction completion, g
mt Sample mass at time t, g
Nmolecular Avogadro’s number
P Total pressure, kPa
P0 Equilibrium pressure, kPa
r Particle radius, m
R Universal gas constant, kJ mol−1

·K−1

S Surface area of the reactional zone, m2

Sm Kinetic and morphological parameter, m2 mol−1

S0 Initial specific surface area of the reactional zone, m2 m−3

∆Sr Reaction entropy, kJ mol−1 K−1

t Time, s
T Temperature, K
w Mass fraction of solid contributing to reaction, dimensionless
X(t) Carbonation conversion after t time, dimensionless
Xu Ultimate carbonation conversion, dimensionless
Greek letters
α Exent of conversion, dimensionless
β Heating rate, K min−1

dα/dt Reaction rate, s−1

dξ/dt Absolute speed of reaction, mol s−1

ε0 Initial sorbent porosity, dimensionless
ρ Density, kg m−3

φ

vs
Thermodynamic parameter, mol m−2 s−1Reaction rate for surface reaction, mol m−2 s−1

ψ Structural parameter, dimensionless
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