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Abstract: In this paper, a novel improved Antlion optimization algorithm (IALO) has been proposed
for solving three different IEEE power systems of optimal reactive power dispatch (ORPD) problem.
Such three power systems with a set of constraints in transmission power networks such as voltage
limitation of all buses, limitations of tap of all transformers, maximum power transmission limitation
of all conductors and limitations of all capacitor banks have given a big challenge for global optimal
solution search ability of the proposed method. The proposed IALO method has been developed
by modifying new solution generation technique of standard antlion optimization algorithm (ALO).
By optimizing three single objective functions of systems with 30, 57 and 118 buses, the proposed
method has been demonstrated to be more effective than ALO in terms of the most optimal solution
search ability, solution search speed and search stabilization. In addition, the proposed method has
also been compared to other existing methods and it has obtained better results than approximately
all compared ones. Consequently, the proposed IALO method is deserving of a potential optimization
tool for solving ORPD problem and other optimization problems in power system optimization fields.

Keywords: antlion optimization algorithm; optimal reactive power dispatch; IEEE power systems;
power loss; voltage deviation; voltage stability index

1. Introduction

Optimal reactive power dispatch (ORPD) is an important optimization operation problem in
power system field. ORPD can enable power systems to work stably and economically by setting the
most appropriate parameters for electric components such as tap changer value of transformers, reactive
power generation of capacitors and voltage magnitude of generators. In addition, the ORPD problem
also considers all constraints from these components and other components in a real transmission
power network such as reactive power generation limitation and voltage magnitude of generators at
electric power plants, reactive power generation limitations of capacitors, working voltage of loads
and apparent power limitation of feeders. Compared to optimal power flow (OPF) problem, ORPD
problem considers active power generation of electric power plants as known parameters. Thus, it can
be sated that the ORPD problem is simpler than the OPF problem because it owns a smaller number of
control variables that have to be tuned optimally. However, ORPD problem has played a very highly
important role for the case that active power flow in transmission power network is highly effective
but reactive power flow currently cause negative impact on loads or other components. The ORPD
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problem is very useful for this case. Similar to the OPF problem, the ORPD problem also focuses on
optimization of major objectives like reduction of active power losses on all feeders, minimization of
voltage deviation of load buses and enhancement of voltage stabilization.

Difficulties of setting the most appropriate parameters for electric components have inspired
researchers to propose optimization algorithms as well as constraint handling methods. Between
these methods, optimization algorithms are in charge of determining optimal values for control
variables while constraint handling methods support these optimization methods to deal with
limitations effectively. There were a huge number of optimization algorithms that were applied for the
ORPD problem and resulted in good solutions. These methods are the evolutionary programming
method (EPM) [1], the modified hybrid evolutionary programming method (MHEPM) [2], differential
evolution (DE) [3,4], a combination of iterative method and differential evolutionary method (CIDE) [5],
the improved differential evolutionary method (IDE) [6], the adaptive genetic algorithm (AGA) [7], the
self-adaptive real coded genetic algorithm (SARCGA) [8], the particular genetic algorithm (PGA) [9],
the particle swarm optimization (PSO) with inertia weight factor (WPSO) [10], PSO with an aging
leader and challengers (PSO-ALC) [11], PSO with improved pseudo-gradient search (PSO-IPGS) [12],
and PSO hybridize with imperialist competitive algorithm (PSO-ICA) [13]. In [1], EPM has successfully
dealt with an IEEE 30-bus system for the case of reducing active power losses objective. It has been
demonstrated that EPM was more effective than the Broyden–Fletcher–Goldfard–Shanno method
(BFGS) for ORPD by obtaining smaller total power losses obtained by the method has been less than
that from EPM and BFGS. However, the result from the method was not the best solution because
other methods could continue to reduce the total power losses. MHEPM in [2] was the combination of
the improved evolutionary programming method (IEPM) and the interior point method (IPM). In such
a method, authors have applied the primal dual algorithm to create an initial solution for IEPM. Such
a solution had a better fitness function value than other ones, leading its position nearby the position
of the global optimal solution. By applying the strategy, MHEPM has become more efficient than EPM
and IEPM regarding global search ability and fast convergence. Differential evolution (DE) is also
a population-based optimization method developed in 1997. DE involves three mechanisms, namely
mutation, crossover and selection, in which the mutation mechanism is the most important operator
for creating good solutions. DE has been applied to handle a high number of optimization problems in
the power system field. In [3,4]; the ORPD problem has been solved by conventional DE with different
objectives on different test systems. DE [3] has been executed on standard IEEE 14, 30, 57 and 118-bus
systems by considering the reduction of total active power losses while DE [4] has been tested on only
a standard IEEE 30-bus system with three objectives including active power losses in all transmission
lines, voltage deviations and voltage stability indexes. However, the achieved solution quality was
not good enough for concluding the real performance of the method. Therefore, different improved
versions of DE have been constantly developed for unraveling the shortcomings. In [6], authors have
suggested a new formula for the mutation operation by using two modifications. The first modification
was to use the best solution to replace a randomly selected solution meanwhile the second modification
was to employ a new random mutation factor different from DE in [3,4]. The genetic algorithm (GA) is
a famous optimization technique proposed in 1975 by John Holland. The main structure of GA is the
same as DE but the crossover operator is considered as the most important role for producing good
solutions. GA has suffered from the main shortcoming of easily falling into ineffective search zones
with low quality solutions owing to the use of roulette-wheel selection. For that reason, many variants
of GA have been developed by improving techniques of GA or by combing GA and other methods [7–9].
In [9], particularly the genetic algorithm (PGA), together with a novel constraint handling strategy,
have been combined for finding optimal solutions for the ORPD problem. PGA has been supported by
applying two penalty function approaches and its solution search ability has been tested on IEEE 30,
57, 118 and 300-bus power systems for performance comparisons. In addition to existing GA and DE
variants, PSO is also an effective method by possessing simple structure, easy implementation and
high efficiency. In PSO, each particle in population is represented by velocity and position. In the first
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stage, velocity is updated by using the best solution of the whole population and the best solution
of each current solution. In the second stage, new position is found by using the previous and the
new velocity. PSO has suffered from some disadvantages such as weak search ability in large search
zones and premature convergence to local optimum. To overcome the drawbacks, researchers have
given different solutions to reinforce the low performance of PSO as presented [10–13]. Study [10] has
applied WPSO and Tabu search algorithm (TSA) for IEEE 14-bus system and IEEE 112-bus system
with the objective of minimizing total power losses. WPSO has been considered to be more effective
by finding solutions with lower power losses but there has not been comparison with other methods.
PSO-IPGS [12] was an effective version of PSO by using pseudo-gradient search method to determine
an effective direction. As a result, the method has found good solutions with high quality. By testing
on IEEE 30 and 118-bus system for result comparisons, PSO-IPGS was stated to be more effective and
robust than other PSO methods.

In addition to the implementation of popular methods like DE, PSO and GA for solving the ORPD
problem, other methods have been applied such as seeker optimization algorithm (SOA) [14], harmony
search algorithm (HSA) [15], gravitational search algorithm (GSA) [16], quasi-oppositional teaching
learning based optimization algorithm (QOTLBOA) [17], chaotic krill herd algorithm (CKHA) [18],
antlion optimizer (ALO) [19], multi-objective antlion optimization (MOALO) [20], differential search
algorithm (DSA) [21], integrated strategies of Backtracking search (BSO) [22], whale optimization
algorithm (WOA) [23], Gaussian bare-bones water cycle algorithm (GBWCA) [24], multi-objective
grey wolf optimizer (MOGWA) [25], modified colliding bodies optimization algorithm (MCBOA) [26],
moth-flame optimization method (MFOM) [27], Jaya optimization algorithm (JAYA) [28], social
spider optimization algorithm (SSO) [29], modified social spider optimization algorithm (MSSO) [29],
improved sine cosine algorithm (ISCA) [30], enhanced Jaya optimization technique (EJOT) [31] and
adaptive chaotic symbiotic organisms search (ACSOSM) [32]. These methods were proposed for
determining the perfect control variables in order to optimize objective functions. Among these
algorithms, MSSO [29] is the latest algorithm. In [29], authors have stated that SSO was a powerful
optimization tool by possessing three new solution generations but there were some equations
with low performance in producing solutions. Thus, they have modified some of the equations.
The modifications were mainly carried out in the three generations with the purpose of improving
quality of new solutions, reducing computation steps as well as shortening simulation time. MSSO
has been compared to both SSO and many existing methods by optimizing power losses, voltage
deviation and voltage stability from IEEE 30 and 118-bus systems. Evidences such as lower power loss,
smaller voltage deviation and better voltage stability have been obtained from the results of MSSO as
compared to other methods. However, the method has still owned high number of computation steps
in its structure.

In this paper, a novel method, called improved Antlion optimization algorithm (IALO), is applied
for resolving optimal reactive power dispatch (ORPD) problem taking into consideration three different
objective functions of different IEEE power systems. IALO is established by improving the structure of
Antlion optimizer (ALO). ALO, a member of meta-heuristic algorithm family, has been inspired from
a food finding activity of antlions in nature [33]. ALO was first developed by Mirjalili and used to solve
different nineteen benchmark optimization functions in the first application. Via the result comparisons
obtained from different test systems, the author revealed that ALO found promising results and
outperformed other algorithms such as PSO, the States of Matter Search (SMS) algorithm, Bat algorithm
(BA), Flower Pollination Algorithm (FPA), Cuckoo Search algorithm and Firefly Algorithm (FA).
However, this method has some weaknesses in its structure, such as using roulette wheel technique
and complicated formulas for updating new position of ants. The roulette wheel selection technique
focuses on keeping promising solutions and exploiting local optimal zones. Thus, it is highly effective
for simple problems with small number of control variables, simple constraints as well as narrow
search spaces. However, the technique is limited for more complicated problems with high number of
control variables, complicated constraints and large search spaces. Basically, ALO must cope with
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the main drawback of premature convergence due to the selection technique. Furthermore, for newly
updated position of ants, many formulas with randomization are used, leading to time consuming
issue. In IALO, we propose two improvements to cover such mentioned shortcomings. In the first
improvement, a new technique is proposed to replace roulette wheel technique. Instead of using good
solutions and eliminating worse solutions, the new technique divides all solutions into potential group
and non-potential group based on comparison of fitness function. In the second improvement, new
formulas are suggested for updating new position of ants to speed up search process, shorten a number
of computation steps, as well as reduce implementation time. As mentioned above, almost all methods
have advantages and disadvantages; however, their main shortcomings are about the real performance
for ORPD problem with large scale systems and a high number of constraints. Many methods have
successfully dealt with the ORPD problem and obtained interesting results, but they have been run
by employing high population size and the high number of iterations. In addition, several methods
have suffered from local optimal zones and hardly ever jumped out the zones for reaching near global
optimum or global optimum. Some of the methods have shown very good results and have been
considered to be more effective than other ones but sufficient evidences for the conclusions have not
been clearly clarified. In fact, both the setting of control parameters as well as demonstration of faster
speed and valid solutions have been ignored completely. On the contrary, the proposed IALO method
can tackle the main shortcomings from other methods and good proofs for leading to real evaluation
on the high performance of the proposed method can be clearly clarified in the paper. The novelties
and the main contributions of the paper are as follows:

1) Clearly describe the search procedure and point out shortcomings of ALO.
2) Propose two main improvements on ALO for avoiding hopeless outcomes of ALO and achieving

outstanding performance over ALO and other methods.
3) Implement ALO and the proposed IALO for finding optimal solutions from three IEEE power

systems with 30, 57 and 118 buses under the consideration of three objectives such as total power
loss, total voltage deviation and voltage stabilization index (L-index).

4) The proposed IALO can find better solutions than ALO and other methods in terms of less total
power losses, voltage deviation and L-index.

5) The proposed IALO can reduce computation iterations significantly as compared to ALO and
other methods.

The remaining parts of the paper can be divided into five sections as follows: description of
ORPD problem with objective functions and constraints is given in Section 2. All computation steps of
ALO method are formulated and explained in Section 3. History of ALO variants and two proposed
improvements of IALO method are shown in Section 4. Section 5 presents the computation steps for
solving a typical ORPD problem by applying the proposed IALO method. Result comparisons of three
IEEE power systems are performed in Section 6. Finally, Section 7 summarizes the whole work and
concludes the performance of the proposed IALO. In addition, the References and Appendix are also
two important parts in the article.

2. Problem Formulation

The ORPD problem is a combination of objectives and constraints regarding optimization operation
of electric components in transmission grids. There are three important objectives considered in
regard to minimizing active power loss in all branches, voltage deviation of all load buses and voltage
enhancement. In addition, the ORPD problem also takes equality and inequality constraints into
account. The mathematical formulation of the ORPD problem is described as follows.

2.1. Objective Function

Active power loss function: effects of technical and non-technical losses are certain to occur and
impossible to be avoided in operation of transmission power girds. Hence, the best work that should



Energies 2019, 12, 2968 5 of 31

be performed is to reduce the total power losses of all branches. The calculation of total power losses
and the objective can be seen by the function of Equation (1) below:

Min Ploss =

NB∑
k=1

NB∑
j = 1
j , k

gkj
[
Vol2k + Vol2j − 2VolkVol j cosϕkj

]
(1)

where gkj andϕkj are the line conductance and the deviating angular between buses k and j, respectively;
NB is the total number of buses in the concerned power network.

Load bus voltage deviation function: voltage is an important criterion for evaluating power
quality. Thus, the voltage’s excessive change around expected value 1.0 pu at load buses can result
in unstably power system operation status affecting production process of manufactories, industrial
zones as well as lifetime of electrical components. That is a reason leading to the significance of the
second objective, which is to minimize total voltage deviation of all load buses in the considered
system. The objective can be mathematically formulated by the following model:

Min TVD =

NL∑
k=1

∣∣∣VolLk −Volre f
∣∣∣ (2)

where VolLk and Volref are the voltage magnitude of the kth load bus and the expected voltage magnitude
(normally 1.0 pu) for all load buses and NL is the number of load buses.

Voltage stability index (L-index): Improvement of voltage stability can enable power system
avoid negative phenomena causing harmful impacts on electric components. Thus, the third objective
function shown in Equations (3) and (4) is established to evaluate the working states of power system:

Min L-index = max(Lk); k = 1, 2, . . . , NB (3)

In this case, the L-index of the power system is the maximum value of Lk, which is in range [0, 1]
and obtained by using Equation (4):

Lk =

∣∣∣∣∣∣∣∣∣∣∣∣∣
1−

NG∑
j=1

YkjVol j

Volk

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4)

The power system operates stably and effectively at L-index value “0”. In contract, the L-index
value can be close to “1” or even equal to “1” resulting in a couple of risks such as interruption of
supplying power or even voltage collapse. Thus, the objective function in Equation (3) play a very
important role in stability as well as economical issue of the considered power system.

2.2. Considered Constraints

2.2.1. Equality Constraints

In the ORPD problem, the equality constraints are reactive and active power balance conditions
that are expressed by the meaning of Equations (5) and (6), respectively:

APGk −APdk = Volk
NB∑
j=1

V j
[
Gkj cos

(
ϕk −ϕ j

)
+ Bkj sin

(
ϕk −ϕ j

)]
; k = 1, . . . , NB (5)
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RPGk + RPck −RPdk = Volk
NB∑
j=1

V j
[
Gkj sin

(
ϕk −ϕ j

)
− Bkj cos

(
ϕk −ϕ j

)]
; i = 1, . . . , NB (6)

If the two balance conditions are satisfied exactly, voltage and frequency of buses can be fixed and
power system can be working stable.

2.2.2. Inequality Constraints

In the ORPD problem, the inequality constraints are mainly about the limitations of electric
components such as generators, capacitors, transformers and conductors. These inequality constraints
are specifically presented as follows.

Generator Constraints: Reactive power and voltage magnitude of generators are restricted inside
lower and upper limits shown in Equations (7) and (8) below:

RPGk,min ≤ RPGk ≤ RPGk,max; k = 1, . . . , NG (7)

VolGk,min ≤ VolGk ≤ VolGk,max; k = 1, . . . , NG (8)

For assuring the satisfaction of the two constraints, voltage magnitude of generators is always
controlled and corrected in case of violation whereas reactive power is penalized in case of violating the
limitations. The detail of solving the constraints will be shown in Section 5. In addition, generators have
another important factor, active power; however, in the ORPD problem, active power is predetermined
and given as input data. The predetermined active power is also constrained by the following model:

APGk,min ≤ APGk ≤ APGk,max; k = 1, . . . , NG (9)

Security constraints: other remaining inequality constraints of the system that should be taken
into consideration are limitations of shunt VAR compensators, position of transformer tap, voltage
magnitude of load and transmission branches. Such constraints are given in Inequalities (10)–(13) below:

RPck,min ≤ RPck ≤ RPck,max; k = 1, . . . , NC (10)

Tk,min ≤ Tk ≤ Tk,max; k = 1, . . . , NT (11)

VolLk,min ≤ VolLk ≤ VolLk,max; k = 1, . . . , NL (12)

Sb ≤ Sb,max, b= 1, 2, . . . , Nbranch (13)

2.3. Control Variables

In the ORPD problem, two sets of variable are considered to be control variables and dependent
variables in which control variables are input data of Matpower program and dependent variables are
results after running the program. The set of control variables (Scv) are as follows

- Voltage of generators (continuous variables)
- Tap changer values of transformers (continuous variables)
- Reactive power of capacitor banks (continuous variables)

3. Conventional Antlion Optimization Algorithm (ALO)

ALO was developed in 2015 by taking idea from the nature phenomenon of antlions and ants.
The structure of ALO was presented in [33] and can be expressed in detail as follows.
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3.1. Building Traps

The process of building traps is known as the initialization of Np antlions. All the antlions are
randomly produced within the upper and lower limitations as the following model:

ALs = ALmin + δ× (ALmax −ALmin); s = 1, . . . , Np (14)

where ALmin and ALmax, respectively, are the lower and upper bounds of N control variables and δ
is a random number in range of [0, 1]. In this paper, the best antlion owns the optimal fitness with
minimum value. Moreover, the potential antlions corresponding to high-quality solutions, which are
selected via roulette wheel technique, are retained for the next generation.

3.2. Random Walking of Ants

Ant species, favorite prey of the antlion, randomly moves to search food. Hence, the ants’ position
constantly changes in the space. Through the behavior, a random walk of each ant can be seen by the
meaning of the following equation:

RWIT
s =

0,
1∑

IT=1

2αIT − 1,
2∑

IT=1

(2αIT − 1),
3∑

IT=1

(2αIT − 1), . . . .,
ITmax∑
IT=1

(2αIT − 1)

 (15)

where RWIT
s is a matrix with size (1 × ITmax) at the ITth iteraiton and αIT is considered as a moving

factor and calculated by:

αIT =

{
0 ifε < 0.5
1 else

(16)

where ε is a random number uniformly distributed within the range of [0, 1].

3.3. Trapped Ants

The ALO is formulated based on interaction between antlions and ants in the trap. Because of the
ants’ random walk in the search space, the interaction seems difficult to form. Therefore, the ALO
restricts the stochastic movement of preys by using the equation below:

XAIT
s =

(
RWIT

s −RWs,min

RWs,max −RWs,min

)(
XAIT

s,max −XAIT
s,min

)
+ XAIT

s,min (17)

where XAIT
s is a new position of the sth ant in the pit of the antlion selected by roulette wheel technique

at the current iteration IT; RWs,min and RWs,max, respectively, are minimum and maximum of random
walk of the sth ant; XAIT

s,min and XAIT
s,max indicate lower and upper limitations of all variables of the sth

ant at the current iteration IT determined as follows:

XAIT
s,min = ALIT

rou +
ALmin

10w ×
ITmax

IT
(18)

XAIT
s,max = ALIT

rou +
ALmax

10w ×
ITmax

IT
(19)

where ALIT
rou is an antlion selected by the roulette wheel technique at ITth iteation; w is a constant and

calculated based on the current iteration (w = 2 when IT > 0.1 ITmax, w = 3 when IT > 0.5 ITmax, w = 4
when IT > 0.75 ITmax, w = 5 when IT > 0.9 ITmax and w = 6 when IT > 0.95 ITmax).
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In this algorithm, the ants’ movement in the search space is also completely affected by the best
antlion. Thus, every ant’s position relating to pit of the best antlion is known as elite position and
obtained by using Equation (20) below:

XEIT
s =

(
RWIT

s −RWs,min

RWs,max −RWs,min

)(
XEIT

s,max −XEIT
s,min

)
+ XEIT

s,min (20)

where XEIT
s,min and XEIT

s,max are the lower bound and upper bound of antlion’s position at the ITth
iteration obtained by the following equations:

XEIT
s,min = ALIT−1

best +
ALmin

10w ×
ITmax

IT
(21)

XEIT
s,max = ALIT−1

best +
ALmax

10w ×
ITmax

IT
(22)

where ALIT−1
best is the position of the best antlion in the current population at the (IT − 1)th iteration.

As a result, the new position of each ant at the current iteration IT (AntIT
s ) is determined by the

following model:

AntIT
s =

XAIT
s + XEIT

s
2

(23)

3.4. Catching Preys and Rebuilding Trap

In the process, each antlion moves to the respective ant’s position if the ant owns a better fitness
value. The action can be expressed by the following equation:

ALIT
s =

{
AntIT

s if Fit(AntIT
s ) ≤ Fit(ALIT−1

s )

ALIT−1
s else

(24)

For minimization problems, AntIT
s is a new solution and it is retained if its fitness function is

smaller or equal to the fitness function of old solution (ALIT−1
s ). On the contrary, old solution AntIT−1

s is
kept if its fitness function is lower than that of the new solution.

3.5. The Whole Search Process of ALO Method

Finally, the thus-far best antlion in each iteration is saved as the global of the problem. To aid
comprehension, the search strategy of ALO is described in detail in the Figure 1 below:



Energies 2019, 12, 2968 9 of 31

Energies 2019, 12, x FOR PEER REVIEW 9 of 32 

 

 
Figure 1. Flowchart of implementing Antlion Optimization algorithm. 

4. Improved Antlion Optimization Algorithm (IALO) 

4.1. Review on Previous Improved Antlion Optimization Algorithm 

In recent years, most of the conventional population-based heuristic algorithms were created 
with the aim of solving complicated optimization problems. The series of benchmark functions 
became a popular study cases to test the operating quality of the algorithms. The results obtained by 
applying the new methods for handling benchmarks were extremely effective and optimized. 
However, the methods seem to cope with more difficulties in finding out a global solution for 
optimization operation problems with complicated constraints in power systems. Because of many 
search zones with local optimum solutions, the generated solutions in each iteration trend to fall into 
these local zones, which not only caused unexpected premature convergence but also consumed a 
huge number of iterations. Consequently, there were various improved Antlion Optimization 
algorithms published in previous studies in which each variant of the ALO was applied to minimize 
different objectives of different problems. An enhanced antlion optimization algorithm (EALO) [34] 
has applied a stochastic probability function instead of the uniform probability distribution function 
of original ALO. In addition, EALO has incorporated different weighting factors into the position 
update process of ants around the antlion, who has been selected by roulette wheel selection 
technique. Via the applications in antenna array synthesis, EALO was demonstrated to be superior 
to other methods such as Taguchi Method (TM), Cat swarm optimization (CSO), ABCA, PSO and 
ALO. In another case, a modified ALO (MALO) [35] has been developed based on the elitism phase 
of classical ALO to improve exploration capability and balance between the exploration and the 
exploitation. The compared results pointed out that MALO has outperformed the traditional ALO 
and other methods in minimizing optimal generation of reactive power for transmission power 
grids. Another Lévy Flight based ALO (LFALO) method has been constructed in [36]. Thus, the 
study has replaced a uniform distributed random walk with random walk of the Lévy Flight 
distribution so as to enhance exploration. Therefore, LFALO could speed up convergence to more 

Figure 1. Flowchart of implementing Antlion Optimization algorithm.

4. Improved Antlion Optimization Algorithm (IALO)

4.1. Review on Previous Improved Antlion Optimization Algorithm

In recent years, most of the conventional population-based heuristic algorithms were created
with the aim of solving complicated optimization problems. The series of benchmark functions
became a popular study cases to test the operating quality of the algorithms. The results obtained by
applying the new methods for handling benchmarks were extremely effective and optimized. However,
the methods seem to cope with more difficulties in finding out a global solution for optimization
operation problems with complicated constraints in power systems. Because of many search zones
with local optimum solutions, the generated solutions in each iteration trend to fall into these local
zones, which not only caused unexpected premature convergence but also consumed a huge number
of iterations. Consequently, there were various improved Antlion Optimization algorithms published
in previous studies in which each variant of the ALO was applied to minimize different objectives of
different problems. An enhanced antlion optimization algorithm (EALO) [34] has applied a stochastic
probability function instead of the uniform probability distribution function of original ALO. In
addition, EALO has incorporated different weighting factors into the position update process of ants
around the antlion, who has been selected by roulette wheel selection technique. Via the applications
in antenna array synthesis, EALO was demonstrated to be superior to other methods such as Taguchi
Method (TM), Cat swarm optimization (CSO), ABCA, PSO and ALO. In another case, a modified ALO
(MALO) [35] has been developed based on the elitism phase of classical ALO to improve exploration
capability and balance between the exploration and the exploitation. The compared results pointed
out that MALO has outperformed the traditional ALO and other methods in minimizing optimal
generation of reactive power for transmission power grids. Another Lévy Flight based ALO (LFALO)
method has been constructed in [36]. Thus, the study has replaced a uniform distributed random walk
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with random walk of the Lévy Flight distribution so as to enhance exploration. Therefore, LFALO
could speed up convergence to more optimal solutions more effectively than the original ALO as
tested on 27 benchmark functions. However, the method has not been compared to other methods,
especially state-of-the-art methods in recent years. Another modified ALO based on Tournament
selection technique (TSALO) has been proposed and applied for optimizing quadratic assignment
problem [37]. The authors have stated ALO has suffered from key drawbacks that stop ALO from
finding very high quality solutions such as a long run time, local optimal stagnation and premature
convergence to local optimum or near global optimum. Because of these reasons, the tournament
selection technique has been used instead of the roulette wheel technique and some equations in
ALO have been replaced accordingly. The method has been concluded to be the best performance in
comparison with other ALO variants by using a set of benchmark functions. Clearly, the performance
of LFALO and TSALO have not been investigated persuasively as comparisons with other methods
outside ALO variants.

4.2. Improved Antlion Optimization Algorithm (IALO)

As mentioned in section above, ALO has suffered from different disadvantages for converging
to good solutions with fast execution. Other improved versions of ALO have tried to develop new
strategies with intent to overcome such shortcomings. We agree with the authors in [37] that the
roulette wheel selection technique was not appropriate for ALO to choose the most effective solutions.
In addition, we also adopt comments of authors in [36] that new solution generation function of ALO
needs to be improved more effectively. Thus, in the paper we suggest modifying the two pointed
shortcomings of ALO. In the first modification, the roulette wheel technique is removed and replaced
with a new technique. The new technique helps the ALO to classify antlions into two groups consisting
of the potential traps and the non-potential trap, and then takes each group into the second modified
phase. In the second modification, some novel equations with breakthrough steps will be used
respectively for each group to enhance ability of the diverse exploration and the thorough exploitation
in multi-solution spaces. The modifications are explained as follows.

4.3. Two Proposed Modifications

4.3.1. The First Modification

The roulette wheel is one of the reasons causing the undesired results as well as ineffectively
premature convergence. The roulette wheel technique only concentrates on collecting superiority
solutions rather than selecting worse solutions in a cluster. Basically, the performance of the technique
is truly effective when considered in the small-scale problems. Thus, for large-scale problems such as
the ORPD problem with complicated equality and inequality constraints by the presence of generators
and other electric components in power systems, such a technique would not be reliable. Therefore,
a new selection technique will be used instead of the roulette wheel technique to classify all solutions
into potential and non-potential ones. The procedure is implemented based on two following factors:

IEPs =
Fits

Fitbest
(25)

MEP =
Fitavr

Fitbest
(26)

where Fitavr is the mean fitness of all current solutions and obtained by:

Fitavr =

Np∑
1

Fits

Np
(27)
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Thanks to the use of IEPs and MEP, all solutions are separated into potential group and
non-potential group as shown in Figure 2. The solutions with IEPs below MEP line are arranged in
potential group while others with IEPs above MEP line are grouped in non-potential solutions.
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4.3.2. The Second Modification

After the first modification, each solution in the potential group is used to determine the ants’
position corresponding to the particular traps. The new position of the sth ant is determined by:

Ants = ALs +

(
RWIT

s −RWs,min

RWs,max −RWs,min

)
× ∆ (28)

where ∆ is the breakthrough jumping step of the sth antlion and obtained based on the formula below:

∆ =


(ALr1 −ALr2) i f CoIT

Comax
≤ 0.15(

ALr1 −ALr2 + ALr3 −ALr4

+ALr5 −ALr6

)
i f CoIT

Comax
> 0.3

(ALr1 −ALr2 + ALr3 −ALr4) else

(29)

where CoIT is an integer number obtained by comparing the deviation of two solutions’ fitness function
and a predetermined tolerance, Tol = 0.01 at the ITth iteration and Comax is the highest value of CoIT if
comparison conditions are always satisfied. CoIT can be calculated by using Algorithm 1, while Comax

can be calculated by using Equation (30):

Algorithm 1. Calculation of CoIT

CoIT = 0
for i = 1 to (Np − 1)

for j = (i + 1) to Np

if |(Fiti − Fitj)| < Tol
CoIT = CoIT + 1

end
end

end

Comax =
Np × (Np − 1)

2
(30)
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In Algorithm 1 and Equation (30), CoIT is not fixed in the whole search process over the maximum
number of iterations, while Comax is a constant not depending on any factors.

The non-potential antlions move to new positions with a distance nearby the best antlion:

Ants = ALbest + α× (ALr7 −ALs) × rns (31)

where rns is a random number of the sth solution and randomly produced in the range between 0 and
1; and α is Lévy factor and determined as follows [38,39]:

α = v×
θh(ω)

θm(ω)
(32)

v =
randh

(randm)
1/ω

(33)

where randh and randm are two randomly distributed numbers with standard deviation θh(ω) and
θm(ω) calculated by:

θh(ω) =

Γ(1 +ω) × sin(πω/2)

Γ
(

1+ω
2

)
×ω× 2(ω−1)/2

 (34)

θm(ω) = 1 (35)

where ω is the distribution factor (0.3 ≤ ω ≤ 1.99) and Γ is a standard gamma function.
The execution steps of IALO are summarized in Algorithm 2.

Algorithm 2. The whole pseudo code of the proposed IALO approach

Initialize Np solutions (traps of Np antlions) and evaluate fitness function Fits

Duplicate all antlions for all ant (i.e., Ants = ALs, FitAs = Fits where s = 1, . . . , Np)
Calculate Comax by using Equation (30)
Determine the best solution, ALbest (the best antlion)

while (IT < ITmax)
Calculate CoIT by using Algorithm 1
Determine IEPs and MEP using Equations (25) and (26), respectively
for each solution s
if (IEPs < MEP)

Ant’s position is newly updated based on Equation (28)
else

Ant’s position is newly updated based on Equation (31)
end if
end for
Check and correct upper and lower bounds for all variables
Evaluate new fitness function for ants
Replace antlion with a respective ant if ant is more potential than antlion by using Equation (24)
Update the best solution ALbest

end while

5. Using the Proposed IALO Method for ORPD Problem

5.1. Selection of Control Variables for Each Solution and Generation of Initial Population

In the proposed method, the position of each ant as well as each antlion contains control variables
of the ORPD problem. Normally, the selection of such variables is one of the most important techniques
for satisfying all constraints of optimization problem and finding solutions with high quality. The task
is very important for the ORPD problem but there is a difference between the ORPD problem and other
ones since the selected control variables must be input parameters of the Matpower program as shown
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in Section 2.3. If we set different variables to input data of the Matpower program, ORPD problem
cannot be solved successfully. Thus, ALs will be formulated as follows:

ALs =
{
VolG1,s, . . . , VGNG,s, T1,s, . . . , TNT ,s, RPC1,s, . . . , RPCNC,s

}T
(36)

where the position of ALs must be within lower limit ALmin and upper limit ALmax, which are
constructed by:

ALmin =
{
VolG1,min, . . . , VGNG,min, T1,min, . . . , TNT ,min, RPC1,min, . . . , RPCNC,min

}T
(37)

ALmax =
{
VolG1,max, . . . , VGNG,max, T1,max, . . . , TNT ,max, RPC1,max, . . . , RPCNC,max

}T
(38)

As a result, the initial population can be generated by the following rule:

ALs = ALmin + δ× (ALmax −ALmin) (39)

5.2. Calculate Fitness Function

Fitness function is employed to evaluate effectiveness of solutions. Thus, the function must reflect
the quality of objective function and the violation of constraints of dependent variables [40]. ORPD
has three single objective functions as shown in Section 2 while the violation of constraints can be
measured by checking and penalizing violation of dependent variables. In the first step, all control
variables in each solution are assigned to input data of Matpower program and then the program
is run for obtaining dependent variables consisting of the voltage of each load VolLk,s, the apparent
power of each transmission branch Sb,s and the reactive power of each generator RPGk,s. In the second
step, the three dependent variables are verified and penalized if they violate either the lower bound or
upper bound. The second step can be accomplished by using the following equations:

∆RPGk,s =


RPGk,s −RPGk,max i f RPGk,s > RPGk,max
0 i f RPGk,min ≤ RPGk,s ≤ RPGk,max
RPGk,min −RPGk,s i f RPGk,s < RPGk,min

(40)

∆VolLk,s =


VolLk,s −VolL,max i f VolLk,s > VolL,max

0 i f VolL,min ≤ VolLk,s ≤ VolL,max

VolL,min −VolLk,s else VolL,min > VolLk,s

(41)

∆Sb,s =

{
0 i f Sb,s ≤ Sbmax
Sb,s − Sb,max i f Sb,s > Sb,max

(42)

Finally, fitness function Fits for evaluating effectiveness of solution s is established with the
following model:

Fits = objectives + K1

 NG∑
k=1

∆RPGk,s

+ K2

 NL∑
k=1

∆VolLk,s

+ K3

Nbranch∑
b=1

∆Sb,s

 (43)

5.3. Processes of Newly Updated Solutions

The proposed IALO method only updates new solutions one time. However, the updating
procedure is divided to two phases as mentioned in Section 3. In the first phase, solutions in
potential group are newly updated through Equation (28). In another phase, the remaining antlions in
non-potential group are newly updated via Equation (31).
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5.4. Handling Violation of Control Variables

After producing new solutions, all variables in such solutions will be compared to upper and
lower bound. If the variables are lower than lower bound, they are assigned to lower bound. On the
contrary, they are assigned to upper bound if they are higher than upper bound. The method is can be
easily accomplished by using the following formulas:

VolGk,s =


VolGk,min i f VolGk,s < VolGk,min
VolG,s i f VolGk,min ≤ VolGk,s ≤ VolGk,max
VolGk,max else

; k = 1, . . . , NG (44)

Tk,s =


Tk,max i f Tk,s > Tk,max
Tk,s i f Tk,min ≤ Tk,s ≤ Tk,max
Tk,min i f else

; k = 1, . . . , NT (45)

RPck,s =


RPck,max i f RPck,s > RPck,max
RPck,s i f RPck,min ≤ RPck,s ≤ RPck,max
RPck,min else

; k = 1, . . . , NC (46)

5.5. Computation Termination Condition

The performance of the proposed method is evaluated by analyzing the results from 50 trials for
each study case, i.e., for each objective of each power system. Each run is not finished until the last
iteration is carried out. Moreover, a study case can come to a conclusion if a predetermined number of
trial runs is finished. Thus, the selection of the maximum number of iterations ITmax is very important
for obtaining an optimal solution and to terminate the search process of the proposed method. One
run can store one optimal solution and the maximum number of runs Norun can store Norun optimal
solutions. In finding optimal solutions of three IEEE power system, the maximum number of iterations
ITmax is selected depending on the dimension of each system while Norun is selected to be 50 for all
study cases.

5.6. The Entire Computation Procedure

Finding the ORPD problem solutions can be successfully accomplished by using the
following steps:

Step 1: Set values to control parameters including Np, ITmax and Tol.
Step 2: Randomly produce Np initial solutions by using Equation (39).
Step 3: Find dependent variables VolLk,s, Sb,s and RPGk,s by running the Matpower program.
Step 4: Calculate one out of three objective functions in Equations (1)–(3). Determine penalty terms

as shown in Equations (40)–(42). Determine fitness function by using Equation (43). Set the
solution with the best fitness to ALbest. Set current iteration to 1 (IT = 1).

Step 5: Calculate CoIT by using Algorithm 1. Determine IEPs and MEP using Equations (25) and
(26), respectively. If IEPs < MEP, use Equation (28) for producing new solutions. Otherwise,
use Equation (31) for producing new solutions.

Step 6: Step 6: Correct all control variables by using Equations (44)–(46).
Step 7: Find dependent variables VolLk,s, Sb,s and RPGk,s by running the Matpower program.
Step 8: Calculate one out of three objective functions in Equations (1)–(3). Determine penalty terms as

shown in Equations (40)–(42). Determine fitness function by using Equation (43).
Step 9: Compare the sth new solution and the sth old solution in order to keep better one by using

Equation (24).
Step 10: Set the best solution to ALbest.
Step 11: If IT = ITmax, stop the iterative algorithm. Otherwise, set IT = IT + 1 and go back to step 5.
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6. Numerical Results

For investigating the capability of solving the ORPD problem as well as the robustness of the
proposed IALO in finding high quality solutions, three different standard IEEE power systems have
been used as study cases for comparisons. ALO and IALO have been executed in Matlab programming
language and a PC (core i5, 2.0 Ghz, 4-Gb Ram). The information of three power systems are shown in
Table 1 and the whole data are taken from [41]. The implementation of ALO and the proposed IALO
methods have been accomplished by setting population size and the maximum number of iterations to
30 and 50 for the first system, 30 and 150 for the second system and 30 and 250 for the last system. For
each study case, results from each method have been gathered by running 50 trials.

Table 1. The information of three standard IEEE power systems.

Study Case No.
Generators No. Loads No.

Branches
No.

Compensators
No.

Transformers
No. Control

Variables

IEEE 30-bus system 6 24 41 9 4 19
IEEE 57-bus system 7 50 80 3 15 25

IEEE 118-bus system 54 64 186 14 9 77

6.1. Comparisons of Results from IEEE 30-Bus System

6.1.1. Testing the Effectiveness of Two Modifications on the Proposed Method

In this section, we have implemented both ALO and IALO for three objectives of the first system
by setting different values to iteration from 50 to 150 for ALO, while 50 iterations have been fixed
for IALO. Table 2 reports obtained results. Results from the same 50 iterations can indicate that
all values of IALO consisting of minimum and average of TPL, TVD and L-index are smaller than
those of ALO. For TPL, ALO finds the best optimal solution with 4.6001 MW and the average of 50
optimal solutions is 4.7512; meanwhile, the results of IALO are 4.5142 and 4.5693 MW, which are,
respectively, less than those of ALO by 0.086 MW and 0.1459 MW. For a better comparison, the power
loss can be converted into an improvement percentage (IP) and they are equivalent to 1.867% and
3.1%. Similarly, the proposed IALO is also more robust than ALO for TVD and L-index cases since
minimum and average values of the proposed method continue to be smaller. The improvement of
minimum and average are 26.09% and 35.75% for TVD, and 0.56% and 4.55% for L-index, respectively.
The two numbers from each objective can result in two conclusions: that the proposed IALO approach
can find more optimal solutions than ALO and that its search stabilization is more effective. For further
investigation of the improvement of IALO as compared to ALO, we have continued to increase the
iterations to 100 and 150 for implementing ALO; however, the best optimal solutions of ALO are still
worse than those of IALO obtained by setting the number of iterations to 50. The execution time
that the proposed method can find the best optimal solutions is around 4 seconds; however, it takes
ALO more than 12 seconds to find lower quality solutions. Figures 3–5 show the best convergence
characteristic and the average convergence characteristic of 50 trial runs obtained by ALO and IALO in
which IALO has six curves corresponding to 50 iterations, 100 iterations and 150 iterations, while IALO
has two curves with 50 iterations. Clearly, the efficiency of ALO can be improved more significantly by
increasing ITmax from 50 iterations to 100 iterations and 150 iterations; however, the best solution at
the final iteration is still much worse than that of the proposed method. Thus, the proposed method
can be at least three times faster than ALO. In addition, we have collected the best solutions of 50 runs
obtained by the proposed method and ALO with ITmax = 50 and plotted in Figures 6–8. The three
figures have the same point that almost all runs of the proposed method have better quality than
those from ALO. Consequently, it can confirm that the proposed modifications are really useful for the
proposed method in solving the IEEE 30-bus system.
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Table 2. Testing performance improvement of IALO over ALO for IEEE 30-bus system.

Case
ITmax 50 100 150

Method IALO ALO ALO ALO

TPL
Min 4.5142 4.6001 4.572 4.543
Aver 4.5693 4.7152 4.66 4.637

CPu time (s) 3.9 4.3 8.7 12.3

TVD
Min 0.0881 0.1192 0.1047 0.094
Aver 0.1012 0.1575 0.1320 0.1164

CPu time (s) 3.87 4.1 8.8 12.6

L-index
Min 0.1246 0.1253 0.1249 0.1248
Aver 0.1258 0.1318 0.1287 0.1264

CPu time (s) 4.1 4.8 9.0 12.9Energies 2019, 12, x FOR PEER REVIEW 17 of 32 
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Table 3. Result comparison of total power loss for IEEE 30-bus system. 
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6.1.2. Comparing the Proposed Method with Other Existing Ones

Result comparisons found by IALO and other methods are shown in Tables 3–5 for the TPL,
TVD and L-index cases, respectively. The best and worst minima of TPL obtained by other methods
in Table 3 are, respectively, 4.9408 MW and 4.51431 MW from SGA [15] and GSA [16]. Clearly, GSA [16]
has approximately the same TPL with IALO, while SGA is much worse than IALO because the
improvement percentage of IALO over SGA can be up to 8.63%. However, it needs to compare the
population size and iterations of compared methods. GSA has used 200 particles and 100 iterations
corresponding to total number of newly updated solutions (Nnus) of 20,000 while that of IALO was only
1500. Other methods have been also run by setting much higher number of newly updated solutions,
which was from 4000 to 75,000. In this regard, the outstanding search ability of IALO is understood
via the fastest computation time. Execution time of IALO is under four seconds while that of other
methods, which have used 4000 new solutions, is higher than seven seconds. Execution time of other
remaining methods have not been reported. Thus, the IALO method is very efficient for the task of
minimizing TPL of IEEE 30-bus system.

Table 3. Result comparison of total power loss for IEEE 30-bus system.

Method The Best Power
Loss (MW)

Mean Power
Loss (MW)

CPU Time
(s) ITmax Np Nnus

EPM [1] 5.0159 - - - - -
DE [3] 5.011 5.013 13.647 200 30 6000
DE [4] 4.555 - - 500 150 75,000

CIDE [5] 4.5333 4.5333 - 300 50 15,000
IDE [6] 4.5521 - 116 500 - -

AGA [7] 4.926 4.952 - 370 50 18,500
CGA [7] 4.980 5.081 - 370 50 18,500

SARCGA [8] 4.5913 4.5972 - 300 36 10,800
PGA [9] 4.5399 4.5448 - 300 60 18,000

PSO-TVIW [12] 4.8458 4.8761 8.762 200 20 4000
PSO-TVAC [12] 4.8449 4.8702 8.68 200 20 4000

SPSO-TVAC [12] 4.5262 4.5564 9.092 200 20 4000
PSO-CF [12] 4.5258 4.5711 8.48 200 20 4000
PG-PSO [12] 4.6425 4.732 8.216 200 20 4000
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Table 3. Cont.

Method The Best Power
Loss (MW)

Mean Power
Loss (MW)

CPU Time
(s) ITmax Np Nnus

SWT-PSO [12] 4.6578 4.9413 7.995 200 20 4000
PGSWT-PSO [12] 4.7914 5.2349 7.912 200 20 4000

PSO-IPGS [12] 4.5256 4.5508 7.852 200 20 4000
SGA [15] 4.9408 5.0378 - 30,000 - -
PSO [15] 4.9239 4.972 - 30,000 - -
HAS [15] 4.9059 4.924 - 30,000 - -
GSA [16] 4.51431 - - 200 100 20,000

QOTLBOA [17] 4.5594 4.5601 - 100 50 10,000
TLBOA [17] 4.5629 4.5695 - 100 50 10,000

ALO [19] 4.59 - 119.3 100 40 4000
BA [19] 4.628 - 129.4 100 40 4000

GWOA [19] 4.6119 - 127.2 100 40 4000
ABCA [19] 4.611 - 130.6 100 40 8000

MOALO [20] 4.7633 - 56.1 - - -
BSO [22] 4.6338 - - 300 50 15,000
PSO [23] 4.7779 - - 150 - -

PSO-TVAC [23] 4.6469 - - 150 - -
WOA [23] 4.5943 - - 150 - -

GBWCA [24] 4.4801 - - - 50 50,000
WCA [24] 4.5161 - - - 50 50,000

MFOM [27] 4.5128
JAYA [28] 4.5495 - - 300 50 15,000
MSSO [29] 4.51445 4.69215 4.5 50 25 1424
SCA [30] 4.9408 5.0378 - 30,000 - -
ISCA [30] 4.5399 4.5518 - - - -
EJOT [31] 4.549 - - 300 50 15,000

ACSOSM [32] 4.51279 - - - - -
IALO 4.5142 4.5693 3.9 50 30 1500

Table 4. Result comparison of total voltage deviation for IEEE 30-bus system.

Method
Minimum

Voltage
Deviation (pu)

Mean Voltage
Deviation (pu)

CPU Time
(s) ITmax Np Nnus

DE [4] 0.0911 - - 500 150 75,000
PSO-TVIW [12] 0.1038 0.1597 12.25 200 20 4000
PSO-TVAC [12] 0.2064 0.2376 12.88 200 20 4000

SPSO-TVAC [12] 0.1354 0.1558 12.59 200 20 4000
PSO-CF [12] 0.1287 0.1557 12.94 200 20 4000
PG-PSO [12] 0.1202 0.144 12.45 200 20 4000

SWT-PSO [12] 0.1614 0.1814 22.57 200 20 4000
PGSWT-PSO [12] 0.1539 0.2189 22.32 200 20 4000

PSO-IPGS [12] 0.0892 0.1078 9.724 200 20 4000
TLBOA [17] 0.0913 0.0934 - 100 50 10,000

QOTLBOA [17] 0.0856 0.0872 - 100 50 10,000
IALO 0.0881 0.1012 3.87 50 30 1500

For the case of minimizing TVD, IALO is also the best method in finding the optimal solution
satisfying all constraints and owning the smallest TVD. The minimum TVD of IALO is 0.0881 pu,
while the second best method, IPG-PSO [12], has been reported to be 0.0892 pu; the worst method,
PSO-TVAC [12], has been reported to be 0.2064 pu. Accordingly, the proposed IALO approach can
improve results from 1.23% to 57.32%. Other comparison information, such as computation time and
control parameters, also gives the same result: IALO is faster than all other methods. In fact, IALO
has been implemented by using 1,500 evaluations for objective function while that of others was from
4000 to 75,000. The setting has taken IALO 3.87 seconds while it has taken other methods from 9.724
to 22.57 seconds. As a result, we can conclude that IALO outperforms other compared methods in
solving IEEE 30-bus system with a TVD objective.
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Table 5. Result comparison of L-index for IEEE 30-bus system

Method Minimum
L-Index (pu)

Mean
L-Index (pu)

CPU Time
(s) ITmax Np Nnus

DE [4] 0.1246 - - 500 50 25,000
PSO-TVIW [12] 0.1258 0.0008 14.42 200 20 4000
PSO-TVAC [12] 0.1499 0.0009 14.53 200 20 4000

SPSO-TVAC [12] 0.1271 0.0006 14.05 200 20 4000
PSO-CF [12] 0.1261 0.0008 14.39 200 20 4000
PG-PSO [12] 0.1264 0.0008 14.84 200 20 4000

SWT-PSO [12] 0.1488 0.0074 18.99 200 20 4000
PGSWT-PSO [12] 0.1394 0.0081 19.107 200 20 4000

PSO-IPGS [12] 0.1241 0.001 13.75 200 20 4000
GSA [16] 0.1161 - - 200 100 20,000

QOTLBOA [17] 0.1242 0.0452 - 100 50 10,000
TLBOA [17] 0.1252 0.0454 - 100 50 10,000

BA [19] 0.1191 - 94.65 100 40 4000
GWOA [19] 0.118 - 104.29 100 40 4000
ABCA [19] 0.1161 - 105.04 100 40 8000
ALO [19] 0.1161 - 97.92 100 40 4000

IALO 0.1246 0.0006 3.9 50 30 1500
IALO 0.1241 0.0006 7.6 100 30 3000

As shown in Table 5, GSA [16] and other methods [19] have obtained a better L-index than IALO
and their result improvements over IALO can be higher than 7%. However, it should recheck the
constraint violation of the reported optimal solutions as well as recheck reported minimum L-index for
exact confirmation. We have run Matpower and recalculated the L-index. The results were 0.1247 pu
for GSA and 0.1241 for ALO and ABCA. BA and GWOA in [19] have not shown optimal solutions. In
spite of the outstanding point, these methods together with QOTLBOA [17] cannot be evaluated to be
more effective than IALO because they have used more search time and more iterations as well as
higher population. QOTLBOA [17] has produced 10,000 new solutions, and ALO and ABCA [19] have
produced 8000 and 4000 new solutions but the proposed IALO has searched only 1500 solutions in
process. Thus, it is unfair for the comparison. We have continued to run IALO by increasing iterations
to 100 and keeping population size at 30 corresponding to 3000 objective function evaluations. The best
L-index has been much better than before and equal to 0.1241, which is as good as that of QOTLBOA,
ALO and ABCA. Although IALO and these methods have found the same quality solution, IALO has
carried out search process much faster. IALO has used 3000 number evaluations while these methods
have used 8000 and 4000 evaluations. Furthermore, execution time of IALO is under 8 seconds, but
those from the others are approximately 100 seconds. Comparison with remaining methods also gives
good evidences for confirming the effectiveness and robustness of IALO. The method can improve
results from 0.95% to 16.88 % and its execution time is also faster two times. Consequently, the proposed
method is very efficient for the IEEE 30-bus system considering L-index objective.

Optimal solutions obtained by the proposed method for the system are shown in Table A1,
Appendix A.

6.2. Comparisons of Results from IEEE 57-Bus System

In this section, the proposed IALO has been compared to ALO and other existing methods for
evaluating performance of solving the IEEE 57-bus system. Result comparison for total power losses
and total voltage deviation are, respectively, shown in Tables 6 and 7.

Comparison with ALO shown in the two tables see that the proposed method can find more
optimal solutions for the two cases in which the best TPL and TVD values of the proposed method are
22.2539 MW and 0.5568 pu while those from ALO are 22.8884 MW and 0.6666 pu. The two values can
support to calculate improvement percentage and the proposed method can improve the best optimal
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solution up to 2.77% for TPL and 16.47 % for TVD. The average of TPL and TVD as well as all values
from fifty runs shown in Figures 9 and 10 also demonstrate the superiority of the proposed method
over ALO. The proposed method could find many solutions with the same or approximate TPL and
TVD of the best solution, while ALO could not find solutions nearby the best solutions. Thus, it can
conclude that the proposed modifications on IALO are very efficient for solving IEEE 57-bus system of
ORPD problem.

For comparison with other existing methods, it can be seen that MOGWA [25] has shown the best
TPL but the validation of the method cannot be checked because there was no solution reported in [25].
With respect to the comparison to other remaining methods, the proposed method also demonstrates
its potential search persuasively, since its most optimal solution for TPL objective can reduce TPL
from over 4% to over 13%. For the TVD objective, the proposed method also reduces the total power
losses up to over 16%. Furthermore, the proposed method is always faster than other ones for the
two cases. As compared total number of newly updated solutions or the number of fitness evaluations
and computational time, the proposed method is always superior to all methods. In fact, IALO has
employed 5000 new solutions and execution time was about 20 seconds; meanwhile, other ones have
employed from 9000 to 200,000 for TPL objective corresponding to execution time from about 300
seconds to 1450 seconds, and from 10,000 to 100,000 for TVD objective corresponding to execution time
of about 400 seconds. Thus, it can be concluded that the proposed method is very efficient for solving
the system.

Optimal solutions obtained by the proposed method for the system are shown in Table A2,
Appendix A.

Table 6. Result comparison of total power loss for the IEEE 57-bus system.

Method Minimum Power
Loss (MW)

Mean Power
Loss (MW)

CPU Time
(s) ITmax Np Nnus

DE [3] 25.0475 25.1112 35.654 190 30 6000
PGA [9] 23.836 4.5448 34.4150 300 60 18,000

PSO-ALC [11] 23.39 23.41 300.78 500 60 30,000
PSO [13] 24.7742 - 927 500 190 100,000
ICA [13] 24.1607 - 1018 500 190 100,000

PSO-ICA [13] 24.1386 - 1450 500 190 100,000
SGA [15] 25.64 26.8378 - - - -
PSO [15] 25.03 26.4742 - - - -
HAS [15] 24.9059 26.9653 - - - -
GSA [16] 23.46 - 321.4872 150 90
KHA [18] 23.41 - 303.15 100 50 10,000

CKHA [18] 23.38 - 301.12 100 50 10,000
MOALO [20] 26.593 - 531.07 - - -

DSA [21] 23.35 - - 1900 100 190,000
BSO [22] 24.3744 - - 300 50 15,000

WCA [24] 24.82 - - - - -
GBWCA [24] 23.27 - - - - -
MOGWA [25] 23.71544 - - 100 30 6000
MOGWA [25] 21.171 - - 100 30 6000

GSA [26] 24.4922 - - - - -
PSO [26] 24.3826 - - - - -
CSA [26] 24.2619 - - - - -

MCBOA [26] 23.6943 - - - - -
BA [27] 24.9254 - - 300 30 9000
FPA [27] 24.8419 - - 300 30 9000

MFOM [27] 24.25293 - - 300 30 9000
ALO 22.8884 23.5584 20.40 200 25 5000
IALO 22.2539 23.54293 14.75 200 25 5000
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Table 7. Result comparison of total voltage deviation for the IEEE 57-bus system.

Method Minimum Voltage
Deviation (pu)

Mean Voltage
Deviation (pu)

CPU Time
(s) ITmax Np Nnus

PSO-ALC [11] 0.6634 0.6636 400.39 500 60 30,000
KHA [18] 0.6605 - 398.49 100 50 10,000

CKHA [18] 0.6484 - 395.11 100 50 10,000
DSA [21] 0.6589 - - 2000 100 100,000
WCA [24] 0.6631 - - 1000 50 50,000

GBWCA [24] 0.6501 - - 1000 50 50,000
ALO 0.6666 0.7534 19.53 200 25 5000
IALO 0.5568 0.5977 14.93 200 25 5000
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6.3. Result Comparison for IEEE 118-Bus System

In this section, the efficiency of the proposed method has been tested by comparing optimal
solutions of IEEE 118-bus system with those of ALO and other existing methods.

Similar to comparison cases above, the proposed method is more effective than ALO for three
cases of IEEE 118-bus system in terms of the best optimal solutions, the stabilization of solution search
process and convergence speed shown in Tables 8–10, respectively. The best TPL, TVD and L-index of
the proposed method are, respectively, 114.795 MW, 0.1663 pu and 0.0606 pu, while those of ALO are,
respectively, 116.86 MW, 0.2681 pu and 0.0609 pu. The proposed method could improve results up to
1.764%, 37.958% and 0.25% for TPL, TVD and L-index cases, respectively. Furthermore, average values
from the proposed method are always smaller than those of ALO. They are, respectively, 117.299 MW,
0.193 pu and 0.0608 pu, but those of ALO are much higher and equal to 119.712 MW, 0.379 pu and
0.0612 pu. Clearly, the proposed method is more stable than ALO in finding 50 optimal solutions for
each case of IEEE 118-bus system. As a result, it can be stated that the proposed IALO should be
employed for solving IEEE 118-bus system and ALO should be replaced with the proposed method in
dealing with the IEEE 118-bus power system.

As compared to the proposed IALO method with other ones, the proposed method seems not to be
the strongest optimization tool for TPL, TVD and L-index cases since SARCGA [8] and QOTLBOA [17]
for TPL case, PG-PSO [12], SWT-PSO [12] and IPG-PSO [12] for TVD case, and SWT-PSO [12],
PGSWT-PSO [12] and PSO-IPGS [12] for L-index case have reported better results. However, the
validation of optimal solutions from these more superior methods should be confirmed. SARCGA
has not reported solutions for TPL case, while QOTLBOA [17] has reported optimal solution and its
validation was confirmed to be true. However, QOTLBOA has employed higher number of newly
updated solutions, 10,000 solutions for finding the best solution while that of the proposed method
was 7500 solutions. The study [12] has reported solutions for IPG-PSO only but for other ones. The
verification of solutions reported for IPG-PSO can be confirmed that solutions for TPL and TVD cases
are true, but the solution for the L-index exceeds upper bound of load bus voltage. Many load buses
have voltage higher than 1.05 and less than 1.1. Clearly, IPG-PSO can find better solutions due to the
use of higher value for the upper bound. Thus, for comparing with the IPG-PSO method, we have
re-implemented the proposed IALO method by setting upper bound of load bus voltage to 1.1 pu
and L-index has been reported in bold value, which is 0.0568 pu equaling to that of IPG-PSO. Thus,
the comparison with IPG-PSO is that the proposed method has reached less TPL, higher TVD and
the same L-index but the proposed IALO method has employed smaller number of newly updated
solutions and spent less computation time than IPG-PSO. Comparing to other remaining methods
can show outstanding performance of the proposed method once the improvement of minimum TPL,
TVD and L-index can be from 0.23% to 13.03% for TPL optimization case, from 7.643% to 92.561% for
TVD optimization case and from 0.086% to 56.306% for L-index optimization case. The comparison of
convergence speed also has the same manner since the proposed method has used a smaller number of
newly updated solutions than that of approximately all methods.

All in all, the proposed method is concluded to be much more effective than standard ALO method
and it is also a very effective optimization tool in solving the IEEE 118-bus power system of ORPD
problem as compared to other compared methods.

Optimal solutions obtained by the proposed method for the system are shown in Tables A3–A5 in
the Appendix A.
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Table 8. Result comparison of total power loss for IEEE 118-bus system.

Method Minimum Power
Loss (MW)

Mean Power
Loss (MW)

CPU Time
(s) ITmax Np Nnus

MHEPM [2] 115.80 - - 100 20 2000
DE [3] 129.579 - - - - -

SARCGA [8] 113.12 113.968 - 300 15 9000
HEP [8] 115.58 115.8 - 300 15 4500

PSO-TVIW [12] 115.8976 118.2344 109.645 190 40 8000
PSO-TVAC [12] 124.3335 129.7494 96.32 190 40 8000
SPSO-TVAC [12] 115.1926 117.3553 96.45 190 40 8000

PSO-CF [12] 115.6469 115.9863 95.86 190 40 8000
PG-PSO [12] 115.6075 119.3968 96.11 190 40 8000

SWT-PSO [12] 124.1476 129.371 91.58 190 40 8000
PGSWTPSO [12] 119.427 122.781 95.17 190 40 8000
PSO-IPGS [12] 115.06 115.462 91.07 190 40 8000

SOA [14] 133.357 - - 300 60 18,000
QOTLBOA [17] 112.2789 113.7693 - 100 50 10,000

TLBOA [17] 115.4003 121.3902 - 100 50 10,000
MSSO [29] 114.5297 115.651 41.6 150 40 7190

ALO 116.86 119.712 50.71 250 30 7500
IALO 114.795 117.299 39.59 250 30 7500

Table 9. Result comparison of total voltage deviation for IEEE 118-bus system.

Method Minimum Voltage
Deviation (pu)

Mean Voltage
Deviation (pu)

CPU Time
(s) ITmax Np Nnus

PSO-TVIW [12] 0.1935 0.2291 78.49 200 40 8000
PSO-TVAC [12] 0.3921 0.4724 78.7 200 40 8000

SPSO-TVAC [12] 0.2074 0.2498 74.9 200 40 8000
PSO-CF [12] 0.1801 0.2143 78.13 200 40 8000
PG-PSO [12] 0.1658 0.2084 51.24 200 40 8000

SWT-PSO [12] 0.1658 0.2084 51.24 200 40 8000
PGSWT-PSO [12] 0.2355 0.2755 114.5 200 40 8000

IPG-PSO [12] 0.162 0.1923 47.86 200 40 8000
QOTLBOA [17] 0.191 0.2043 - 100 50 10,000

TLBOA [17] 0.2237 0.2306 - 100 50 10,000
ALO 0.2681 0.379 45.730 250 30 7500
IALO 0.1663 0.193 45.879 250 30 7500

Table 10. Result comparison of L-index for IEEE 118-bus system

Method Minimum
L-Index (pu)

Mean
L-Index (pu)

CPU Time
(s) ITmax Np Nnus

PSO-TVIW [12] 0.0606 * 0.0607 119.66 200 40 8000
PSO-TVAC [12] 0.0607 * 0.0609 119.22 200 40 8000

SPSO-TVAC [12] 0.0607 * 0.0608 119.16 200 40 8000
PSO-CF [12] 0.0606 * 0.0607 119.86 200 40 8000
PG-PSO [12] 0.0654 * 0.0656 119.65 200 40 8000

SWT-PSO [12] 0.0587 * 0.0608 58.45 200 40 8000
PGSWT-PSO [12] 0.0574 * 0.0605 56.43 200 40 8000

PSO-IPGS [12] 0.0568 * 0.0569 55.62 200 40 8000
QOTLBOA [17] 0.0608 0.0631 - 100 50 10,000

TLBOA [17] 0.0613 0.0626 - 100 50 10,000
ALO 0.0609 0.0612 57.379 250 30 7500
IALO 0.0606 0.0608 46.043 250 30 7500
IALO 0.0568 * 0.0569 45.891 250 30 7500

* Methods were run by setting lower and upper bounds of load voltage to 0.9 and 1.1 pu.

7. Conclusions

In this paper, the proposed IALO method has been applied for dealing with three systems of
ORPD problem with 30, 57 and 118 buses. The proposed method has been proved to be much more
effective than its conventional ALO method, especially for the largest scale system with 118 buses. For
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the first system with 30 buses, it has been demonstrated that the proposed method could be three
time faster than ALO whereas it still found better optimal solutions. Furthermore, the improvement
level of the proposed method over ALO for the IEEE 30-bus system was 1.867%, 26.09% and 0.56%
corresponding to TPL, TVD and L-index. For the IEEE 57-bus system, the improvement level was up to
2.77% for TPL and 16.47 % for TVD. For the IEEE 118-bus system, the proposed method could improve
results up to 1.764%, 37.958% and 0.25% for TPL, TVD and the L-index, respectively. The comparisons
with other existing methods have also shown the superiority of the proposed method since it could
reach optimal solutions with better quality but it used smaller number of newly updated solutions
and took shorter computation time. As compared to other methods, the proposed method could
improve the best optimal solution significantly for the three power systems. For the IEEE 30-bus
system, the improvement level was 8.63% for TPL, 57.32% for TVD and 7% for the L-index. For the
IEEE 57-bus system, the improvement level was 13% for TPL and 16% for TVD. For the IEEE 118-bus
system, the improvement level was much higher and equal to 13.03% for TPL, 92.561% for TVD and
56.306% for the L-index. Consequently, it can be concluded that the proposed IALO should be used for
the ORPD problem and it can be tried for other problems in power systems.
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Abbreviations

ABCA Artificial bee colony algorithm
ACC Average convergence characteristic
BA Bat algorithm
BCC Best convergence characteristic
CGA Coded genetic algorithm
CSA Cuckoo search algorithm
FPA Flower Pollination Algorithm
GSA Gravitational search algorithm
GWOA Grey wolf optimization algorithm
HEP Hybrid evolutionary programming
ICA Imperialist competitive algorithm
IEEE Institute of Electrical and Electronics Engineers
KHA Krill herd algorithm
PG-PSO Pseudo-gradient based particle swarm optimization
PGSWT-PSO Particle swarm optimization with pseudo-gradient search and stochastic weight
PSO Particle swarm optimization
PSO-CF Constriction factor based particle swarm optimization
PSO-TVAC Time varying acceleration coefficients based particle swarm optimization
PSO-TVIW Time varying inertia weight based particle swarm optimization
SCA Sine cosine algorithm
SGA Simple genetic algorithm
SPSO-TVAC Time varying acceleration coefficients based self-organizing particle swarm optimization
SWT-PSO Stochastic weight trade-off based particle swarm optimization
TLBOA Teaching learning based optimization algorithm
TPL Total power losses
TVD Total voltage deviation
WCA Water cycle algorithm
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Nomenclature

ALmin, ALmax Lower and upper bounds of N variables
ALrou Position of antlion selected by roulette wheel
ALs Position of sth antlion in the search space
ALs Position of the sth antlion
Ants Position of the sth ant
Ants Practical position of ant s in the search space
APdk, RPdk Active and reactive power of the kth load bus
APGk, RPGk Active and reactive power of the kth generator
APGk,min, APGk,max Lower and upper bounds of active power of generator bus k
FitAs Fitness function of the sth ant
Fits Fitness function of the sth ant
gkj Line conductance between buses k and j
Gkj, Bkj Real and imaginary components of admittance between bus k and bus j
IEPs Individual error percent between the best fitness and the fitness of antlion s
IT Current iteration
ITmax Maximum number of iterations
K1, K2, K3 Penalty factors
L-index Maximum voltage stability index of all buses
Lk Voltage stability index of the kth bus
MEP Mean error percent between the best fitness and the average fitness of all antlion
NB Number of all buses
Nbranch Number of transmission lines
NC Number of capacitor banks
NCV Number of control variables
NG Number of generators
NL Number of load buses
Nnus Number of newly updated solutions
Np Population
NT Number of transformers
Objectives Objective function value of the sth solution
RPck Reactive power of shunt VAR compensator at the kth bus
RPck,min, RPck,max Minimum and maximum reactive power of shunt VAR compensator at the kth bus
RPGk,min, RPGk,max Minimum and maximum reactive power of the kth generator
RWs Random walk for the sth ant
RWs,min, RWs,max Lower and upper limitations of random walk of the sth ant
Sb,max Maximum apparent power flow on the bth branch
Tk,min, Tk,max Lower and upper bounds of change of transformer’s tap of the kth bus
Tol Predetermined tolerance
VLk Relative voltage value at the kth load bus
VolGk,min, VolGk,max Lower and upper bounds of voltage magnitude of the kth generator bus
Volk voltage magnitude of the kth bus
VolLk,min, VolLk,max Lower and upper bounds of voltage magnitude of the kth load bus
Vrefk Reference voltage magnitude (normally 1.0 pu) at bus k
XEIT

s Position of ant s in pit of the best antlion
XAIT

s Position of ant s in pit of the sth antlion selected by roulette wheel
XAIT

s,min, XAIT
s,max Lower and upper bounds of N variables of the sth ant at the ITth iteration

Ykj Mutual admittance between bus k and bus j
ϕkj The deviating angular between buses k and j
Gkj, Bkj Real and imaginary components of admittance between bus k and bus j
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Appendix A

Table A1. Optimal solutions obtained by the proposed IALO method for the IEEE 30-bus system.

Input/Control Variables Minimize TPL Minimize TVD Minimize L-Index

VG1 (pu) 1.1 1.0999 1.0101
VG2 1.0938 1.0947 1.0051
VG5 1.0733 1.0987 1.0193
VG8 1.076 1.0814 1.0101
VG11 1.0999 1.1 1.0013
VG13 1.1 1.1 1.01

QC10 (MVAR) 4.9554 0.5071 4.9879
QC12 5 0.6712 4.8815
QC15 5 2.6526 4.6286
QC17 5 1.4524 0.0435
QC20 3.8685 1.0391 4.995
QC21 5 4.9339 4.9367
QC23 2.8684 0.3207 5
QC24 4.9993 0.4495 5
QC29 2.5731 1.2862 2.9393
T11 1.044 0.9827 1.0149
T12 0.9008 0.9004 0.9002
T15 0.9791 0.9561 0.9848
T36 0.9676 0.9518 0.9695

Table A2. Optimal solutions obtained by the proposed IALO method for the IEEE 57-bus system.

Input/Control Variables Minimize TPL Minimize TVD

VG1 (pu) 1.1 1.0154
VG2 1.0982 0.971
VG3 1.0869 1.0128
VG6 1.0803 1.0033
VG8 1.1 1.0182
VG9 1.083 1.0319
VG12 1.0784 1.0106

QC18 (MVAR) 10 0
QC25 5.8993 5.8009
QC53 6.293 6.2833
T19 0.8701 1.0199
T20 1.0978 0.9424
T31 1.0031 0.9765
T35 0.922 0.9924
T36 0.9825 0.9563
T37 0.9985 1.0309
T41 0.9778 0.9591
T46 0.9405 0.9258
T54 0.9072 0.8
T58 0.973 0.9566
T59 0.9628 0.9989
T65 0.9773 1.0163
T66 0.9378 0.8516
T71 0.9684 1.0087
T73 0.9955 1.0973
T76 0.962 0.9426
T80 0.9784 0.9976
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Table A3. Optimal solution obtained by the proposed IALO method for the TPL objective of the IEEE
118-bus system.

Input/Control
Value

Input/Control
Value

Input/Control
Value

Variables Variables Variables

VG1 (pu) 1.0302 VG62 1.0424 VG113 1.0435
VG4 1.0469 VG65 1.0532 VG116 1.0485
VG6 1.0395 VG66 1.0669 QC5 (MVAR) −38.1239
VG8 1.0214 VG69 1.07 QC34 13.9061
VG10 1.057 VG70 1.0367 QC37 −24.9417
VG12 1.0382 VG72 1.0355 QC44 9.9999
VG15 1.0357 VG73 1.0336 QC45 9.3003
VG18 1.0396 VG74 1.023 QC46 10
VG19 1.0398 VG76 1.0218 QC48 6.8292
VG24 1.0386 VG77 1.0387 QC74 6.3917
VG25 1.0712 VG80 1.0514 QC79 19.9965
VG26 1.1 VG85 1.0455 QC82 0.0023
VG27 1.0452 VG87 1.0222 QC83 9.9982
VG31 1.0418 VG89 1.0664 QC105 15.4703
VG32 1.0382 VG90 1.0416 QC107 3.4948
VG34 1.0418 VG91 1.0416 QC110 1.1572
VG36 1.0389 VG92 1.056 T8 (pu) 0.9575
VG40 1.0227 VG99 1.0402 T32 1.0994
VG42 1.0315 VG100 1.0482 T36 0.992
VG46 1.0418 VG103 1.0388 T51 0.9696
VG49 1.0523 VG104 1.0341 T93 0.9594
VG54 1.0338 VG105 1.0293 T95 0.9934
VG55 1.0307 VG107 1.0156 T102 1.0884
VG56 1.0329 VG110 1.0258 T107 0.922
VG59 1.0575 VG111 1.0328 T127 0.9734
VG61 1.0521 VG112 1.0113

Table A4. Optimal solution obtained by the proposed IALO method for the TVD objective of the IEEE
118-bus system.

Input/Control
Value

Input/Control
Value

Input/Control
Value

Variables Variables Variables

VG1 (pu) 1.0035 VG62 0.9572 VG113 1.0112
VG4 1.0047 VG65 1.0487 VG116 0.9943
VG6 0.9941 VG66 1.0475 QC5 (MVAR) −23.9108
VG8 0.9691 VG69 0.9622 QC34 5.2041
VG10 1.0159 VG70 1.0318 QC37 −24.8573
VG12 1.011 VG72 0.9588 QC44 7.6446
VG15 1.0017 VG73 0.9689 QC45 9.9159
VG18 0.9851 VG74 1.0123 QC46 9.9984
VG19 1.0335 VG76 1.0141 QC48 0.6712
VG24 1.0314 VG77 1.0062 QC74 11.9865
VG25 0.9555 VG80 1.0216 QC79 5.7315
VG26 0.9728 VG85 1.0131 QC82 19.1521
VG27 1.0079 VG87 1.0019 QC83 9.9215
VG31 1.0029 VG89 1.0063 QC105 14.5883
VG32 1.0025 VG90 1.088 QC107 5.6001
VG34 1.0116 VG91 0.951 QC110 5.9861
VG36 0.998 VG92 1.0038 T8 (pu) 0.9896
VG40 1.0037 VG99 0.95 T32 1.0338
VG42 1.0176 VG100 1.0261 T36 1.0251
VG46 1.0397 VG103 1.0896 T51 0.9586
VG49 1.0037 VG104 0.95 T93 1.0462
VG54 1.0235 VG105 1.0073 T95 0.9408
VG55 1.057 VG107 1.0029 T102 0.9878
VG56 1.0156 VG110 0.9943 T107 0.9511
VG59 0.9606 VG111 0.9599 T127 0.964
VG61 1.0162 VG112 0.9503
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Table A5. Optimal solution obtained by the proposed IALO method for the L-index objective of the
IEEE 118-bus system.

Input/Control
Value

Input/Control
Value

Input/Control
Value

Variables Variables Variables

VG1 (pu) 1.0287 VG62 1.0286 VG113 0.9516
VG4 0.9625 VG65 1.0372 VG116 1.0146
VG6 0.9964 VG66 0.9692 QC5 (MVAR) −2.4587
VG8 1.0238 VG69 0.9559 QC34 12.654
VG10 1.0211 VG70 1.0545 QC37 −21.6598
VG12 1.0304 VG72 1.0858 QC44 4.7204
VG15 1.0373 VG73 0.9725 QC45 6.6188
VG18 1.0088 VG74 0.9929 QC46 0.2269
VG19 1.0518 VG76 0.9544 QC48 0
VG24 1.1 VG77 1.0055 QC74 12
VG25 1.0161 VG80 1.0402 QC79 15.6268
VG26 1.0913 VG85 1.0056 QC82 6.1906
VG27 1.0609 VG87 0.9953 QC83 1.7798
VG31 0.9611 VG89 1.0716 QC105 19.6022
VG32 0.9504 VG90 1.0223 QC107 5.8634
VG34 1.061 VG91 0.95 QC110 5.9739
VG36 1.0082 VG92 1.0385 T8 (pu) 1.1
VG40 0.9831 VG99 1.0911 T32 0.9388
VG42 1.0254 VG100 0.95 T36 0.9506
VG46 1.1 VG103 0.9504 T51 0.986
VG49 1.0444 VG104 0.9537 T93 0.9504
VG54 1.0551 VG105 0.9502 T95 0.9837
VG55 1.0672 VG107 1.0683 T102 1.0077
VG56 1.0325 VG110 0.9576 T107 1.0969
VG59 0.9661 VG111 0.9739 T127 1.0099
VG61 0.9853 VG112 0.9655
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32. Yalçın, E.; Taplamacıoğlu, M.C.; Çam, E. The Adaptive Chaotic Symbiotic Organisms Search Algorithm
Proposal for Optimal Reactive Power Dispatch Problem in Power Systems. Electrica 2019, 19, 37–47.
[CrossRef]

33. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
34. Subhashini, K.R.; Satapathy, J.K. Development of an enhanced ant lion optimization algorithm and its

application in antenna array synthesis. Appl. Soft Comput. 2017, 59, 153–173. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2015.01.006
http://dx.doi.org/10.1080/15325008.2015.1112449
http://dx.doi.org/10.1016/j.ijepes.2016.03.039
http://dx.doi.org/10.1109/TPWRS.2009.2021226
http://dx.doi.org/10.1016/j.ijepes.2010.11.018
http://dx.doi.org/10.1049/iet-gtd.2011.0681
http://dx.doi.org/10.1016/j.ijepes.2013.04.011
http://dx.doi.org/10.1049/iet-gtd.2015.0077
http://dx.doi.org/10.1016/j.jestch.2017.03.006
http://dx.doi.org/10.1108/COMPEL-05-2018-0208
http://dx.doi.org/10.1007/s00202-016-0410-5
http://dx.doi.org/10.1109/JSYST.2016.2573799
http://dx.doi.org/10.1016/j.epsr.2017.09.001
http://dx.doi.org/10.1016/j.asoc.2017.04.048
http://dx.doi.org/10.1016/j.eswa.2017.06.009
http://dx.doi.org/10.1109/EEEIC.2017.7977592
http://dx.doi.org/10.1016/j.asoc.2017.05.057
http://dx.doi.org/10.4028/www.scientific.net/JERA.36.12
http://dx.doi.org/10.1007/s00521-019-04073-4
http://dx.doi.org/10.1109/ITCE.2019.8646460
http://dx.doi.org/10.1109/ITCE.2019.8646363
http://dx.doi.org/10.26650/electrica.2019.18008
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1016/j.asoc.2017.05.007


Energies 2019, 12, 2968 31 of 31

35. Rajan, A.; Jeevan, K.; Malakar, T. Weighted elitism based Ant Lion Optimizer to solve optimum VAr planning
problem. Appl. Soft Comput. 2017, 55, 352–370. [CrossRef]

36. Dinkar, S.K.; Deep, K. An efficient opposition based Lévy Flight Antlion optimizer for optimization problems.
J. Comput. Sci. 2018, 29, 119–141. [CrossRef]

37. Kılıç, H.; Yüzgeç, U. Tournament selection based antlion optimization algorithm for solving quadratic
assignment problem. Eng. Sci. Technol. Int. J. 2019, 22, 673–691. [CrossRef]

38. Nguyen, T.T.; Vo, D.N. Modified cuckoo search algorithm for multiobjective short-term hydrothermal
scheduling. Swarm Evol. Comput. 2017, 37, 73–89. [CrossRef]

39. Nguyen, T.T.; Nguyen, T.T.; Vo, D.N. An effective cuckoo search algorithm for large-scale combined heat and
power economic dispatch problem. Neural Comput. Appl. 2018, 30, 3545–3564. [CrossRef]

40. Nguyen, T.T.; Vu Quynh, N.; Duong, M.Q.; Van Dai, L. Modified differential evolution algorithm: A novel
approach to optimize the operation of hydrothermal power systems while considering the different constraints
and valve point loading effects. Energies 2018, 11, 540. [CrossRef]

41. MATPOWER 4.1. Available online: http://www.pserc.cornell.edu/matpower (accessed on 1 November 2018).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.asoc.2017.02.010
http://dx.doi.org/10.1016/j.jocs.2018.10.002
http://dx.doi.org/10.1016/j.jestch.2018.11.013
http://dx.doi.org/10.1016/j.swevo.2017.05.006
http://dx.doi.org/10.1007/s00521-017-2941-8
http://dx.doi.org/10.3390/en11030540
http://www.pserc.cornell.edu/matpower
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Formulation 
	Objective Function 
	Considered Constraints 
	Equality Constraints 
	Inequality Constraints 

	Control Variables 

	Conventional Antlion Optimization Algorithm (ALO) 
	Building Traps 
	Random Walking of Ants 
	Trapped Ants 
	Catching Preys and Rebuilding Trap 
	The Whole Search Process of ALO Method 

	Improved Antlion Optimization Algorithm (IALO) 
	Review on Previous Improved Antlion Optimization Algorithm 
	Improved Antlion Optimization Algorithm (IALO) 
	Two Proposed Modifications 
	The First Modification 
	The Second Modification 


	Using the Proposed IALO Method for ORPD Problem 
	Selection of Control Variables for Each Solution and Generation of Initial Population 
	Calculate Fitness Function 
	Processes of Newly Updated Solutions 
	Handling Violation of Control Variables 
	Computation Termination Condition 
	The Entire Computation Procedure 

	Numerical Results 
	Comparisons of Results from IEEE 30-Bus System 
	Testing the Effectiveness of Two Modifications on the Proposed Method 
	Comparing the Proposed Method with Other Existing Ones 

	Comparisons of Results from IEEE 57-Bus System 
	Result Comparison for IEEE 118-Bus System 

	Conclusions 
	
	References

