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Abstract: Concentrating Photovoltaic Thermal (C-PVT) solar collectors produce both thermal and
electric power from the same area while concentrating sunlight. This paper studies a C-PVT design
where strings of series-connected solar cells are encapsulated with silicone in an aluminium receiver,
inside of which the heat transfer fluid flows, and presents an evaluation on structural integrity
and performance, after reaching stagnation temperatures. Eight test receivers were made, in which
the following properties were varied: Size of the PV cells, type of silicone used to encapsulate
the cells, existence of a strain relief between the cells, size of the gap between cells, and type of
cell soldering (line or point). The test receivers were placed eight times in an oven for one hour
at eight different monitored temperatures. The temperature of the last round was set at 220 °C,
which exceeds the highest temperature the panel design reaches. Before and after each round in the
oven, the following tests were conducted to the receivers: Electroluminescence (EL) test, IV-curve
tracing, diode function, and visual inspection. The test results showed that the receivers made
with the transparent silicone and strain relief between cells experienced less microcracks and lower
power degradation. No prototype test receiver lost more than 30% of its initial power, despite some
receivers displaying a large number of cell cracks. The transparent and more elastic silicone is better
at protecting the solar cells from the mechanical stress of thermal expansion than the compared
silicone alternative, which was stiffer. As expected, larger cells are more prone to develop microcracks
after exposure to thermal stress. Additionally, existing microcracks tend to grow in size relatively fast
under thermal stress. EL imaging taken during our experiment leads us to conclude that it is far more
likely for existing cracks to expand than for new cracks to appear.

Keywords: stagnation temperature; electroluminescence test; [V-curve; concentration; PVT

1. Introduction

Photovoltaic thermal (PVT) solar panels produce both thermal and electric power from the same
area. Combining solar thermal and photovoltaic production can be a way to increase the efficiency of
silicone cells by reducing the working temperature through active cooling [1-4].

Additionally, the concentration has the potential to allow cost reduction by decreasing the receiver
size in the panel. In fact, according to Giovinazzo et al., the biggest advantage of this type of collector
design is to decrease material cost by reducing the amount of expensive components utilized such as
solar cells, thermal receiver and/or selective surface [1].

This way, combining concentration with PVT (C-PVT) can also prove to be advantageous. However,
concentrating does not only bring advantages. For non-tracking PVT collectors, one disadvantage
is the longitudinal shading caused by the frame or the absence of reflector at larger solar incidence
angles. This can have a very large impact, particularly on the electrical performance, if measures such
as placing extra diodes are not taken [3].
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Apart from performance and cost, another key aspect in solar collectors design is durability.
Solar collectors must survive 20 years outdoors in order for the owners to be able to profit from the
installation and this carries implications in terms of UV and temperature resistance. The stagnation
temperature of a collector is reached when the heat losses are equal to the energy received from the
sun [5-7]. This basically means that all incoming solar radiation is transferred to the surrounding
environment either as heat losses or as optical losses. A particularly important disadvantage of
concentration is the increase of the stagnation temperature, which can cause damage to the materials of
the collector, in particular to the solar cells [1]. This issue will be covered in detail in this paper, namely,
the survivability of the solar cells under stagnation conditions.

Hot-spots are a commonly known problem in PV panels that can lead to module failure [8-11]
with much attention being given by researchers to developing methods for non-intrusive detection
and prevention of hot-spots [10,11]. Extensive research has also been carried out on optimal power
point tracking under shading or differential light conditions [11,12] and in the reduction of the impact
of shading in the electrical output [3]. PVT panels have the ability to cool down the solar cells and,
thus, the PV cells are not exposed, on a daily basis, to the same level of temperature variation as a PV
panel. Since this temperature variation carries an inherent thermal stress, cooling the cells is expected
to increase the longevity of the solar cells [1]. However, in the event of a system malfunction, such as
pump failure, stagnation temperatures can be reached in a PVT, which means that the materials in these
collectors either need to be able to withstand the stagnation temperatures, or there must be a system in
place to prevent reaching stagnation, such as a tracker that moves away from the sun [3]. Either way,
although PVT have less risk of hot-spot formation due to the heat extraction, this is still possible. It is
important to mention that hot-spots are more problematic in concentrating PV or PVT panels, since
stagnation temperature is generally higher than in a non-concentrating PV or PVT panels [1].

The most critical part in the manufacture of the PVT collector is the receiver [13,14]. A major
technical design difficulty for PVT collectors is to find a material for encapsulating the solar cells that is
able to effectively conduct the heat from the solar cells to the receiver while still maintaining a number
of critical characteristics such as high electrical insulation, high transparency, low cost, ability to cope
with thermal stress in order to protect the solar cells, resistance to moisture penetration, resistance
to UV, and achieve a durability of 20 years or more. This difficulty is even more severe in C-PVT,
since they face higher stagnation temperatures.

The electroluminescence test (EL) is a powerful tool commonly used to control the quality of the
PV cell strings which is used by both research and industry [15,16]. Using this technique, it is possible
to identify defects that are not visible to the naked eye such as microcracks and black (or so called
“dead”) areas. These two defects are the principal cause of power losses in the cell strings, a fact which
can be confirmed in the IV-Curve test. [16]

A C-PVT prototype collector was designed to produce 240 W (electricity) and 1250 W (thermal).
An installation with eight prototype C-PVT collectors was carried out. The collectors were found to
produce only 1200 W (el) directly after being installed. One day later, during which the stagnation
temperature was reached, the production was found to have degraded significantly to 200 W (el).
This incident highlighted to the authors the importance of the impact of stagnation temperatures in
the performance of C-PVT collectors. This paper evaluates potential solutions to the mechanical stress
induced by the thermal expansion caused by reaching stagnation temperature.

Problems with the manufacturing process of the prototypes, in particular, with the manual solar
cell soldering, account for the difference between the installation expected electrical output of 1920 W
and the initial measured electrical output of 1200 W. Such issues can easily be eliminated by automation
of the cell soldering process with an automatic tabbing stringer machine, which the production company
accomplished following the discovery of the above mentioned issue, and are thus not analyzed in
the paper. However, a more important issue that was highlighted with this prototype installation,
consisted in the post-stagnation electrical power reduction. A number of hypotheses on the possible
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reasons for this decrease, such as the encapsulation silicone or the intermetallic compounds, have been
identified. A set of tests was designed with the goal of gathering data to evaluate each hypothesis.

This paper builds upon the work of Gomes et al. presented at the Solar World Congress in 2015,
which presented an early evaluation of the impact of stagnation in PVT receivers [17]. Although
addressing a relevant and novel topic for the construction of PVT receivers, this preliminary work
required further clarification on points such as: ensuring the repeatability of the protocol by fully
detailing the method and the equipment; presenting in a clear manner vital information such as the
collector parameters and adding a section on the calculation of the stagnation temperature; a more in
depth discussion of the results, namely by expanding the analysis of the thermal stress test results
and adding a section on the evaluation of microcracks under electroluminescence; the introduction
was also expanded with several new references to more adequately portray the state-of-the-art in PVT
collectors and the use of EL methods.

This paper presents a novel study on tackling thermal stress challenges in C-PVT collectors using
silicone-based encapsulation techniques.

2. Materials and Method

2.1. Description of the Prototype Collector and the Properties of Its Components

Figure 1 shows a schematic of the prototype collector viewed from the top, while Figure 2 shows
an image of the actual prototype. The total size of the collector is 2.31 X 0.955 m. The length of the
thermal receiver is 2.290 m and the height is 0.158 m.
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Figure 1. Top view of the C-PVT collector. The water connections are marked in blue and the electrical
connections in red [2].

Figure 2. Prototype C-PVT collector.

The manufacturer specifies an overall thermal efficiency of 52%. Furthermore, the linear loss
coefficient a is 3.47 W/(m?K) [18]. Furthermore, the temperature dependence electrical coefficient has
been tested by Bernardo et al. and found to be 0.4%/K. [2]

The following list shows some of the key components of the prototype collector:
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Reflector: The reflector geometry of the prototype collector was initially developed by the
Swedish company Vattenfall AB. The design is called Maximum Reflector Concentration (MaReCo),
which belongs to a family of stationary reflectors patented by the company Solarus Sunpower AB.
The reflector is composed of a compound parabolic and circular reflective that concentrates the solar
radiation onto the receiver. Adsten et al. describe the geometry in full detail [19,20]. The reflector is
purchased from Almeco and has a total solar reflectance piota; 0f 95%.

Receiver: The receiver is an aluminium extrusion that is 2.29 m long. A maximum expansion
of 8mm has been calculated for a temperature variation between —20 °C and 150 °C based on linear
temperature expansion. Solar cells and silicone are laminated on both sides of the receiver with one
side facing the receiver and one side facing the reflector.

Cell encapsulation and Silicone: Cell encapsulation is done with two layers of silicone purchased
from Wacker. A bottom layer of 0.5 mm that located between the receiver aluminium core and the
solar cells and a top layer of 1 mm located between the solar cells and the air inside the collector box.
In the prototypes created for the tests, two types of silicone gels are used:

e A highly transparent and electrically insulating silicone (Elastosil 3201), which can be used both
for the top layer and bottom layer. Thermal conductivity is 0.2 W/mK.

e A reddish brown silicon (RT 740) that has the same electrical insulation properties as 3201 but has
an improved thermal conductivity 0.5 W/mK which would allow more heat to be transferred from
the cells to the receiver over the thin layer of silicon. It is important to note that this silicone can
only be used in the bottom layer since it is not transparent and if used on the top layer would
block the sunlight from reaching the cells. Another important point is that the red silicone is
considerably stiffer than the transparent silicone, and thus transmits more thermal stress to the
cells when the receiver experiences thermal expansion.

Standard Solar Cells: Each receiver side has two strings of 38 PV cells connected in parallel.
Each receiver has two sides with cells: (a) the front side, which faces the glass, and (b) the back side,
which faces the reflector. For the receivers tested in this paper, two cell sizes were used: (a) 28 x 148 mm
and (b) 52 x 148 mm. A prototype C-PVT collector using cells with 52 X 148 mm would have 152 cells
in total. These cells were laser cut in order to obtain these sizes. The goal of cutting the cells is to lower
the current though the cell, which is specifically important for concentrating collectors.

Cell interconnecting Copper Ribbon: This is the small copper strip that connects the solar cells.
In the industry, it is commonly called cell ribbon. Ribbon dimension is 1.6 mm X 0.2 mm with a
total thickness of 0.2 mm. The coating of the ribbon is composed of 96.5% Tin and 3.5% Silver with
a thickness varying between 16 and 24 pum. Yield strength is 90 N/mm? (max), tensile strength is
210/mm? (max) and elongation is 25% (minimal) According to the manufacturer (Ulbrich), this ribbon
has a melting temperature of 220 °C.

Glass: The module contains a glazed protection which is made of SunArc low iron glass with a
solar weighted transmittance Tgjass of 95%.

2.2. Description of the Implications of the Stagnation Temperature for the C-PVT Prototype Collectors

Eight C-PVT collectors and six concentrating thermal (T) collectors were installed in a warm
country as show in Figure 3. The eight C-PVT collectors were connected to eight micro-inverters.
Four thermal loops were connected to a central tank. Three of these loops contained two PVTs and
two Ts while one loop contained only two PVT collectors.



Energies 2019, 12, 2967 5 0f 20

Figure 3. Prototype installation consisting of eight C-PVT collectors (closer) and six concentrating
thermal collectors (farther).

The water outlet was not connected in the first day, when the collector was uncovered. Since it was
a very sunny and warm summer day, this implies that the collector has reached stagnation temperature,
which has been calculated to be around 180 °C.

The electrical power of this prototype installation was monitored. After the first hour of exposure
to sunlight without cooling, the combined output of the eight PVT’s was found to be only 1200 W
instead of the expected 1920 W. In the following day, also at peak sun, the electrical production of the
installation was again measured and it had been greatly reduced to only 200 W.

The above measurements highlight two serious issues with this prototype installation:

1.  The first concerns the measured electrical output of 1200 W, which is well below the 1920 W
that would be expected according to the datasheet supplied by manufacturer where each of the
eight collectors produces 240 W. This output decrease is likely to originate in the manufacturing
process. The company that produced the prototypes is not only aware that this decrease is caused
by the manual hand soldering process as they have also solved this issue by purchasing of an
automatic tabbing stringer machine.

2. The second and most important issue is the reduction of the electrical power from 1200 to 200 W
that the installation displayed in the second day, after cooling down and reaching stagnation
again. This second issue is certainly not due to the manufacturing process but to the actual
collector design and material selection. It is also important to mention that this power reduction
is not so pronounced, if high temperatures are not reached, as shown by other tests.

Four hypotheses on the possible reasons for this large decrease (from 1200 to 200 W) have been
identified and are described below:

e The diodes broke down due to the high temperature.

e  The thermal expansion of the copper cell ribbon has damaged the cells.

e  The thermal expansion of the aluminium receiver has damaged the cells.

e  The high stagnation temperature has caused the copper ribbon to unsolder, cutting the electrical
path to the inverter.

The thermal part of the C-PVT installation was not negatively affected in any way by stagnation.
No water leaks were found, as well as no reduction in thermal power output. In fact, a slight thermal
output increase has been measured, since the solar cells stopped converting the incoming solar
irradiation into electricity and that solar radiation became heat instead.

2.3. The Prototype Receivers

In order to discover the cause of the electrical performance reduction, eight prototype small
receivers were manufactured at the company that made the prototypes C-PVT in the installation.
Table 1 summarizes the characteristics of each small receiver. Appendix A presents a picture of each of
this receivers for completeness.
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Table 1. Characteristics of the eight small receivers.

Receiver  Cell Size Cell Number Cell Gap Soldering Silicone Layers Tabbing Strip

Receiver 1 1/6 7 No Line Red-Transparent Straight
Receiver 2 1/6 6 No Line Both transparent Straight
Receiver 3 1/6 6 Yes Line Red-Transparent Strain Relief
Receiver 4 1/6 6 Yes Line Both transparent Strain Relief
Receiver 5 1/6 6 Yes Two Points  Both transparent Strain Relief
Receiver 6 1/6 7 No One Point ~ Both transparent Straight
Receiver 7 1/3 4 Yes Line Both transparent Strain Relief
Receiver 8 1/3 4 No One Point  Both transparent Straight

The eight receivers were identical with the exception of the six parameters that were varied:
Cell size, cell gap, number of cells, type of soldering, type of silicon used and existence of a strain relief.
Four of this six parameters are further explained below:

e  Two cell sizes were used: 1/3 (52 X 148 mm) and 1/6 (28 x 148 mm);

e  The cell gap is the space between the cells. The word “No” means that the small standard cell gap
of 0.5mm was utilized, while “Yes” means a longer gap (triple of the standard gap);

e  The strain relief is an exaggerated “s” shape bent in the tabbing strip between each cell. The goal
is that this shape absorbs the thermally-induced mechanical stress, instead of the cells.

e  Asmentioned earlier the silicone is applied in two layers. An initial bottom layer that is placed on
the aluminium receiver before the cells and a top layer that is placed at the same time as the solar
cells, after the initial bottom layer of silicone has already solidified. Two types of silicone were

used, as described in Section 2.1.

2.4. Test Method and Equipment

The testing procedure consisted of submitting each receiver to eight rounds of gradually increasing
temperatures inside an oven for a duration of one hour. In the first round the receiver temperature
was raised from room temperature to 60 °C, and in the next rounds from room temperature to 80 °C,
100 °C, 130 °C, 150 °C, 180 °C, 200 °C, and finally to 220 °C. This process was repeated in exactly the
same manner for all receivers. The Table 2 below describes the heating rounds:

Table 2. The heating rounds for the receivers. (Each round consisted of 1 h inside the oven and 3 h of
cooling at room temperature).

Baseline (Round 0) Receiver at Room Temperature
Round 1 60 °C
Round 2 80 °C
Round 3 100 °C
Round 4 130 °C
Round 5 150 °C
Round 6 180 °C
Round 7 200 °C
Round 8 220 °C

It is important to point out that the collectors stagnation temperature is 180 °C. Nevertheless,
the tests at 200 °C and 220 °C give interesting results in order to determine a safety margin.
Before and after each thermal cycle round, the following parameters were recorded:

e  Electroluminescence Test: IR photograph of the cells on the receiver was made using a Digital Rebel
XTi Black Canon Camera without an IR filter. The system features an image size of (3888 x 2592)
in RAW format with 10 megapixels. The test was done in a completely dark chamber. Cells were
in forward bias with a current close to 4A. This test allowed the team to spot microcracks that
would otherwise not be visible to the naked eye.
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e  Diode Function test, which yielded a response of working or not working.

e  Visual Inspection, which consisted in a simple visual check to the overall condition of the cells,
discoloration of the silicone or any other potential issue.

e IV Curve test with an IV tracer in a solar simulator. The following parameters were measured:
Short circuit current (Isc), open circuit voltage (Voc), current at maximum power point (Imp),
voltage at maximum power point (Vmp), maximum power point (Pmax) and fill factor (FF).

The indoor solar simulator shown in Figure 4 was utilized for the IV-curves. It consists of two
rows of 8 halogen light bulbs each with 1000 W of power. As in many solar simulators, the light
distribution and spectrum can be a draw-back, since it is understandably hard to simulate the energy
coming from the sun, a stellar object that is a nearly perfect sphere of hot plasma with a diameter
of 1.39 million kilometers and a mass that is about 330,000 times that of Earth. Regardless, for the
objective of the comparative measurements between receivers, this solar simulator is well suited.

Figure 4. The solar simulator for the indoor measurements.

An important consideration about these eight prototype receivers is that the cells were soldered
manually which means that some microcracks arise from the production process that would not occur
in automatic cell soldering production. This means that the baseline round was a fundamental check
to account for damages that were not caused by the stagnation.

3. Results and Discussion

3.1. Calculation of the Stagnation Temperature for the C-PVT Prototype

The thermal efficiency curve of the prototype C-PVT can be calculated by using the simplified
Equation (1):
NThermal = N0 + @ X (Tmed = Tamb), 1)

where 1 is the optical efficiency of the prototype collector when electricity is being extracted, a is the
heat loss factor, Teq is the average temperature of the collector and Ty is the ambient temperature.

In this manner, and using the collector data detailed in Section 2.1, the resulting efficiency curve is
shown in Figure 5:
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Figure 5. Thermal efficiency curve of the prototype collector.
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Based on the ISO 9806 [5,6] and the summary report on stagnation temperature [7], the stagnation
temperature of the prototype collector is given by the no flow temperature reached by the collector
(under a radiation of 1000 W/m2 and a wind speed below 1 m/s) summed to an ambient temperature
of 30 °C. This gives a stagnation temperature of 150 + 30 = 180 °C.

3.2. Evaluation of Microcracks under Electroluminescence

Figure 6a shows the baseline scenario (ambient temperature) of receiver 1 and the red circles
highlight small microcracks that are caused by manufacturing while Figure 6b shows how these
initial microcracks have expand in size after being heated in successive rounds, until the round with a
temperature of 130 °C. Additionally, Figure 6b shows that new microcracks have appeared, although
the majority of the cracks come from the expansion of initially existing cracks.

Figure 6. EL test of receiver 1: (A) Baseline (ambient temperature); (B) After the round at 130 °C.

Figure 7 shows the status of receiver 1 after the round 200 °C. Adding to the microcracks, there is
also a completely black cell highlighted in orange, which means that there is a short circuit between top
and bottom of the cell, potentially caused by the top and bottom ribbon coming into contact through
the broken cell.

Figure 7. EL test of receiver 1 after the round at 200 °C.

Figure 8 shows receiver 5 at the baseline and at 200 °C. The red circles show again microcracks
caused by the manual production process and their expansion when heated up, although in this
receiver the cracks take longer to expand. The yellow circle shows the small flaws in the cell, potentially
caused during the production process of the cell or the cell wafer. These flaws seem to influence the
appearance of new microcracks.
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(A) (B)

Figure 8. EL test of receiver 5. (A) Baseline (ambient temperature); (B) After the round at 200 °C.

It was the author’s expectation that receiver 1 would be the receiver design least capable to
withstand stagnation, while receiver 5 was expected to be one of the most successful designs, which the
above images confirm.

This way, three main types of issues were identified:

- Microcracks caused by manual soldering; (Figure 6),
- Short circuit in one cell; (Figure 7)
- Flaws from cell production; (Figure 8)

3.3. Summary of the Thermal Stress Test Results on All Prototype Receivers

Eight receivers were built and stress tested at eight temperatures. The following eight figures
show an image of the receivers, four EL test images and a graph with the parameters of the tested
receiver. For all receivers, the visual inspection did not provide additional information. In Appendix B,
it is also possible to see an example of an IV curve.

The first receiver tested had the same design characteristics as the collectors of the installation
shown in Figure 3 and, as such, was expected to show a substantial amount of microcracks.

This way, as expected, after round 5 (exposure to 150 °C which is number 3 in the Figure 9),
the image from the EL test showed that the string had dark areas and a large number of microcracks,
which led to a power decreases shown in graph. Raising the temperature in following heating rounds
has significantly increased the amount of dark areas and microcracks. In the last round, one cell became
completely black, which is most likely caused by a short circuit between the top and bottom of the cell.
The reason for the short circuit has not been determined but a likely explanation is that the solder on
the top ribbon melted (or simply became in contact) through a crack and reached the bottom ribbon.

The only difference between the first receiver and the second is the bottom silicone layer.
In receiver 2, transparent silicone was used on both layers. From the five rounds of EL tests shown in
Figure 10, it is possible to see a large increase in microcracks after round 6 (180 °C). Despite this, the IV
curve basic parameters remain more or less constant throughout the eight rounds with only a minor
power decrease. The number of microcracks in receiver 1 is higher than in receiver 2 for all temperatures,
despite the baseline test (image 2 of Figure 10) having a slight higher number of microcracks.
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Figure 9. (1) Receiver 1; (2) Baseline Round; (3) Round 5 (150 °C); (4) Round 6 (180 °C); (5) Round 8
(220 °C); (6) Parameters of the IV curve at different temperatures (Isc, Voc and Pmax shown in the left Y
axis and FF in the right Y axis).
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Figure 10. (1) Receiver 2; (2) Baseline Round; (3) Round 5 (150 °C); (4) Round 6 (180 °C); (5) Round 8
(220 °C); (6) Parameters of the IV curve at different temperatures (Isc, Voc and Pmax shown in the left Y
axis and FF in the right Y axis).

The main goal of building receivers 3 and 4 was to evaluate the impact of the thermal expansion
of the ribbon on the cell. This way, a strain relief bend was inserted before and after each cell. In order
to isolate the impact of the different types of silicones two receivers were made with this type of strain
relief ribbon: One with red silicone (receiver 3) and another with transparent silicone (receiver 4).
The results from receiver 3 can be seen in Figure 11 and from receiver 4 in Figure 12.
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Figure 11. (1) Receiver 3; (2) Baseline Round; (3) Round 5 (150 °C); (4) Round 6 (180 °C); (5) Round 8
(220 °C); (6) Parameters of the IV curve at different temperatures (Isc, Voc and Pmax shown in the left Y
axis and FF in the right Y axis).
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Figure 12. (1) Receiver 4; (2) Baseline Round; (3) Round 5 (150 °C); (4) Round 6 (180 °C); (5) Round 8
(220 °C); (6) Parameters of the IV curve at different temperatures (Isc, Voc and Pmax shown in the left Y
axis and FF in the right Y axis).

The EL tests in Figure 11 show that in a receiver with red silicone, even with the strain relief
between the cells, a large number of microcracks appear when exposed to high temperatures (180 °C).
Compared with receiver 1, receiver 3 exhibits a smaller power drop, albeit still displaying a significant
power drop in the last 2 rounds.

The cells of receiver 4, shown in Figure 12, have no significant damage along the 8 rounds,
representing a clear improvement from the results obtained with receiver 2. However, receiver 4
showed one black cell in the last round likely due to the same reason as in the receiver 1. The same
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black cell, which appeared in round 7 (200 °C), is also responsible for the sharp 15% drop. Excluding
that effect, the power remains considerably constant.

Since our research group did not have, at the time of these tests, access to an expensive automatic
cell soldering machine, it was also important to investigate the impact of different manual soldering
techniques. To this effect, receivers 5 and 6 have been made with point soldering instead of continuous
soldering, like all previous receiver. Point soldering is far easier to accomplish with manual soldering
and less likely to create microcracks during the production process. Receiver 5 was done with two
point soldering and strain relief, while receiver 6 had no strain relief and only one point soldering.

In the graph of Figure 13, it is visible that the Pmax of receiver 5 has one initial decrease at 50 °C.
This drop is due to the two broken cells shown in image three. If this effect is excluded, the Pmax
remains relatively stable. It is interesting to note that only at 220 °C one extra microcrack appears.
The one point soldering has much smaller electrical contact between the busbar and the cell than the
line soldering but this shows no consequences in term of measurement power output, due to the fact
that the current through the cells is low.

Receiver 5

14 < 100
12 ¢
80
10 e —
8 | - 60 = ——Pm ax
6 + 40 & —W—ic
P =V ocC
~ 20
2 —_—F
0 v v 0
(v S0 100 150 200 250
Temperature ['C) 6

Figure 13. (1) Receiver 5; (2) Baseline Round; (3) Round 5 (150 °C); (4) Round 6 (180 °C); (5) Round 8
(220 °C); (6) Parameters of the IV curve at different temperatures (Isc, Voc and Pmax shown in the left Y
axis and FF in the right Y axis).

In Figure 14, the Pmax of receiver 6 also remains fairly stable until one of the cell becomes dark at
200 °C (round 7) which seems to indicate that there are no large differences between one and two point
soldering when combined with a strain relief. One microcrack appears at 180 °C and another appears
at 220 °C.
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Figure 14. (1) Receiver 6; (2) Baseline Round; (3) Round 5 (150 °C); (4) Round 6 (180 °C); (5) Round 8
(220 °C); (6) Parameters of the IV curve at different temperatures (Isc, Voc and Pmax shown in the left Y
axis and FF in the right Y axis).

Receivers 7 and 8 were made to evaluate the impact of temperature in larger cells (148 x 52 mm).
Receiver 7 was made with a larger gap than usual between the cells, with line soldering and with strain
relief between all cells, while receiver 8 was made without strain relief, with point soldering and with
a standard gap between cells.

Despite having more precautions against stagnation, receiver 7 shows more cell breakage than
receiver 8 at any temperature. This seems to point that on large cells the effect of having large gaps
with strain relief is less important than the type of soldering.

Strangely, the decrease in power is more pronounced in receiver 8 than in receiver 7, as can be seen
in Figures 15 and 16. However, it must be noted that receiver 7 starts from a lower baseline scenario
since it shows some microcracks from the beginning. From all the testing accomplished, it also seems
safe to state that existing microcracks expand at faster rate than new microcracks are created.

Figure 17 compares the decrease in Pmax of the different receivers at different temperatures rounds
with and without the strain relief. Receiver 2 shows the most stable Pmax across all temperatures.
Receiver 5 is also fairly stable if the handling problem on round 1 is excluded. Receiver 1 shows an
increase of power that is difficult to explain and is assumed to have been a human measurement error,
potentially combined with the small variation in the power provided by the solar simulation. Overall,
receivers with red silicone have the highest power decrease, when external factors are excluded.
The existence of gaps seems to reduce the number of microcracks. No prototype receiver loses more
than 30% of its initial power, despite the large cell breakage shown by some of the prototype receivers
in the EL imaging results.
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Figure 15. (1) Receiver 7; (2) Baseline Round; (3) Round 5 (150 °C); (4) Round 6 (180 °C); (5) Round 8
(220 °C); (6) Parameters of the IV curve at different temperatures (Isc, Voc and Pmax shown in the left Y
axis and FF in the right Y axis).
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Figure 16. (1) Receiver 8; (2) Baseline Round; (3) Round 5 (150 °C); (4) Round 6 (180 °C); (5) Round 8
(220 °C); (6) Parameters of the IV curve at different temperatures (Isc, Voc and Pmax shown in the left Y
axis and FF in the right Y axis).
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Figure 17. (1) Comparison of Pmax decrease in receivers with strain relief; (2) Comparison of Pmax
decrease in receivers without strain relief.

4. Conclusions

Eight receivers have been built and were successfully tested to assess the impact of reaching high
temperatures in the performance and cell structural integrity.

The EL testing allowed identifying two main types of problems in the solar cells which are
represented by black areas in the cell EL image. One is the irregularly shaped areas which are due to
microcracks, and the other is regular rectangular areas which are due to broken finger contacts on the
front of the cell. It was also noted that the majority of the microcracks were initiated at the soldering
points, which is understood to happen due to the different expansion coefficients between the copper
ribbon and the silicon solar cell. A third problem was also detected which is due to flaws in production
process at either wafer or cell production. These three issues are highlighted in the images show in
Section 3.2.

From the figures shown in the results section, it is clear that receivers built with transparent
silicone show far less cracks and power degradation after being exposed to stagnation temperatures.
This is understood to be due to two main reasons: (1) the transparent silicone is not so stiff as the
red silicone and thus further absorbs the mechanical stress of thermal expansion in the aluminium
receiver; (2) the red silicone due to its lower viscosity is normally made in a thinner layer which further
penalizes its ability to absorb mechanical stress.

No prototype test receiver lost more than 30% of its initial power, despite the large cell breakage
shown in the EL imaging of some receivers. After eight rounds of testing in eight receivers with
different designs, it was possible to conclude that the diodes were working perfectly at all temperatures,
despite the diode specifications stated a maximum junction temperature of only 200 °C.

Larger cells are more prone to develop microcracks due to thermally induced stresses. From the
tests that have been made, point soldering seems to lead to a reduction in the number of microcracks
and black areas, especially in receivers with larger cells (148 X 52mm instead of 148 x 26 mm). However,
the impact of microcracks in the Pmax of receivers with point soldering is also larger due to the smaller
contact area between the ribbon and the cell.

From the EL images, the receiver presenting the lowest amount of microcracks after round 8
(at 220 °C) is receiver 5. This receiver was made with point soldering and a strain relief between each
cell. Receiver 4 and receiver 6 also exhibit low amounts of microcracks but both have a full black cell,
possibly caused by the top and bottom ribbon becoming in contact through a cell crack or a melted
ribbon. Receiver 2 shows the steadiest Pmax across all temperatures. Receiver 5 is also fairly stable,
if the human handling error is excluded.

This study also allows to conclude that existing microcracks tend to grow in size into larger cracks.
The EL imaging taken during our experiment leads us to conclude that it is far easier for existing cracks
to expand than for new cracks to appear.
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A limitation of this work was the absence of a fully automatic tabbing machine. Since this is
expensive equipment that was not available at the time of these experiments, our team was forced to
use manual soldering. However, by setting a baseline scenario for comparison, this limitation was
sufficiently addressed.

It is important to point out that the thickness of the bottom silicone layer is of the upmost
importance in reducing the transference of thermally induced stress to the cells. The impact of the
variations in the thickness of silicone in the thermal stress suffered by the cells has not been evaluated
in this paper and should be addressed in a future study since it is a very relevant aspect for cell survival
of stagnation.
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Appendix A

Appendix A (Figures A1-A8) shows an image of all receivers for easier comprehension of the
tested designs.

Figure A1. Receiver 1 has seven 1/6 cells with a standard cell gap, line soldering, red and transparent

silicon and no strain relief.
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Figure A2. Receiver 2 has six 1/6 cells with a standard cell gap, line soldering, transparent silicon only
and no strain relief.
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Figure A3. Receiver 3 has six 1/6 cells with a larger cell gap, line soldering, red and transparent silicon
and strain relief.

Figure A4. Receiver 4 has six 1/6 cells with a larger cell gap, line soldering, transparent silicon only and
strain relief.

Figure A5. Receiver 5 has six 1/6 cells with a larger cell gap, line soldering, transparent silicon only and
strain relief.



Energies 2019, 12, 2967 18 of 20

Figure A6. Receiver 6 has seven 1/6 cells with a standard cell gap, one point soldering, transparent
silicon only and no strain relief.

Figure A7. Receiver 7 has four 1/3 cells with a large cell gap, line point soldering, transparent silicon
only and strain relief.

Figure A8. Receiver 8 has four 1/3 cells with a standard cell gap, one point soldering, transparent
silicon only and no strain relief.
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Appendix B

Appendix B (Figure A9) shows an example of an IV curve conducted in receiver 5 after the 220 °C

round of heating.

3.0
2.5
g 2.0
£ 15
5
© 10
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Voltage (V)
Figure A9. IV curve for receiver 5 after being exposed to all testing rounds
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