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Abstract: The paper deals with a novel method to measure inter-area oscillations, i.e., electromechanical
oscillations involving groups of generators geographically distant from one another and ranging
within the frequency interval from 0.1 Hz up to 1 Hz. The estimation of the parameters characterizing
inter-area oscillations is a crucial objective in order to take the necessary actions to avoid the instability
of the transmission electrical system. The proposed approach is a signal-based method, which uses
samples of electrical signals acquired by the phasor measurement unit (PMU) and processes them to
extract the individual oscillations and, for each of them, determine their characteristic parameters
such as frequency and damping. The method is based on Hilbert transformations, but it is optimized
through further algorithms aiming at (i) improving the ability to separate different oscillatory
components, even at frequencies very close to each other, (ii) enhancing the accuracy associated with
the damping estimates of each oscillation, and (iii) increasing the robustness to the noise affecting
the acquired signal. Results obtained in the presence of signals involving the composition of two
oscillations, whose damping and frequency have been varied, are presented. Tests were conducted
with signals either synthesized in simulated experiment or generated and acquired with actual
laboratory instrumentation.

Keywords: damping estimation; Hilbert transform; oscillations reshaping; nonlinear least square
approximation

1. Introduction

Inter-area oscillations are phenomena that affect electricity systems interconnecting areas
geographically distant from each other, such as different nations. Various phenomena can cause
the inter-area oscillation; a rapid change of load, a line faults, the control and regulation necessary to
guarantee the stability of large power system area, the connection between large power system with
weak lines. Practically, all these phenomena determine a transient in the transferred power which
bring the system into a new balance operating condition [1].

The balance point will be reached after a redefinition of the power contributions of the various
generators connected to the system [2].

The dynamic modes characterizing the motion from a balance condition to another belong to the
Low Frequency Oscillations (LFOs) category. In particular, each i-th mode of evolution of the electrical
system is typically representable according to the following expression:

yi (t) = Aie−dit sin (2π fit + ϕi) , (1)
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where Ai is the amplitude, di is the damping coefficient, fi is the frequency and ϕi is the starting phase.
Usually, the frequency range is from 0.1 Hz up to 2 Hz and the oscillations are divided into

two categories:

- inter-area oscillations from 0.1 to 1 Hz;
- local oscillations from 1 up to 2 Hz.

As regards the damping value, a generic classification adopted in the scientific literature is
the following [3–5]:

• damped di ∈ [0.05,+∞[;
• weakly damped di ∈ ]0, 0.05[;
• divergent di ∈ ]−∞, 0[.

The accurate estimate of the damping coefficient of the oscillations is a fundamental issue. In fact,
particularly dangerous for the stability of the electrical system are the oscillations that exhibit a weakly
positive or negative damping coefficient. In fact, if the oscillations are not attenuated for a long time or
they are amplified and can reach dangerous amplitudes, they can cause the intervention of protections
or, in the worst cases, could jeopardize network operation.

The estimation of damping coefficient is crucial to take the adequate countermeasures in order to
assure the network stability. On the other hand, the inter-area oscillations are often characterized by
weak damping, and the estimation of the damping sign is not a straightforward process.

In the paper, a novel method based on an optimized combination between the Hilbert transform
(HT) and non-linear least square (NLS) fitting is proposed. The method aims at separating the dynamic
modes that are combined in the acquired signal and estimating frequency and damping coefficient of
the individual oscillations.

The paper is organized as follows. In Section 2 the main methods described in the literature for
the analysis of inter-area oscillations are discussed. In Section 3 theoretical fundamentals about HT are
given. In Section 4 the proposed approach is presented. The results obtained from both numerical and
experimental assessment are reported in Section 5. Section 6 deals with the digital signal processing
method to analyze oscillations characterized by very close frequency values. Concluding remarks are
given in Section 7.

2. Approaches Available In Literature

Recognizing as soon as possible the divergent or weakly damped oscillations is a fundamental task
to be able of employing appropriate countermeasures and consequently guarantee the stability of the
electrical systems. The estimation algorithm has to exhibit, as main characteristics, a low computational
burden, high robustness to noise, high accuracy in parameter estimation and no need of a priori
information about the signal of interest.

Generally, the methodologies reported in scientific literature follow two different approaches [6]:

• Model-based;
• Signal-based.

As reported in [6–8] the model-based approach aims at estimating the parameters of synchronous
generators in order to derive an overall model of the electrical system. The possibility of retrieving
the system model is appealing, but these methods are characterized by high computational burden.
The order of the equivalent model, in fact, can be very high, since it is strictly dependent on the
extension of the electrical system [9]. Moreover, the obtained equivalent model is valid for a limited
time interval because of the constant evolution of the network topology.

Although many methods have been proposed aiming at power system reduction for dynamic
analysis with consequent lower computational burden, the results obtained do not seem to be
sufficiently accurate.
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An interesting approach is represented by a hybrid method based on the Kalman Filter, reported
in [10,11], that combines the model-based and signal-based methodologies. This method processes
signals acquired through the phasor measurement units (PMUs) to obtain the overall model of the
electrical system. As known, the Kalman filter is a valuable approach for real-time signal analysis,
thanks to its adaptive behavior. However, also this method exhibits a significant computational burden,
because of the matrices dimensions, dependent on the complexity of the model. For this reason,
this approach is usually adopted to estimate damping coefficient and frequency of the dominant mode,
with consequent loss of information about eventual other oscillatory modes. Moreover, the proper
initial choice of the measurement noise covariance and process noise covariance is the most sensitive
issue characterizing the Kalman filter.

Owing to the analytical difficulties involved in Model-based approach, the scientific literature is
increasingly oriented towards the study and development of a Signal-based method for the analysis
of LFOs.

The typical structure of such algorithms is characterized by two steps: decomposition in
mono-component signals, and estimation of signal parameters.

Several solutions available in the literature match with this type of approach: variational mode
decomposition (VMD) and Teager–Kaiser in [12]; discrete Fourier transform (DFT) and curve-fitting
in frequency domain in [13]; singular value decomposition (SVD) and matrix pencil method in [14];
empirical mode decomposition (EMD) and Hilbert spectrum analysis in [15,16], as an example. Each of
the mentioned algorithms is characterized by different advantages and drawbacks. Generally, the most
critical issue is related to the non-stationary and non-linear nature of the electrical system [17].

The most analyzed approach, in the literature, is undoubtedly the Prony method [3]. The Prony
algorithm is a parametric method of direct signal decomposition. It assumes that the acquired signal
can be approximated by a sum of damped sinusoids. This method does not need a priori information,
since a precise model has been chosen to fit the signal; moreover it only needs to analyze a period
and a half of the oscillations in order to estimate its damping and frequency. However, as is well
known in the literature, the algorithm is very sensitive to the noise, so that in some cases additional
mono-component signals are not detected. The direct consequence is a limited accuracy in the
estimation of the parameters of interest. In order to solve this problem, pre-filtering techniques are
used for noise cancellation, such as digital filters and EMD, causing an increase of the computational
burden of the algorithm.

In [18] the authors propose an improved Prony method where the method is coupled with a low
order model of the signal and the parameters are evaluated with a least square method. Instead,
the paper [19] introduces a covariance matrix in order to improve the estimation of low frequencies
with Prony method.

Another interesting approach involves the use of multivariate autoregressive model which helps
in the identification of low frequencies signals. In [20] the identification of inter-area oscillations is
carried out through the use of Yule–Walker estimator; the results highlight the good performance of
the algorithm also when the measurement noise and the lost of packets affects the signal.

Authors have finally focused their attention on Hilbert-based approaches as in [21,22].
These methods are flexible, do not require information about the signal and are suitable for
representing non-linear and non-stationary systems. The critical issue is the process for separating the
mono-component oscillations; even a small edge effect causes a considerable lack of accuracy in the
damping estimate.

3. Ht Fundamentals

The HT of a real signal x (t) is defined as the following convolution integral:

H [x (t)] =
1
π

P.V.
∫ −∞

+∞

x (τ)
t− τ

dτ, (2)
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where it is necessary to consider the Cauchy Principal Value (P.V.) of the integral, resulting from the
eventual singularity of the integrand function.

The HT has the fundamental property of shifting the phase of the real signal of a positive angle
equal to π

2 , without the need of changing the representation domain (both HT input and output belong
to the time domain). This characteristic is useful to obtain the analytic signal of a real signal x(t).

z (t) = x (t) + jxH (t) = x (t) + jH [x (t)] (3)

The signal can be written according to the polar coordinates, so it can be seen as the product
between two terms: the first one takes into account the amplitude modulation and the second one
includes the phase modulation. If the signal exhibits slow amplitude variations with respect to
the phase variations, i.e., if the amplitude modulation is characterized by frequencies much lower
then those characterizing the phase modulation [23], the analytic signal in polar coordinates can be
considered as a rotating phasor:

z (t) = A (t) ejθ(t). (4)

The time-varying amplitude is the envelope of the real signal and phase can be estimated according
to the equations:

A (t) =

√
x (t)2 + H [x (t)]2 (5)

θ (t) = arctan
H [x (t)]

x (t)
. (6)

From the expression of the instantaneous phase it is possible to determine the instantaneous
frequency, defined as:

f (t) =
1

2π

dθu (t)
dt

, θu(t) = θ (t) + Λ (t) , (7)

where Λ (t) is a function whose values are integer multiples of π, required to assure the continuity of
the phase θu (t).

If x (t) is a damped oscillation, the HT is a suitable tool for estimating the oscillation parameters.
Equation (7), in fact, provides the oscillation frequency; the instantaneous amplitude, instead, provides
the damping factor. In fact, the instantaneous amplitude can be written as:

A (t) = A1e−σt (8)

where A1 is the starting amplitude and σ is the damping coefficient. By performing the natural logarithm:

ln [A (t)] = ln (A1)− σt (9)

The damping coefficient, thus, can be evaluated performing the time derivative of the terms
of Equation (9):

σ =
d
dt

(σt) = − d
dt

[ln (A (t))] . (10)

Since HT is a linear operation, the following equation holds:

H [kx (t)] = kH [x (t)] (11)

where k is a generic constant.
By keeping this in mind and by recalling the property of shifting the phase, if x (t) is a cosinusoidal

function, according to Equation (11), its HT is:

H [A cos (ωt + ϕ)] = A sin (ωt + ϕ) , (12)
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where A is the constant amplitude, ω stands for the angular frequency, ϕ represents the phase and
sin (ωt + ϕ) is the HT of the cosine. This relationship will be exploited in the successive section.

Lastly, if x (t) is the product of two functions, namely f and g, the HT of x (t) could be evaluated
as the multiplication between f (t) and the HT of g (t), according to:

H [ f (t) · g (t)] = f (t) · H [g (t)] . (13)

This equivalence is maintained if f and g satisfy the Bedrosian’s conditions [16,21], i.e., if their
spectra are separated and f is characterized by low-frequency components with respect to g.

4. Proposed Approach

The proposed method is event-based, i.e., the algorithm has to run when an oscillation is detected,
in order to estimate its parameters; in normal operating conditions, the results of the parameters
estimation would be unmeaningful.

The proposed approach consists of three main steps:

• Separation of individual oscillations: the acquired signal is processed in order to recognize the
individual inter-area oscillations;

• Oscillations reshaping: the estimation of each component is refined by matching a damped
oscillation model;

• Correction of Gibbs effect and parameter estimation: the estimate of the full signal is further
refined in order to remove Gibbs oscillations and to evaluate the frequency and damping
coefficients of the oscillations.

In the following subsections these steps are described in detail.

4.1. Separation of Individual Oscillations

The Hilbert-based algorithm uses a decomposition method, presented and demonstrated in [21].
According to the theorem stated in [21], it is possible to describe the signal acquired by the PMU y (t)
as the sum of m components yd

i (t):
m

∑
i=1

yd
i (t) . (14)

The components yd
i , with i ranging from 1 to m, are such that their spectra Yd

i ( f ) are not
overlapped and are significant only in a narrow frequency band, as show in Figure 1, delimited
by the frequencies fbi−1

and fbi
(with fb0 = 0), in the following referred to as bisecting frequencies;

moreover, the sum of all the spectra Yd
i ( f ) is equal to the spectrum Y ( f ) of the signal y (t).

If si (t) is the time domain signal corresponding to the portion of the spectrum Y ( f ) of Figure 1
between the frequencies 0 and fbi

, each of the components yd
i can be obtained by subtraction according

to the following formulas:
yd

i (t) = si (t)− si−1 (t) , (15)

where, if i is equal to 1, then si−1 (t) = s0 (t) = 0 and if i is equal to m, then sm (t) = y (t).
The terms si (t) are evaluated, as demonstrated in [21] according to the Bedrosian theorem:

si (t) = sin
(
2π fbi

t
)

H
[
y (t) cos

(
2π fbi

t
)]
− cos

(
2π fbi

t
)

H
[
y (t) sin

(
2π fbi

t
)]

(16)

It is worth noting that the truncation of the spectra in Figure 1 generates oscillations on the
estimated signal si (t), well known as Gibbs effect. At this aim, in Equation (12) authors preferred the
use of Hilbert-Boche transform [24] that is able to reduce this undesired phenomenon.
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Figure 1. Spectra of the signal components.

The authors applied this method to extract the individual oscillations from the signal acquired
by a PMU. It should be noted that, in this case, the spectra of the mono-components are overlapped,
because the presence of damping causes the spread of the spectrum. The estimated components yd

i
therefore do not exactly fit the oscillations composing the input signal. In other words, the portion
Yd

i of the spectrum results from the super-position of two components. Therefore, the separation
algorithm will return a yd

i component that differs from the mono-component oscillation; the more
overlapping the spectra of the component oscillations, the higher the estimation error.

In [21] the LP-periodogram is used to identify the number of components and the values fbi

of the bisecting frequencies that delimit the spectrum intervals. The number of oscillations is given
by the peaks of the spectrum, whereas the value of fbi

is calculated as the arithmetic average of the
frequencies corresponding to the periodogram peak.

If the signal of interest y (t) can be modeled as a sum of damped oscillations, each of them is
characterized by a narrow band spectrum. Thus, the presented separation method can be exploited in
order to obtain the individual oscillations.

The component signals yd
i therefore, are the inter-area oscillations affecting the bus voltages,

whose frequency and damping coefficients have to be estimated.
The separation is applicable if a bisecting frequency can be recognized. Thus the proposed method

requires the detection of at least two peaks in the spectrum. If only one peak is visible, because the
acquired signal involves only one oscillation or because it involves oscillations whose frequency
distance is lower than the spectral resolution, the method fails.

Also the presence of undesired frequency components, not related to inter-area oscillation, could
put in crisis the separation method. In the paper, however, authors have taken into account only
canonical signals observed in power system; the robustness to other type of components is going to be
studied in future works.

Optimal Choice of Bisecting Frequencies

As aforementioned, in order to separate the oscillations, the bisecting frequency is typically
evaluated as the average between the frequencies of two sequential peaks of the periodogram of the
input signal [21]. Actually, the optimal separation does not correspond to this frequency. For the sake
of clarity, a signal obtained by the sum of two damped oscillations is taken into account. In particular,
the signal is described by the following analytical expression:

y (t) = 30e−0.3t sin (πt) + 5e−0.1t sin (1.6πt) . (17)
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The spectrum of this signal, shown in Figure 2 exhibits only two peaks centered at the frequencies
0.8 Hz and 0.5 Hz. The bisecting frequency, evaluated as average frequency, is equal to:

fb =
f1 + f2

2
=

0.8 + 0.5
2

= 0.65 Hz (18)

The separation algorithm, described in the previous section, performed with fb, provides
two components, whose time evolution, compared with that of the nominal oscillations, is shown
in Figure 3.

Besides an amplitude error caused by the Gibbs effect, it can be noted that even the zero crossing
of the estimated components do not coincide with the oscillations composing the input signal.

This means that the estimation of the frequency of the two mono-component signals suffers from
a slight deviation from the actual value.

Figure 2. Spectrum of the signal y (t) of Equation (17).

Figure 3. Mono-components obtained from the signal of Equation (17), setting the bisecting frequency
equal to the average frequency; low frequency signal (on the left) and high frequency signal
(on the right).

The authors, therefore, decided to improve the criterion for choosing the bisecting frequency.
In particular, the frequency corresponding to the minimum of the portion of the signal spectrum
delimited by two peaks is selected as the bisecting frequency.
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In this way, in fact, the separation error is minimized when the spectra of the two components are
partially overlapped.

As it can be appreciated from the spectrum of Figure 2, the estimated bisecting frequency, in this
case, is equal to 0.7 Hz; the corresponding mono-component signals obtained by the separation
algorithm are shown in Figure 4. It should be noted that, although the Gibbs effect is still present,
the estimated oscillations match the frequency values characterizing the nominal input signals.

Figure 4. Mono-components obtained from the signal of Equation (17), setting the bisecting frequency
equal to the minimum of the spectrum;low frequency signal (on the left) and high frequency signal
(on the right).

4.2. Oscillations Reshaping

Despite of the adoption of some optimizations such as the Hilbert–Boche method and better
choice of sectioning frequency, a deviation between the actual components and their estimates, due
both to Gibbs effect and overlapping oscillations spectra, is still significantly appreciable. As noticeable
in Figure 4, the estimate suffers from a distortion mainly evident at the oscillation edges, that hugely
affects the damping estimate.

The second step of the proposed approach, then, relies on the reshaping of the mono-component
signals. In detail, for each component, a non-linear least squares (NLS) regression algorithm
is performed in order to detect the damped oscillation that is the best fit of the estimated
mono-component.

At this aim the optimization tools of MATLAB R© (R2018B, MathWorks, Natick, MA, USA) has been
exploited [22], where the sequential quadratic programming (SQP) [25] has been set as minimization
method and the fitting function is given by the formula:

ydr
i (t) = Aiedit sin (2π fit + ϕi) , (19)

where the unknown variables are the amplitude Ai, the damping coefficient di, the frequency fi and
the starting phase ϕi; ydr

i (t) is the reshaped version of each estimated mono-component yd
i (t). Figure 5

shows the obtained oscillations after the reshaping performed on the mono-components of Figure 4.
It can be noted that, for both the oscillations, the edge effects have been substantially reduced and the
estimated frequencies almost match the actual ones. However, a slight amplitude deviation is still
appreciable and, therefore, the oscillations estimate has to be further adjusted in order to properly
estimate the damping coefficients.

The reshaped components are used as initial estimate for the successive step, that aims at
accurately estimating the amplitude of the components and, consequently, the damping coefficient.
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Figure 5. Mono-components obtained from the signal of Equation (17), after the reshaping process; low
frequency signal (on the left) and high frequency signal (on the right).

4.3. Correction of Gibbs Effect and Parameters Estimation

Finally, the third step of the proposed approach consists of a further non-linear regression.
This time, the processed signal is the estimate of the overall signal yr

i (t), obtained by summing
all the reshaped oscillations ydr

i (t).
Also this regression is an NLS, performed by exploiting the SQP method. However, the fitting

function is given by:

ŷ (t) =
m

∑
i=1

Aiedit sin (2π fit + ϕi) (20)

All the amplitudes, frequencies, damping coefficients and starting phases are the unknown
variables. It should, however, be pointed out that the NLS algorithm converges rapidly (typically
a time of less than 100 ms is required) since the initial values of the variables are those obtained from
the second step and, therefore, already quite close to the values of the final fitting solution. Moreover,
the NLS algorithm allows us to set the constraints (frequency and damping can vary in definite ranges)
that limit the range of the possible solutions and favor the convergence.

In order to highlight the improvements introduced by the double regression algorithm, Table 1
shows the actual parameters and those estimated after the third step of the proposed method, for the
components of the example signal described by equation Equation (17).

Table 1. Variable estimates after the third step of the proposed method.

Component 1

Actual Estimated

Damping [s−1] 0.3 0.29999
Frequency [Hz] 0.5 0.49999
Amplitude [V] 30 29.99999

Component 2

Actual Estimated

Damping [s−1] 0.1 0.09999
Frequency [Hz] 0.8 0.79999
Amplitude [V] 5 4.99999

5. Experimental Assessment

The proposed method has been assessed through both numerical and emulated experiments.
A preliminary design of the tests was required in order to set: (i) the duration of the signal time

window to be analyzed; (ii) the sampling frequency characterizing the acquired signal, (iii) the
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characteristics of the test signal, and (iv) the figure of merit (FoM) to be used to evaluate the
method performance.

The duration of the time window has been chosen in order to both minimize the response time
of the algorithm and acquire at least one cycle of each mono-component signal (required condition
for assuring the convergence of the NLS algorithm). The inter-area oscillations are characterized by
a frequency range from 0.1 Hz up to 1 Hz; the window, assuring one cycle of a 0.1 Hz oscillation, is
characterized by the width of 10 s.

As regards the sampling frequency, it has been selected according to the frequencies recommended
for PMUs by Standard [26]. A minimum value of 5 S/s is mandatory to comply with the
Nyquist–Shannon sampling theorem. However, low sampling rates correspond to few numbers
of points acquired in each oscillation period,making unreliable the result of the NLS algorithms.
On the other hand, higher sampling frequencies would result in increased number of points to be
processed, and, consequently, higher computational burden and response time. A trade-off sampling
frequency equal to 50 S/s has been selected. This sampling rate presents another advantage: being
nominally equal to the fundamental frequency of the bus voltage, if the sampling operation is perfectly
synchronized with the fundamental frequency, only the contribution of low frequency components is
visible in the acquired signal.

The considered test signal is composed by two inter-area oscillations and is expressed by
the formula:

y (t) = 1e−d1t sin (2π f1t) + 1e−d2t sin (2π f2t) . (21)

For the sake of simplicity, the amplitudes of both the oscillations have been set equal to 1 V and
the starting phases has been set equal to zero. The frequency and the damping coefficient of the
oscillations have been varied within their typical intervals reported in literature [1].

In particular, two sets of experiments have been planned. In the first one, referred in the following
to as Test I, the frequencies f1 and f2 of the two oscillations have been set equal to 0.1 Hz and 0.6 Hz
respectively. The damping coefficients, instead, are varied within the following intervals:

• d1 = [−0.05, 0.3] s−1;
• d2 = [−0.05, 0.3] s−1.

In the second set of experiments, referred in the following to as Test II, the damping coefficients
have been set equal to 0.1 and 0.3 s−1, respectively, and the frequencies have been varied in order
to change the frequency distance between the oscillations. In particular, an experiment has been
performed by setting f1 = 0.1 Hz and varying f2 from 1 Hz to 0.3 Hz; another experiment has been
carried out by setting f2 equal to 1 Hz and varying f1 from 0.1 to 0.8 Hz. This way, Thanks to the
variation of the distance | f1 − f2| between the frequencies of the two components, it has been possible
to assess method performance in the case of components characterized by low (near 0.1 Hz) or high
(near 1 Hz) oscillation frequency.

The selected FoM is the deviation between estimated d̂ and nominal d damping coefficients for
both the oscillations:

∆d = d̂− d (22)

Particular attention, in fact, has been paid to the ability of the method to correctly
estimate the oscillations damping coefficient, that is the parameter that mostly predicts potential
system instability [27,28].

5.1. Numerical Tests with Ideal Signal

The preliminary performance assessment of the proposed approach has been carried out through
numerical tests in MATLAB R© environment; to this aim, the signal of Equation (21) has been synthesized
as input, according to the selected sampling rate of 50 S/s. The evolution of estimated values of FoMs
versus the damping coefficients of the two mono-components for Test I is shown in Figure 6.
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Figure 6. FoMs evolution versus damping coefficients obtained in numerical tests with ideal signal;
results for frequency f1 (on the left) and f2 (on the right).

The proposed method exhibits excellent performance regardless the damping coefficients
characterizing the oscillations. In fact, it is able to recognize and separate the two oscillations composing
the test signal and, for both the components, it is able to estimate the damping coefficient with a ∆d
values lower than 10−7 s−1 (corresponding to a relative percentage deviation of 10−4%).

The results obtained in test II conditions are shown in Figure 7. To better appreciate method
performance, the logarithmic scale has been set for the vertical axis of both graphs.

Figure 7. Figure of merit (FoM) evolution versus frequency distance between the components obtained
in numerical tests with ideal signal; results for components with damping d1 (on the left) and damping
d2 (on the right).

For both damping coefficients, estimate deviation ∆d was lower than 10−7 s−1 as long as the
oscillation frequency distance was at least 0.4 Hz, corresponding to four times the spectral resolution
associated with the sampling conditions. When | f1 − f2| was reduced, an increase in the estimate
deviation was experienced; however, when | f1 − f2| is equal to 0.2 Hz, the estimated ∆d was lower
than 10−2 s−1 for both the oscillations. This result was expected, since when the frequency are nearer,
the spectra of the two mono-components are more overlapped and the distortion resulting from the
separation procedure increases. A particular case consists of two oscillations whose frequency distance
| f1 − f2| was lower than 0.2 Hz; the method described in Section 4 failed, because the two oscillations
were so near in frequency that a minimum in the signal spectrum is not detected and a bisecting
frequency cannot be estimated. To obtain a suitable damping estimate even in such critical conditions,
the measurement method has been improved by means of a further digital signal processing procedure
that will be described in detail in Section 6.

Finally, ∆d turns out to be sensitive to the frequency distance between the two oscillations,
but, given the same | f1− f2|, the estimate of damping coefficients seemed not to sense if the oscillations
were located at either high or low frequency.
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5.2. Numerical Test with Noise and Quantization

Successive tests have been performed in conditions more similar to the actual sampling conditions.
Thus, the effects of both noise and the quantization resulting from the analog to digital conversion
stage have been added to the test signal of Equation (21).

The signal has been corrupted with white noise, whose amplitude has been set in order to assure
a Signal to Noise Ratio (SNR) equal to 40 dB.

The use of an eight-bit analog-to-digital converter (ADC) has been hypothesized for introducing
the quantization.

Since the presence of noise causes an inevitable dispersion of the algorithm results, the authors
preferred to carry out N equal to 50 repeated trials, for each frequency and damping condition.
The damping estimates of the 50 tests were processed in order to evaluate the mean value and
associated standard deviation. The FoM evaluated in these tests were the mean and the standard
deviation of the measured ∆di, with i = 1, 2, ..., N:

µ (∆d) =
1
N

N

∑
i=1

(∆di) (23)

σ (∆d) =

√√√√ 1
N − 1

N

∑
i=1

(∆di)
2. (24)

Figure 8 shows the evolution of the estimated FoM versus damping coefficient, for both the
oscillation in Test I configuration.

Figure 8. Mean of ∆d versus damping coefficients obtained in numerical tests with noise
and quantization; results for frequency f1 (on the left) and f2 (on the right).

With respect to the values observed with ideal signals, an increase of estimate ∆d for both damping
coefficients was appreciated. For both oscillations, however, the deviation of the estimate remained
lower than 10−4 s−1.

The standard deviations associated with the estimates of the damping coefficients are shown
in Figure 9.

From the graph of the standard deviation associated with the damping estimates of the first
oscillation, it can be noted that σ(∆d1) assumed values lower than 0.3 × 10−3 s−1 when the first
oscillation was weakly damped. The higher the damping d1, the higher the standard deviation, which
reached up to about 2 × 10−3 s−1. The evolution of σ(∆d1) seemed to be independent on the values
of d2.

A similar behavior was observed on the damping estimates of the second oscillation: the standard
deviation increased, up to 1.3 × 10−3 s−1, as the damping coefficient of the second oscillation rose,
while it was not affected by the values of the damping coefficient of the first oscillation.
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Figure 9. Standard deviation of ∆d versus damping coefficients obtained in numerical tests with noise
and quantization; results for frequency f1 (on the left) and f2 (on the right).

It has to be noted that oscillations characterized by high damping coefficient are not dangerous
for the system stability, therefore the behavior of the proposed method with respect to noise can
be tolerated.

It can be concluded that the proposed algorithm was sensitive to the noise affecting the input
signal and the sensitivity coefficient depends on the value of the damping coefficients. The noise,
in particular, did not affect the mean of the damping estimates, but impacts directly on the dispersion
of the results.

For the sake of clarity, the coefficient of variation (CV), proposed in [29] has also been evaluated.
It is defined as:

CV = 100 ·
σd̄i

d̄i
, (25)

where d̄i is the mean value of the estimated di and σd̄i
is the standard deviation of the mean.

The obtained results are shown in Figure 10.

Figure 10. Coefficient of variation (CV) versus damping coefficients obtained in numerical tests with
noise and quantization; results for frequency f1 (on the left) and f2 (on the right).

The absolute value of CV is always lower than 0.1%. The lower the damping coefficient d1,
the higher the CV; moreover, the CV of d1 was not dependent on the values of d2. Similar behavior can
be observed for the CV of d2. The results obtained from the experiments conducted according to Test II
configuration are shown in Figure 11.

As long as | f1 − f2| was higher than 0.3 Hz, measure ∆d was lower than 10−3 s−1 for the first
oscillation and lower than 10−2 s−1 for the second oscillation. When | f1 − f2| is 0.2 Hz, the estimate
deviation increased for both damping coefficients as expected. The corresponding standard deviations
are reported in Figure 12. As noticeable, the noise presence influenced the dispersion of the estimates
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of damping coefficient only when | f1 − f2| is 0.2 Hz and, however, the standard deviation was lower
than 10−3 s−1.

Figure 11. Mean of ∆d versus the frequency distance between the components obtained in numerical
tests with noise and quantization; results for components with damping d1 (on the left) and damping
d2 (on the right).

Figure 12. Standard deviation of ∆d versus the frequency distance between the components obtained
in numerical tests with noise and quantization; results for components with damping d1 (on the left)
and damping d2 (on the right).

5.3. Test Conducted on Digitized Signals

Finally, further tests have been performed on signals, emulating the composition of two
oscillations, generated and acquired through real laboratory instrumentation.

To carry out the experimental tests, a laboratory test bench has been set up consisting of:

• Arbitrary waveform generator Agilent 33220A,
• Eight-bit digital oscilloscope Tektronix TDS 210,
• National Instruments GPIB-USB-HS interface.

A proper software has been developed in the National Instruments LabVIEWTM environment,
in order to (i) synthesize the test signal according to Equation (21) in dependence on the desired
frequencies and damping coefficients; (ii) transfer the waveform to the memory of the waveform
generator, (iii) gather the samples acquired by the digital oscilloscope, and (iv) apply the proposed
method to estimate the damping coefficients.

Again, 50 repeated measurements have been performed for each combination of damping
coefficients and both the mean values and the standard deviations have been evaluated.

The mean of the deviation between the damping estimates and the nominal values is shown,
for both oscillations, in Figure 13.
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Figure 13. Mean of ∆d versus damping coefficients obtained in experimental tests with digitized signals;
results for frequency f1 (on the left) and f2 (on the right).

It is evident that, in this case, the deviation of the damping estimates are characterized by values
higher than those observed in numerical tests.

Moreover it can be noted that the deviation of the estimates exhibits a trend sensitive to the
damping coefficients; in particular, the damping estimates worsen as the damping coefficient increases.

The evaluated standard deviations are shown in Figure 14.

Figure 14. Standard deviation of ∆d versus damping coefficients obtained in experimental tests with
digitized signals; results for frequency f1 (on the left) and f2 (on the right).

In this case, the trend and values of the standard deviation associated with the damping estimates
is similar to those observed in numerical tests in the presence of noise and quantization presented in
Section 5.2. The dispersion of the estimation results, therefore, is related exclusively to the presence of
noise; the transition from numerical signals affected by a Gaussian noise to actually generated signals
did not change the performance of the method, in terms of dispersion of measurement results.

The results obtained in Test II configuration shown in Figure 15.
Also in this case, it can be noted that the deviation of the mean value of the damping coefficient

estimates has increased by about 10 times. For the sake of brevity the plots of the standard deviations
and CV are not reported; however, values comparable with those observed in Section 5.2 have
been appreciated.

It is worth noting that further tests have been carried out with oscillations characterized by
different amplitude and with signal acquired through non-coherent sampling conditions. For the sake
of brevity the graphs are not reported. However, the obtained results proved that also in these tests,
the performance of the method are similar to the reported in this Section 5.2.
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Figure 15. Mean of ∆d versus the frequency distance between the components obtained in experimental
tests with digitized signals; results for components with damping d1 (on the left) and damping d2

(on the right).

5.4. Test Conducted on Inter-Area Oscillations Provided by Simulated Systems

In order to assess the method with a signal as similar as possible to a signal acquired during an
inter-area oscillation, the Kundur’s four-machine two-area test system [30], whose single line diagram
is shown in Figure 16, has been adopted.

Figure 16. Single line diagram of Kundur’s four machine two-area model adopted to obtain test
inter-area oscillations.

The Kundur’s model has been implemented in Simulink R© (Simulink 9.2, MathWorks,
Natick, MA, USA); a PMU to measure the bus voltage has been placed near the generator G2 and a
three-phase fault has been simulated, in order to obtain the test signal. The voltage acquired by the
PMU is nominally the combination of a local oscillation (the oscillation of G1 with respect to G2) and
an inter-area oscillation (the oscillation of the area including G3 and G4 with respect to that including
G1 and G2).

The initial part of the signal acquired by the PMU has been cut to remove the fault transient; the
obtained signal, versus time, is shown in Figure 17, represented with the red dashed line.

The test signal has been processed according to the proposed approach. Two oscillations have
been detected; in fact, the spectrum of the signal exhibited two peaks at the frequencies of 0.53 Hz
(compatible with an inter-area oscillation) and 1.1 Hz (compatible with a local oscillation), respectively.
The monocomponents estimated by the proposed method are shown in Figure 18.
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Figure 17. Test signal obtained by Kundur’s Simulink R© model and its estimation according to the
proposed approach.

Figure 18. Individual oscillation estimated according to the proposed approach; low frequency signal
(on the left) and high frequency signal (on the right).

In particular, the estimated parameters are reported in Table 2.

Table 2. Estimates of oscillations parameters of Kundir’s model.

Component Frequency Damping

Component 1 0.532 [Hz] 0.475 [s−1]
Component 2 1.121 [Hz] 0.767 [s−1]

In order to evaluate the quality of the separation method, the two obtained monocomponents
have been summed and the resulting signal, shown in Figure 17 and referred to as estimated signal,
has been compared with the input test signal. It can be observed that the estimated signal accurately
fits the time evolution of test signal.

6. Processing for Near Frequency Oscillations

As mentioned above, the proposed separation method fails if the oscillations are characterized by
frequencies that are distant less than twice the spectral resolution.

The authors have improved the method, providing specific processing for this case, which is
recognized because only one peak is detected in the spectrum.

In particular, the developed algorithm examines, by means of an NLS regression in the time
domain, the signal acquired by the PMU through a moving time window; the algorithm stops
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when the root mean square (RMS) deviation between the input signal and the best fit is lower than
a fixed threshold.

For the sake of clarity, the signal described by the following formula is considered:

y (t) = 1e0.05t sin (0.4πt) + 1e−0.3t sin (0.6πt) . (26)

The test signal consists of the sum of two oscillations, the first one divergent and the second one
damped, characterized by frequencies equal to 0.2 Hz and 0.3 Hz, respectively. Both the time evolution
and the spectrum of the test signal are shown in Figure 19.

Figure 19. Time evolution (on the left) and spectrum (on the right) of the test signal adopted for
the assessment.

It has to be observed that the spectrum of Figure 19 can also be associated to a single tone
component, that has been acquired with non-coherent sampling conditions; so the separation of this
signal in two oscillations could lead to unmeaningful information. For this reason, the algorithm
search for the best mono-component oscillation that fits the input signal.

A 10 s time window of the test signal is shown in Figure 20. The samples of this window are
given as input to an NLS minimization that fits the test signal with a single damped oscillation. If the
actual signal is compared with the obtained best fit, it can be noted that the deviation in the estimate is
high. The estimate of the damping coefficient is shown in the second column of Table 3.

Table 3. Estimates of the damping coefficient.

Actual Estimate on First Window Estimate on Second Window

−0.05 [s−1] −0.0103 [s−1] −0.0496 [s−1]

This result is expected because, in the first 10 s, the analyzed signal is actually the combination of
two oscillations, while the algorithm tries to fit the signal with only one oscillatory mono-component.

It should be noted, however, that although the NLS regression provides a rough estimate,
it provides a negative sign of the damping. Therefore the regression is able to identify the presence of
a divergent oscillation. This result can be exploited to raise an alert situation: the damping coefficient
is not known accurately, but there is a divergent oscillation to keep under control.
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Figure 20. First 10 s time window of the acquired signal and its estimated best fit.

The next step in the algorithm is to examine the successive 10 s window and repeat the nonlinear
regression. Both the signal and the best fit are shown in Figure 21. It can be noted that, this time,
the best fit had a time evolution similar to that of the input signal. Damped oscillations, in fact,
have been attenuated and the test signal is suitably approximable by a mono-component signal.

Figure 21. Second 10 s time window of the acquired signal and its estimated best fit.

The estimated damping is reported in the third column of Table 3.
The algorithm stops when the root mean square error (RMSE) between the samples of the acquired

signal and those of the best fit is lower than a set threshold.
Summarizing, in the case of frequencies very close to each other, the proposed algorithm estimated

a single damping, as if it detected only one oscillation. Various numerical tests have been performed,
in different conditions, in order to verify the behavior of the algorithm. In the case of divergent
oscillations, the algorithm is always capable of recognizing them since the estimated damping results
negative in the first 10 s time window. Successively, as the time window moves, the algorithm refines
the damping estimate.

Further tests have been carried out with signal involving only damped oscillations,
also characterized by amplitudes quite different one from each other. In the first window, the algorithm
can be strongly influenced by the component characterized by the highest amplitude; in this case the
RMSE value can be very small, since the NLS result properly fits the acquired signal. The setting
of the proper RMSE threshold, then, is a fundamental issue to assure the reliability of the method.
A threshold equal to 0.1% of the amplitude has proved to be optimal in all the experiments.



Energies 2019, 12, 2935 20 of 22

It can be concluded that:

• if the signal contains a divergent oscillation, the estimated damping is the negative one, since
the divergent oscillation exhibits a larger amplitude that masks the damped oscillations in the
NLS minimization.

• if the signal contains only damped oscillations, the estimated damping coefficient is the one
characterized by the smallest absolute value, i.e., that associated with the most persistent
oscillation; therefore the algorithm is also able to recognize weakly damped oscillations.

7. Conclusions

In the paper a novel algorithm for the analysis and parameters estimation of inter-area oscillations
has been proposed. The method consists of three steps: (i) the separation, according to an optimal
bisection frequency, of the input signal in individual mono-component oscillations; (ii) reshaping of
each mono-component in order to minimize the distortion due to the separation; (iii) correction of
Gibbs effect and parameters estimation through a NLS algorithm.

Several tests, both with numerical and experimental signals have been carried out in order to
assess the method. With respect to solutions already available in literature, the proposed method is
characterized by excellent performance in terms of accuracy of the parameter estimates and robustness
to noise.

As regards the computational burden and the response time, the proposed method allows to
acquire and process a reduced number of samples, in favor of the computational resources. In particular,
the described results have been obtained by processing 500 samples acquired with a sampling rate of
50 S/s. Concerning the response time, the time required by the algorithm execution is negligible with
respect to the time spent for the acquisition of the signal samples. The method performance, in fact,
is sensitive to the spectral resolution and, then, to the size of the analyzed time window. By considering
the typical values of frequency and damping coefficient characterizing the inter-area oscillations,
the authors have selected, as optimal trade off between the spectral resolution and the response time,
a time window of 10 s.

The ongoing activity is focused on the development of a dedicated measurement instrument.
At this aim, the realized algorithm has to be converted from MATLAB R© and transferred on
an embedded system.
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