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Abstract: In this paper, a Hopfield Lagrange network (HLN) method is applied to solve the optimal
load dispatch (OLD) problem under the concern of the competitive electric market. The duty of the
HLN is to determine optimal active power output of thermal generating units in the aim of maximizing
the benefit of electricity generation from all available units. In addition, the performance of the HLN
is also tested by using five different functions consisting of the logistic, hyperbolic tangent, Gompertz,
error, and Gudermanian functions for updating outputs of continuous neurons. The five functions
are tested on two systems with three units and 10 units considering two revenue models in which
the first model considers payment for power delivered and the second model concerns payment for
reserve allocated. In order to evaluate the real effectiveness and robustness of the HLN, comparisons
with other methods such as particle swarm optimization (PSO), the cuckoo search algorithm (CSA)
and differential evolution (DE) are also implemented on the same systems. High benefits and fast
execution time from the HLN lead to a conclusion that the HLN should be applied for solving the
OLD problem in a competitive electric market. Among the five applied functions, error function is
considered to be the most effective one because it can support the HLN to find the highest benefit and
reach the fastest convergence with the smallest number of iterations. Thus, it is suggested that error
function should be used for updating outputs for continuous neurons of the HLN.

Keywords: Lagrange Hopfield network; optimal load dispatch; energy function; Lagrange optimization
function; total fuel cost

1. Introduction

Optimal load dispatch (OLD) is a traditional optimization problem in electric power system
operation with the duty of allocating the best active power output of operating thermal units so
that the total electricity generation fuel cost is reduced as much as possible [1]. The concerned OLD
problem has attracted a huge number of researchers so far, and there has been a vast number of applied
optimization methods such as particle swarm optimization (PSO) [2], differential evolution (DE) [3],
the genetic algorithm (GA) [4], the cuckoo search algorithm (CSA) [5,6] and other state-of-the-art
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methods [7–10]. In connection with optimization algorithms, these studies have focused on applying
new algorithms and improving these original ones for finding valid solutions with high quality and
satisfying all constraints. In connection with the objective function complexity, different models of
fuel cost function related to single fuel, multiple fuels and valve point loading effects have been taken
into account. On the other hand, constraints regarding thermal generating units as power output
limits, ramp rate limits, and prohibited zone, as well as constraints regarding power systems such as
spinning reserve and power balance of power systems were considered seriously. In order to evaluate
the effectiveness and robustness of the applied methods, comparisons of fuel cost and simulation time
have been investigated.

Obviously, the OLD problem has a very important role in operation field; however, the problem
can become more important if the current competitive electric market can be taken into account [11–13].
In the competitive market, electric power providers must supply electricity to their customers with
low electricity prices. This also means the customers can maximize their profits by choosing the most
appropriate provider [14]. However, in the electric market, the energy providers must undertake two
issues. The first issue is to determine a provision of energy that will be sold to load in coming hours,
and the second issue is to calculate how much energy should be sold and should be reserved for future
so that the profit can be maximized [15]. The competitive electric market has been considered in the
unit commitment problem and studied in [16–26], consisting of different methods such as the hybrid
Lagrange relaxation and evolutionary programming (HLR-EP) [16], the muller method (MM) [17],
the tabu search based hybrid optimization technique (HTS) [18], the memetic algorithm (MA) [19],
parallel artificial bee colony (PABC) [20], nodal ant colony optimization (NACO) [21], the multi-agent
modeling method (MAMM) [22], the binary fish swarm algorithm (BFSA) [23], hybrid LR-secant
invasive weed optimization (HLR-SIWO) [24], the sine cosine algorithm (SCA) [25] and the binary
whale optimization algorithm (BWOA) [26]. In addition, the OLD problem has been applied under the
consideration of competitive environment [27–31].

The Lagrange Hopfield network (HLN) improves on the Hopfield neuron network by combining
the energy function and the Hopfield network in order to reduce the oscillations in converging to
optimal solutions with very tiny errors [32]. In the HLN, the Lagrange optimization function is first
built and is then converted to the energy function with the presence of the outputs of continuous
neurons and multiplier neurons. The strategy for solving optimization problems by implementing the
HLN consists of update processes such as the updating of dynamics of inputs and outputs for multiplier
neurons and for continuous neurons, the updating of inputs for multiplier neurons, the updating of
inputs for continuous neurons, and the updating of outputs of continuous neurons. Among the update
processes, the last update is used to directly calculate optimal solutions. The HLN was successfully
applied in 2012 [32] for dealing with the economic load dispatch problem without considering the
competitive electric market. Its results were better than almost all compared methods in terms of
fuel cost, convergence time and very tiny errors. The HLN in [32] solved the OLD problem with two
cases, the first of which considered all thermal units and the second of which took both hydropower
plants and thermal power plants into account. Numerical results and graphic results have led to
the conclusion that the HLN could deal with large-scale systems and complicated constraints easily
without oscillations like the Hopfield neuron network.

In [33], the augmented Lagrange Hopfield network (ALHN) was developed for solving the OLD
problem by considering the electrical market. The method is an expanded form of the HLN, since the
Lagrange optimization function is expanded into the augmented Lagrange function with the presence
of equality constraints. The method has shown better profit than PSO and DE for two power systems
with three units and ten units. However, the study did not clearly point out the real performance
of the ALHN since initial outputs were fixed at the same values, and result comparisons with the
HLN have not been accomplished. Furthermore, the ALHN is more complicated than the HLN due
to the presence of a higher number of Lagrange multipliers. Both the HLN in [32] and the ALHN
in [33] employed the sigmoid function for updating continuous neurons. Consequently, in this paper,
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we propose to use the HLN with five different functions for updating outputs for continuous neurons.
In order to evaluate the performance of the HLN, we also implement such five HLN methods for
solving two systems with three units and ten units. The novelties and the contributions of the paper
can be summarized as follows:

(1) First apply the HLN to the OLD problem while considering the electric market.
(2) Propose five different functions for updating outputs for continuous neurons.
(3) Use different initial outputs for continuous neurons for evaluating the oscillations of the HLN.

In addition, the main contributions of the paper can be summarized as follows:

(1) Reduce the complicated level of the ALHN in establishing energy function.
(2) Reduce control parameters by canceling the augmented terms in the Lagrange function. This can

shorten simulation time.
(3) Point out the best function for updating outputs for continuous neurons. The best function can

stabilize the search performance of the HLN.
(4) Survey the oscillations of the HLN by different initial outputs for continuous neurons.
(5) Five functions form five HLN methods, and their results from two systems with three units and

10 units will be compared to those of other methods such as the cuckoo search algorithm (CSA),
particle swarm optimization (PSO), differential evolution (DE) and the ALHN.

The remaining parts of the papers are as follows: The problem formulation with an explanation
of objective function and constraints is given in Section 2. An implementation of HLN methods for
solving the considered problem is described in detail in Section 3. Two test systems with three units
and 10 units are solved for comparison in Section 4. Section 5 summarizes the conclusions of the work.

2. Problem Formulation

2.1. Objective Function

The OLD problem in the competitive electric market is established by the presence of an objective
function and a set of constraints regarding thermal generating units as well as power systems. In order
to present the considered objective function, the fuel cost function for generating electricity is first
mentioned as follows:

Fi = ciP2
i + biPi + ai($/h) (1)

However, all thermal generating units must generate higher than the requested demand due to
reserve power demand (PRi) during operation in the market. As such, the sum of Pi and PRi leads to a
higher cost, which is calculated as follows:

F′i = ci(Pi + PRi)
2 + bi(Pi + PRi) + ai ($/h) (2)

Considering the probability (Pa) for the reserve required and produced, the total fuel cost is
obtained by [16]:

TFC = (1− Pa) ×
N∑

i=1

Fi + Pa

N∑
i=1

F′i (3)

As power companies sell electric energy to customers, revenue (RE) can be calculated by using
the two following models:

1. Payment for delivered power

RE = PSP×
N∑

i=1

Pi +
N∑

i=1

[(1− Pa) × PRP + Pa × PSP]PRi (4)
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2. Payment for allocated reserve

RE = PSP×
N∑

i=1

Pi + Pa × PRP×
N∑

i=1

PRi (5)

As a result, total profit (TP) can be obtained using RE and TFC and is also the considered objective,
as defined by:

Maximize {TP = RE− TFC} (6)

In the HLN, objective function should be minimized. As such, the objective above is also similar
to the objective below

Minimize {−TP = TFC−RE} (7)

2.2. The Set of Constraints

In addition to the objective function, a set of constraints must be taken into account, and they
must be satisfied as follows:

1. The active power balance between demand and supply: The total generation of all units and load
demand PD must follow the following rule:

N∑
i=1

Pi ≤ PD (8)

2. Active power reserve constraint: The sum of reserve power from all units and the reserve demand
PRD are constrained by the following inequality:

N∑
i=1

PRi ≤ PRD (9)

3. Generation limits: The power output of each thermal generating unit must be within the lower
bound Pmin

i and the upper bound Pmax
i as the following model:

Pmin
i ≤ Pi ≤ Pmax

i (10)

The constraint aims to assure the safety of the generator while producing electricity. Normally,
each thermal generating unit does not have a lower bound subject to physical ability, but it must
be constrained by the lower bound due to economic issues [34]. During the operation of thermal
generating units, the fuel cost for starting up each thermal generating is significant. Thus, it must
be worked with large enough power to avoid high fuel cost.

4. Reserve limits: The active power reserve of the ith unit PRi must follow the rule below:

0 ≤ PRi ≤ Pmax
i − Pmin

i (11)

Pi + PRi ≤ Pmax
i (12)

In the two equations above, PRi is the power reserve of the ith thermal generating unit, and it is
not constrained by a specific value. However, its maximum value PRmax

i must not be higher than
(Pmax

i − Pmin
i ). However, the sum of the power reserve of all thermal generating units must satisfy

Constraint (9) above. As Constraints (8)–(12) are exactly met, the power system can work stably
and safely.
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3. Implementation of the HLN for the OLD Problem in the Competitive Electric Market

The HLN can deal with the OLD problem in the electric market or other optimization problems by
establishing the Lagrange function and energy function together with processes of neurons. The main
structure of the HLN can be summarized as follows:

1. Establish the Lagrange function: The Lagrange function must include objective functions and
constraints in which each constraint will have one Lagrange multiplier that needs to be tuned for
optimal solutions that satisfy all constraints and have a high quality [35].

2. Establish the energy function: The energy function is a converted function from the Lagrange
function. Here, the control variables and the Lagrange multiplier in the Lagrange function
will become outputs for continuous neurons and multiplier neurons, respectively. In addition,
the inverse sigmoid function is also added in the energy function [33].

3. Calculate the dynamics of neurons: The dynamics of neurons can be determined by taking
partial derivatives of energy function with respect to the outputs for continuous neurons and
multiplier neurons.

4. Update inputs for multiplier neurons and continuous neurons: Inputs for neurons must be
updated after determining the dynamics of neurons by adding a change step to old inputs.
The change step is calculated from the dynamics of neurons.

5. Update outputs for multiplier neurons and continuous neurons: The updated outputs for
multiplier neurons are used to calculate dynamics of neurons in next iteration. Meanwhile,
the updated outputs for continuous neurons are control variables that are added in an optimal
solution if all termination conditions are exactly met as expected.

In addition to the five computation steps, the HLN needs initial parameters for starting the first
iteration and needs termination conditions. Randomization is used to produce initial parameters such
as inputs and outputs for both multiplier.

3.1. Main Steps of the HLN

3.1.1. Lagrange Optimization Function and Energy Function

The HLN is carried out for optimizing the objective function and handling all constraints exactly as
in Section 2. The first main step of the HLN is to construct the Lagrange optimization function, and then
the Lagrange function is converted into the energy function. The Lagrange function, consisting of the
objective function and constraints, can be mathematically formulated as follows:

LF = −TP +
1+SignP

2

[
λ

(
N∑

i=1
Pi − PD

)]
+

1+SignPR
2

[
γ

(
N∑

i=1
PRi − PRD

)]
+

N∑
i=1

{
1+Signi,PR

2

[
µi

(
Pi + PRi − Pmax

i

)]} (13)

In Equation (13),
(

N∑
i=1

Pi − PD

)
is taken from power balance constraint in Equation (8);(

N∑
i=1

PRi − PRD

)
is taken from reserve power constraint in Equation (9); and

(
Pi + PRi − Pmax

i

)
is

taken from reserve limit constraints in Equation (12). In addition, SignP, Signi,PR and SignPR are the
signs of the three term above and can be determined by the following equations:

SignP =


−1 if

N∑
i=1

Pi < PD

1 if
N∑

i=1
Pi > PD

(14)
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SignPR =


−1 if

N∑
i=1

PRi < PRD

1 if
N∑

i=1
PRi > PRD

(15)

Sign i,PR =

{
−1 if Pi + PRi > Pmax

i
1 if Pi + PRi < Pmax

i
(16)

The Lagrange function (13) can be transferred into the energy function by converting the control
variables and the Lagrange multiplier into outputs for neurons. In addition, the inverse sigmoid
function is also added in the energy function. As a result, the energy function is formed as follows:

EF = TFC(Vi,P, Vi,PR) −RE(Vi,P, Vi,PR)

+
1+SignP

2

[
Vλ

(
N∑

i=1
Vi,P − PD

)]
+

1+SignR
2

[
Vγ

(
N∑

i=1
Vi,PR − PRD

)]
+

N∑
i=1

{
1+Signi,PR

2

[
Vi,µ

(
Vi,P + Vi,PR − Pmax

i

)]}
+

N∑
i=1

Vi,P∫
0

dV
gc(V)

+
N∑

i=1

Vi,PR∫
0

dV
gc(V)

(17)

3.1.2. Dynamics of Neurons

In order to update outputs as well as inputs for neurons, the dynamics of neurons must be first
updated based on the models below:

dUi,P

dt
= −

dEF
dVi,P

= −


dTFC(Vi,P,Vi,PR )

dVi,p
−

dRE(Vi,P,Vi,PR )

dVi,P

+
1+SignP

2 Vλ +
1+Signi,PR

2 Vi,µ + Ui,P

 (18)

dUi,PR

dt
= −

dEF
dVi,PR

= −


dTC(Vi,P,Vi,PR)

dVi,r
−

dRV(Vi,P,Vi,PR)
dVi,PR

+
1+SignPR

2 Vλ +
1+Signi,PR

2 Vi,µ + Ui,PR

 (19)

dUλ

dt
=

dEF
dVλ

=
1 + SignP

2

 N∑
i=1

Vi,P − PD

 (20)

dUγ

dt
=

dEF
dVγ

=
1 + SignPR

2

 N∑
i=1

Vi,PR − PRD

 (21)

dUi,µ

dt
=

dEF
dVi,µ

=
1 + Signi,PR

2

(
Vi,p + Vi,r − Pmax

i

)
(22)

where
dTC(Vi,P,Vi,PR)

dVi,P
= (1− Pa)

dFi(Vi,P)
dVi,P

+ Pa
dF′i (Vi,P+Vi,PR)

dVi,p

= (1− Pa)(bi + 2ciVi,P) + Pa[bi + 2ci(Vi,P + Vi,PR)]
(23)

dTFC(Vi,P, Vi,PR)

dVi,PR
= Pa

dF′i (Vi,P + Vi,PR)

dVi,PR
= Pa[bi + 2ci(Vi,P + Vi,PR)]. (24)

3.1.3. Update Inputs for Neurons

The inputs of the continuous neurons and the Lagrange multiplier neurons at the current iteration
can be updated by:

Ui,P = Ui,P + α1
dEF
dVi,P

(25)

Ui,PR = Ui,PR + α2
dEF

dVi,PR
(26)
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Uλ = Uλ + α3
dEF
dVλ

(27)

Uγ = Uγ + α4
dEF
dVγ

(28)

Uγ,µ = Uγ,µ + α5
dEF

dVγ,µ
(29)

where α1, α2, α3, α4 and α5 are positive scaling factors and do not have a specific range like Pa or other
parameters. As such, the most appropriate values are obtained by experiment. This issue is the main
shortcoming of the HLN in dealing with optimization problem, especially for complicated problems
with a high number of constraints and high number of control variables [34]. However, the complexity
of the HLN can be reduced thanks to the simplicity of updating outputs for multiplier neurons, since
the outputs for multiplier neurons can be set to the input for multiplier neurons. The setting can also
lead to good results, so more solutions for finding the parameters are no longer required. The outputs
are determined by:

Vλ = Uλ (30)

Vγ = Uγ (31)

Vi,µ = Ui,µ (32)

3.1.4. Update Output for Neurons

The outputs for continuous neurons are updated by using the following models:

Vi,P =
Pmax

i − Pmin
i

2
[1 + tanh(σUi,P)] + Pmin

i (33)

Vi,PR =
PRmax

i − PRmin
i

2
[1 + tanh(σUi,PR)] + PRmin

i (34)

Vi,P =
Pmax

i − Pmin
i

2
[logistic(σUi,P)] + Pmin

i (35)

Vi,PR =
PRmax

i − PRmin
i

2
[logistic(σUi,PR)] + PRmin

i (36)

Vi,P =
Pmax

i − Pmin
i

2
gom(σUi,P) + Pmin

i (37)

Vi,PR =
PRmax

i − PRmin
i

2
gom(σUi,PR) + PRmin

i (38)

Vi,P =
Pmax

i − Pmin
i

2
[er f (σUi,P)] + Pmin

i (39)

Vi,PR =
PRmax

i − PRmin
i

2
[er f (σUi,PR)] + PRmin

i (40)

Vi,P =
Pmax

i − Pmin
i

2

(
1 +

gd(σUi,P)

0.5π

)
+ Pmin

i (41)

Vi,PR =
PRmax

i − PRmin
i

2

(
1 +

gd(σUi,P)

0.5π

)
+ PRmin

i (42)
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where five functions consisting of the hyperbolic tangent function, the logistic function, the gom
function, the erf function and the gd function can be defined as follows:

logistic(x) =
1

1 + e−x (43)

tanh (x) =
ex
− e−x

ex + e−x (44)

gom(x) = e−e−x
(45)

er f (x) =
2
√
π

x∫
0

e−t2
(46)

gd (x) = 2arctan(ex) −
1
2
π (47)

In [32], only one function, tanh(σUi) (where σ is the slope and Ui is the input of neurons), was used
to determine output for continuous neurons. There were three curves plotted in [32] corresponding to
three values of σ, which were 0.005, 0.01 and 100. In this paper, we used the function together with
four other functions shown in Equations (43)–(47). As such, five curves are plotted in Figure 1 that
correspond to the five functions in which x is varied from −π to π.
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Figure 1. Five applied functions for updating outputs of continuous neurons.

Due to the use of five different functions, the five HLN methods are defined as the HLN-LF
(the HLN with the logistic function), the HLN-THF (the HLN with the hyperbolic tangent function),
the HLN-GF (the HLN with the Gompertz function), the HLN-EF (the HLN with the error function)
and the HLN-GdF (the HLN with the Gudermanian function). It should be noted that each function
contains both the slope and input of neurons, and each function is used to calculate the output for
the neurons shown in Equations (33)–(42). Then, these outputs and inputs are used to calculate the
dynamics of the neurons shown in Equations (18)–(22) in the next iterations. In next step, the dynamics
of neurons are used to update inputs for neurons. The steps are repeated until the maximum error is
not higher than Tolpre. Thus, the effectiveness of each function cannot be explained in theory, but using
obtained results can illustrate their contribution to determine the output for neurons.
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3.2. The Entire Search Process of the HLN

3.2.1. Selection of Parameters

In the HLN, there are many parameters need to be tuned. These parameters consist of

(1) σ

(2) α1, α2, α3, α4 and α5

(3) Predetermined tolerance Tolpre

(4) Maximum iteration Gmax

Among the parameters, σ directly influences the outputs for continuous neurons as shown in
Equations (33)–(42). There is no predetermined range for σ; however, the parameter can be set to the
same value of 100 for all study cases, and the results are good enough for acceptance. α1, α2, α3, α4

and α5 are set to small values which are higher than 0 but much smaller than 1. There is no rule for
tuning the values of the five parameters excluding the trial and error method. For different study
cases, these parameters are set to difference values. Tolpre has a high impact on the quality of optimal
solutions, and it can be tried by setting to 10−1, 10−2, 10−3, 10−4 and 10−5. When setting Tolpre to a
very small value, the convergence is hardly ever reached. However, a higher value can easily lead to
convergence, but the objective function of the obtained solutions, i.e., total profit, cannot reach the
maximum value as expected. However, the impact of Tolpre on results when setting the range from 10−5

to 10−4 is insignificant—even the same. In contrast to the other parameters, Gmax does not lead to good
or bad results, but it is employed to control the convergence of the HLN. In the HLN, the termination
condition is based on maximum error. However, in order to avoid loss of control, Gmax can stop the
iterative search process if the computational iteration is equal to Gmax. In this case, the termination
condition is not exactly satisfied. If the maximum error is less than Tolpre, the computational iteration is
smaller than Gmax. As such Gmax can be set to 5000 for all study cases.

3.2.2. Initialization

Inputs for both multiplier neurons and continuous neurons can be randomly produced within the
range of 0–1. In addition, outputs for continuous neurons consisting of Vi,P and Vi,PR are randomly
produced within the lower bound and the upper bound, while outputs for multiplier neurons consisting
of Vλ, Vγ and Vi,µ are randomly initialized between 0 and 1. The initialization can be summarized
as follows:

Uλ = 0 + ε1(1− 0) (48)

Uγ = 0 + ε2(1− 0) (49)

Ui,µ = 0 + ε3(1− 0) (50)

Vλ = 0 + ε4(1− 0) (51)

Vγ = 0 + ε5(1− 0) (52)

Vi,µ = 0 + ε6(1− 0) (53)

PRmax
i = PRmin

i + ε7(PRmax
i − PRmin

i ) (54)

Pmax
i = Pmin

i + ε8(Pmax
i − Pmin

i ) (55)

where ε1, ε2, ε3, ε4, ε5, ε6, ε7 and ε8 are random numbers within the range from 0 to 1.

3.2.3. Condition of Computation Termination

The search procedure ends if the current iteration (G) is equal to the maximum iteration (Gmax) or
the maximum error (Errormax) is equal or smaller than predetermined tolerance (Tolpre). For all cases,
we set Gmax = 5000 and Tolpre = 10−4, and Errormax is determined by:
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ErrorP =
N∑

i=1

Vi,P − PD (56)

ErrorPR =
N∑

i=1

Vi,PR − PRD (57)

ErrorPRi = Vi,PR − Pmax
i ; i = 1, . . . , N (58)

Errormax = max
{
ErrorP, ErrorPR, max(ErrorPRi)

}
(59)

3.2.4. The Iterative Algorithm of the HLN for Dealing with the Considered Problem

The iterative algorithm of the HLN for solving the considered OLD problem in the competitive
environment is given in Figure 2 and expressed by the following steps:

Step 1: Set values for control parameters, as expressed in Section 3.2.1.
Step 2: Randomly generate inputs as well as outputs for multiplier neurons and continuous neurons,

as shown in Section 3.2.2.
Step 3: Set current iteration G to 1.
Step 4: Determine the dynamics of inputs and outputs for all neurons, as shown in Section 3.1.2.
Step 5: Update the inputs for multiplier neurons and continuous neurons by using Section 3.1.3.
Step 6: Update the outputs for multiplier neurons and continuous neurons by using Section 3.1.4.
Step 7: Calculate individual error and maximum error, as shown in Section 3.2.2.
Step 8: If Errormax > Tolpre and G < Gmax, set G = G + 1 and return to Step 3. Otherwise, stop the

HLN and print results.
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4. Numerical Results

In the section, we have implemented the HLN with five functions for updating the outputs for
continuous neurons, as shown in Equations (33)–(42). For each study case, we executed each HLN
method for 100 independent trial runs, and then the results in terms of the average profit, maximum
profit, minimum profit, average of iterations and maximum error were reported. The iterative algorithms
were coded in Matlab program language and run on a 2.40 GHz personal computer.

4.1. Three-Unit System

In this section, the HLN method is tested on the three-unit system shown in Figure 3 with two
revenue models consisting of payment for power delivered and payment for reserve allocated [33].
The two cases have the same input data such as the forecasted power demand of 1100 MW, the forecasted
power reserve of 100 MW, the spot price of 11.3 ($/MWh) and the probability of reserve Pa = 0.005.
However, reserve price is different, i.e., three times the spot price for the first revenue model and 0.004
times the spot price for the second revenue model. For implementing PSO, DE and the CSA, we set
the population and the maximum number of iterations to 5 and 500, respectively, while the other
parameters for each method were set by the following selection:

1. PSO: c1 = 2.05 and c2 = 2.05 [36]
2. DE: Crossover factor CR = 0.2, 0.4, 0.6, 0.8 and mutation factor F = 0.2, 0.4, 0.6, 0.8, 1.0 [34]
3. CSA: The probability of replacing old solution for mutation operation Pro = 0.2, 0.4, 0.6, 0.8,

1.0 [37]
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For the first revenue model, the results obtained by five HLNs and the three methods together
with the ALHN are reported in Table 1.

Table 1. Comparison of results obtained for three-unit system with the first revenue model.

Method Mean Error Max. Profit
($/h)

Mean. Profit
($/h)

Min. Profit
($/h)

Mean
Iterations

CPu Time
(s)

HLN-EF 0.000078 1102.45 1102.45 1102.45 40 0.017
HLN-THF 0.000091 1102.45 1102.45 1102.45 59 0.02
HLN-GdF 0.000098 1102.45 1102.45 1102.449 142 0.06
HLN-GF 0.000098 1102.45 1102.449 1102.449 155 0.062
HLN-LF 0.000098 1102.45 1102.45 1102.449 161 0.069

PSO 0.000078 1102.45 938.8674 325 500 0.383
CSA 0.000091 1102.45 1099.229 1040.159 500 0.765
DE 0.000098 1102.45 635.3542 −111.923 500 0.808

ALHN [33] - 1102.45 - - 5000 0.16
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The obtained results from the five HLN methods including maximum profit, mean profit, minimum
profit, mean error, and mean iterations together with simulation time are shown in Tables 1 and 2
for the first and the second revenue models, respectively. In addition, results from PSO, the CSA,
DE and the ALHN [33] are also reported in the tables for comparison. Table 1 indicates that all methods
had the same maximum profit for the first revenue model with 1102.45 ($/h), while the mean profit
and the minimum profit of the proposed HLN were better than those of other methods excluding
the ALHN because the ALHN used the same initial outputs for multiplier neurons and continuous
neurons. These results mean that the five HLNs had the best stability, and approximately all runs had
the same profit as the best run. In addition, the five HLN methods were also faster than other ones,
since the mean iterations were from 40 to 161 and the simulation times of the HLN methods were the
fastest from 0.017 to 0.069 s; the other methods used 500 iterations and took about 0.4–0.8 s. Similarly,
the five HLN methods were better than other ones for the second revenue model. The maximum profit
of all methods was approximately similar, but the mean and the minimum profits of the HLN methods
were much higher. The observation of mean iterations and simulation times indicates that the HLN
method could search optimal solutions much faster than other ones. Thus, it can be concluded that the
HLN methods are the best methods among the applied methods.

Table 2. Comparison of results obtained for three-unit system with the second revenue model.

Method Mean Error Max. Profit
($/h)

Mean. Profit
($/h)

Min. Profit
($/h)

Mean
Iterations

CPu Time
(s)

HLN-EF 0.000097 1095.648 1095.648 1095.6474 173 0.07
HLN-THF 0.0001 1095.647 1095.647 1095.646 240 0.1
HLN-GdF 0.000099 1095.61 1095.61 1095.61 421 0.18
HLN-GF 0.000098 1095.589 1095.589 1095.5893 432 0.185
HLN-LF 0.000102 1095.59 1095.59 1095.589 413 0.32

PSO - 1095.648 943.7049 232.7724 500 0.77
CSA - 1095.648 1088.329 959.5354 500 0.82
DE - 1095.648 745.1618 57.8145 500 0.95

ALHN [33] - 1095.65 - - 5000 0.16

In comparison among the five HLN methods, it should be noted that the HLN-EF had the best
performance because its mean error and mean iterations were the lowest. Its mean error was much
smaller than Tolpre for two cases, but those of other methods were slightly smaller or higher than Tolpre.
The mean errors were, respectively, 0.000078 and 0.000097 for the two cases, while Tolpre was equal
to 0.0001. The mean iterations of the HLN-EF were 40 and 173, but those of other methods were
from 59 to 161 for the first case and from 240 to 432 for the second case. Figures 4 and 5, respectively,
show the maximum error and the profit at each computation iteration for the system with the first
revenue model. These figures indicate that all HLN methods can stabilize the maximum error at each
iteration since the fluctuations were nearly zero and the maximum error of the later iteration was
lower than that of the previous iteration. For choosing the best method, the HLN-EF in red could reach
the termination condition and the highest profit before the 40th iteration for the first model, whereas
the other HLN methods were searching solutions, reducing the maximum errors and increasing total
profits. The HLN-THF was the second best method for reaching the termination condition and the
highest profit. Three remaining methods such as the HLN-GdF, the HLN-GF and the HLN-LF had the
same manner in finding solutions, with about 140 iterations. The mean iterations shown in Table 1 also
support this observation, since the three methods had the mean iterations higher than 150 iterations.
Figures 6 and 7, respectively, illustrate the maximum error and the profit over the search process for
the system with the second revenue model. The two figures also provide good evidence for indicating
the superiority of the HLN-EF over other methods, since the method reached the smallest error at
about iteration 170, while other ones used about approximately 250 and 450 iterations. As such, it can
be concluded that error function is the best model for the updating outputs for continuous neurons.
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All of the data of the system and optimal solutions obtained by the HLN-EF for the system are
shown in Tables A1 and A2 of Appendix A.
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4.2. Ten-Unit System

In this section, a 10-unit system which also had two revenue models was employed to run the
HLN, PSO, DE and CSA methods. All of the data of the system were taken from [33]. The two cases
had the same input data, such as a forecasted power demand of 1500 MW, a forecasted power reserve
of 150 MW and a spot price of 31.65 ($/MWh). However, Pa and PRP were different for two models—Pa

= 0.05 and PRP = 5 × PSP for the first model and Pa = 0.005 and PRP = 0.01 × PSP for the second
model. For implementing PSO, DE and the CSA, we set the population and the maximum number of
iteration to 10 and 500, respectively, while the other parameters for each method were set to the same
values shown in section above. The results from the HLN and other methods are shown in Tables 3
and 4 for two cases. For the first case, the maximum profit from the HLN methods was approximately
equal to the best value of 14,564.731 $/h and was the highest value among all compared. The mean
profit and the lowest profit of the HLN methods were nearly equal to the maximum profit and much
higher than those from the PSO, CSA and DE methods. In fact, the highest profits of the three methods
were, respectively, 14,182.186, 14,564.05 and 14,053.027 $/h. Meanwhile, their lowest profits were,
respectively, 836.9154, 14,201.51, and 2281.539. Similarly, the maximum profit and the minimum profit
of the proposed HLN methods were nearly alike and equaled 13,635.1081 $/h for the second case,
but those of PSO, the CSA and DE were much worse. Their best profits were 13,158.0653, 13,635.105,
and 13,093.1919 $/h, and their worst profits were 6246.4383, 13,177.6998, and 3729.7168 $/h, respectively.
Furthermore, the execution time from the HLN methods was much shorter than those of the other
methods. It was around 0.1 s for the HLN methods, but it was about 2.0 s for other ones, excluding the
ALHN. Clearly, the HLN methods are much more effective for a large-scale system.

Table 3. Comparison of results obtained for the 10-unit system with the first revenue model.

Method Mean Error Max. Profit
($/MWh)

Mean Profit
($/MWh)

Min. Profit
($/MWh)

Mean
Iterations

CPu Time
(s)

HLN-EF 0.000095 14,564.731 14,564.73 14,564.729 194 0.08
HLN-THF 0.000095 14,564.73 14,564.73 14,564.727 225.6 0.1
HLN-GdF 0.000092 14,564.716 14,564.715 14,564.70 256.81 0.11
HLN-GF 0.000093 14,564.714 14,564.714 14,564.713 195 0.08
HLN-LF 0.000082 14,564.714 14,564.713 14,564.712 279.57 0.22

PSO - 14,182.186 9771.186 836.9154 500 1.5
CSA - 14,564.05 14,501.86 14,201.51 500 1.7
DE - 14,053.027 8416.1628 2281.539 500 1.9

ALHN [33] - 14,564.73 - - 5000 0.18

Table 4. Comparison of results obtained for the 10-unit system with the second revenue model.

Method Mean Error Max. Profit
($/MWh)

Mean Profit
($/MWh)

Min. Profit
($/MWh)

Mean
Iterations

CPu Time
(s)

HLN-EF 0.000092 13,635.1083 13,635.1083 13,635.1083 187 0.08
HLN-THF 0.000084 13,635.1082 13,635.1081 13,635.1078 227.56 0.1
HLN-GdF 0.000088 13,635.1061 13,635.106 13,635.105 270.48 0.12
HLN-GF 0.000091 13,635.1067 13,635.1061 13,635.1059 195 0.09
HLN-LF 0.000085 13,635.1059 13,635.1058 13,635.105 278.86 0.22

PSO - 13,158.0653 9824.8414 6246.4383 500 1.6
CSA - 13,635.105 13,448.0525 13,177.6998 500 1.7
DE - 13,093.1919 8346.2441 3729.7168 500 2.0

ALHN [33] - 13,635.11 - - 5000 0.18

Comparison among the five HLN methods had the same evaluation as the first system with
three units. The HLN-EF was the best one with the highest maximum profit and minimum profit.
In addition, the iteration from the HLN-EF was the smallest for two cases. Figure 8 show a whole
view of search process for finding optimal solutions by using the first model of the revenue. As seen
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from this figure, these applied methods could not stabilize the maximum error over the whole search
process. The maximum errors fluctuated from the 10th iteration to the 50th iteration, and then the
fluctuation decreased and kept decreasing until the final iteration was reached. However, a clear
view for observing the decrease of the maximum error cannot be presented in Figure 8. Therefore,
Figure 9 was plotted for zooming in Figure 8 from the 120th iteration to the last iteration. Observing
the five curves can see that the HLN-EF (in red) and the HLN-GF (in green) could reach the smallest
fluctuations and the smallest maximum error; however, the HLN-EF was always better and reached
the convergence first. The HLN-GdF and the HLN-LF (in black) were the two worst methods with
the highest fluctuations and the highest maximum error. The HLN-THF (in blue) was separated into
a group. Corresponding to the view of the maximum error, the view of the total profit can be seen
by the meaning of Figures 10 and 11, where Figure 11 is plotted for zooming in Figure 10 from the
120th iteration to the last iteration. Figure 10 also has the same fluctuation as Figure 8 for the first
fifty iterations, and the fluctuations decreased after the 50th iteration. However, the entire view of
Figure 10 cannot show the clear stabilization of the total profit. Figure 11 indicates that the HLN-EF
(in red) could reach the highest profit and stopped searching for new solutions at about the 180th
iteration, while the HLN-GF (in green) found the second best profit after about two iterations. The three
remaining methods still got a stable profit and reached maximum profit after the 200th iteration.
Clearly, Figures 8–11 give good evidence for the outstanding performance of the HLN-EF over other
ones for the first model. Similarly, the best performance of the HLN-EF for the second model of the
system with 10 units can be observed by plotting Figures 12–15. The whole view of the maximum error
and the total profit is presented in Figures 12 and 14, while Figures 13 and 15 zoom in Figures 12 and 14
for better views of search process. Figures 12 and 14 show the fluctuations of maximum error and
total profit last from the first iteration to the 150th iteration; the fluctuations decreased dramatically
until the last iteration was reached. Figures 13 and 15 point out the best performance of the HLN-EF
in red and the second best performance of the HLN-THF in blue because the two methods stopped
searching at about the 230th iteration with the highest profit, whereas other ones were still searching
for solutions and increasing total profit. Consequently, it can be concluded that error function is the
most appropriate function for updating the outputs for continuous neurons.
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All of the data of the system and optimal solutions obtained by the HLN-EF for the system are
shown in Tables A3 and A4 of Appendix A.
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4.3. Discussion on the HLN with Different Applied Functions

As can be seen in Tables 1 and 2 for the first system with three units, the HLN methods had
approximately the same maximum profit. For the first model, all HLN methods could find the same
profit of $1102.45, but for the second model, only the HLN-EF could find $1095.648—the other ones
reached less profit. However, the deviation was not high. This means that all applied functions could
support the HLN to find the best performance for the system. However, the number of iterations
and the mean profit of all runs indicate that the HLN-EF is the best one because its mean and its
maximum were equal. As seen from Tables 3 and 4, the phenomenon was nearly repeated for the
second systems, and the HLN-EF was still the best method among the five HLN methods. However,
the mean iterations from these study cases were different. The HLN-EF reached the smallest number
of iterations (40 iterations) for the first model of the first system, while the mean iterations were higher
for the second system because the second system was comprised of 10 units. In this study, we set many
parameters to random values such as the inputs and outputs for the Lagrange multiplier neurons,
and the power output and the power reserve of all units as shown in Equations (48)–(55). The setting
and the simulation results mean that applications of the HLN methods are not dependent on the
initial parameters that the ALHN in [33] suffered. By comparing all the HLN methods to PSO, DE and
the CSA, it can be seen that the maximum profits indicated that the HLN methods were much more
effective than these methods for the second system with 10 units, while the mean of profit over 100
runs indicated that the HLN methods were more stable in finding optimal solutions. This also shows
that that the HLN methods were not influenced by the randomization factors that PSO, the CSA and
DE had to suffer.

5. Conclusions

In this paper, we proposed five HLN methods for solving the OLD problem while considering
the electricity market and complex constraints. Five functions consisting of the logistic, hyperbolic
tangent, Gompertz, error and Gudermanian functions were employed to establish five HLN methods.
Two systems with three and ten units were employed for two revenue models to run the HLN methods,
with the CSA, PSO and DE methods being used for comparison. The comparisons of maximum profit
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indicated that the HLN methods could reach the same optimal solution as other methods for the first
system, but they could reach much better solution for larger system with ten units. The proposed
HLN methods were also more stable and faster than other ones since they had a better mean profit,
a better minimum profit, lower iterations and faster simulation times for the two systems. Thus,
the HLN methods were superior to other compared methods. Among the five applied HLN methods,
the HLN-EF with the use of error function was the best method, since the maximum profit, mean profit
and minimum profit of all runs were approximately equal for two considered systems with two models
of revenue. In addition, the HLN-EF reduced the maximum error and reached the highest profit fastest
with the smallest number of iterations. Furthermore, the whole view of search process from the two
systems indicated that the HLN-EF had the smallest fluctuations of maximum error and maximum
profit, and it reached termination condition fastest. Consequently, it is recommended that the HLN
and error function should be tried for other optimization problems in electrical engineering.

In this problem, with the consideration of the electric market, we have considered different prices
for power produced and reserved from thermal generating units. Nowadays, electricity from solar
or wind systems accounts for a high rate from all power sources [38,39]. As such, a consideration of
renewable energies can be a good research field in optimizing load dispatch in the electric market.
If all renewable energies can be joined in the electric market, power systems can become more stable
and effective.
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Nomenclature

F′i Fuel cost of the ith thermal generating unit corresponding to power (Pi + PRi)
λ Lagrange multiplier associated with active power balance constraint
γ Lagrange multiplier associated with power reserve constraint of all available units
µi Lagrange multiplier associated with active power reserve constraint of the ith thermal unit
PRmin

i , PRmax
i Minimum and maximum reserve power of the ith thermal unit

Pmin
i , Pmax

i Minimum and maximum power output of the ith thermal unit
ai, bi, ci Given cost function coefficients
Errormax Maximum error
Fi Fuel cost of the ith thermal generating unit corresponding to power output Pi
G Current iteration
Gc(V) Sigmoid function corresponding to output of neuron V
Gmax Maximum iteration
N Number of available thermal units
Pa Probability for power reserve required and produced
Pi Power output of the ith thermal unit
PRi Reserve power of the ith thermal generating unit
PSP, PRP Predicted sell price and predicted reserve price
TFC Total fuel cost
Tolpre Predetermined tolerance
TP Total profit
Uλ, Uγ, Ui,µ Inputs for multiplier neurons
Ui,P, Ui,r Inputs for continuous neurons
Vλ, Vγ, Vi,µ Outputs for Lagrange multiplier neurons

Vi,P, Vi,PR
Outputs for continuous neurons corresponding to power output and reserve power of the
ith unit
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Appendix A

Table A1. All of the data for the three-unit system.

Unit i ci bi ai Pmin
i (MW) Pmax

i (MW)

1 0.002 10.000 500.000 100.000 600.000
2 0.0025 8.000 300.000 100.000 400.000
3 0.005 6.000 100.000 50.000 200.000

Table A2. All of the data for the 10-unit system.

Unit i ci bi ai Pmin
i (MW) Pmax

i (MW)

1 0.0004800 16.19 1000 150 455
2 0.0003100 17.26 970 150 455
3 0.00200 16.60 700 20 130
4 0.0021100 16.50 680 20 130
5 0.0039800 19.70 450 25 162
6 0.0071200 22.26 370 20 80
7 0.0007900 27.74 480 25 85
8 0.0041300 25.92 660 10 55
9 0.0022200 27.27 665 10 55

10 0.0017300 27.79 670 10 55

Table A3. Optimal solutions for the three-unit system obtained by HLN-EF.

i
Case 1 Case 2

Pi (MW) PRi (MW) Pi (MW) PRi (MW)

1 324.8165 99.9999 324.8165 99.9958
2 400 0 400 0
3 200 0 200 0

Table A4. Optimal solutions for the 10-unit system obtained by HLN-EF.

i
Case 1 Case 2

Pi (MW) PRi (MW) Pi (MW) PRi (MW)

1 455 0 455.0000 0
2 455 0 455.0000 0
3 130 0 130.0000 0
4 130 0 130.0000 0
5 162 0 162.0000 0
6 80 0 80.0000 0
7 25 55.3590 25.0000 54.8954
8 43 12.0001 43.0001 12.0000
9 10 44.9669 10.0000 42.2942
10 10 37.6740 10.0000 40.8105
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