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Abstract: Lithium-ion batteries typically exhibit a transition to a more rapid capacity fade trend when
subjected to extended charge–discharge cycles and storage conditions. The identification of the knee
point can be valuable to identify the more severe degradation trend, and to provide guidance when
scheduling battery replacements and planning secondary uses of the battery. However, a concise and
repeatable determination of a knee point has not been documented. This paper provides a definition
of the knee point which can be used as a degradation metric, and develops an algorithm to identify
it. The algorithm is implemented on various data cases, and the results indicate that the approach
provides repeatable knee point identification.
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1. Introduction

Lithium-ion batteries have been widely used in portable electronic devices, electric and aerospace
vehicles, and energy storage systems because they offer high energy and power density, and long
cycle life operation [1,2]. The performance of lithium-ion batteries can be evaluated by capacity,
stored energy, and internal resistance. The capacity is also often used as a health indicator because
it represents the amount of time that a fully charged battery can operate for a given current and
temperature condition.

In a charge–discharge cycle, lithium ions are shuttled between the positive and negative electrodes,
where active materials provide accommodations in their lattice [3]. Loss of lithium inventory in active
material, loss of active material, and reaction kinetics degradation collectively determine the amount of
charge a battery can deliver [4]. The maximum amount of charge that a battery can deliver decreases
with the time of storage (rest) and usage (charge–discharge cycles) [5]; this phenomenon is known as
capacity fade. For lithium-ion batteries, the end-of-life (EOL) is defined as the time when 80% of the
nominal capacity remains, and is an indicator of how often the batteries will need to be recharged to
carry out their mission. This definition is in the standards for electric vehicles [6,7], and is used by
most companies, including Apple [8].

It has been shown that a knee point marks a rapid capacity fade trend to the EOL [9–15]. In addition,
the energy efficiency—defined as the ratio of the discharge energy to the charge energy—exhibits a
more dramatic decrease near the EOL because of the significant energy loss due to an increase of the
battery resistance. Neubauer and Pesaran [9] used the knee point to define the EOL, but this has not
been a widely accepted definition of EOL, as noted above.

Williard [10] and He et al. [11] tested LiCoO2-based batteries with different capacities at room
temperature and observed that the capacity initially faded in an approximately linear fashion,
followed by a pronounced reduction rate (the knee point). Smith et al. [12] compiled the capacity
degradation data of 2.2 Ah LiFeO4-based batteries from various research groups, and noted that 13 out
of more than 50 testing conditions showed the existence of a knee point. For Li(NiMnCo)O2-based
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batteries, Yang et al. [13] noted that the capacity of cells tested at 25 ◦C tended to exhibit an exponential
decay after the knee point, while Ecker et al. [14] and Schuster et al. [15] found that the capacity of cells
tested at 35 ◦C experienced a sudden drop after a certain number of cycles. The capacity fade of cells
with lithium titanium oxide anode and Li(NiMnCo)O2 cathode also showed a two-stage degradation
characteristic when cycled at 55 ◦C [16].

The above literature shows that knee points occur under all operating conditions and can appear
before or after the EOL is reached. Identifying the occurrence of a knee point can be used to schedule
battery replacements, and can serve as a guide for secondary use. In the IEEE Standard 485™-2010
“IEEE Recommended Practice for Sizing Lead-Acid Batteries for Stationary Applications” [17], the “knee”
of the capacity fade curve is mentioned to guide battery replacement; however, it does not provide an
approach to identify (quantify) the “knee”.

While a knee point can often be approximately identified visually once data are plotted,
the difference between observers can be as much as 100 cycles, and there is no standard approach
or algorithm that can always identify the location. For example, Smith et al. [6] modeled two-stage
degradation behaviors and described the properties of the second derivatives of the capacity fade curve.
However, they did not provide a method to identify the knee point. Han et al. [16] approximated the
capacity fade using the intersection of a step-wise linear function to locate the knee point. This method
requires one to determine the intervals of the step-wise linear function in advance, and thus it is not
automated and cannot be computed.

Yang et al. [13] and Han et al. [16] used an inflection point as an alternative term to the knee
point, and Satopaa et al. [18] used the point with the maximum curvature to locate the knee point.
The inflection point is a point of a curve at which a change in the direction of curvature occurs
(i.e., the curve changes from being concave to convex, or vice versa). A necessary condition for an
inflection point is that its second derivative should be zero. The curvature is given by:

K(N) =
f ′′ (N)(

1 + f ′(N)2
)1.5

(1)

where f ′′ (N) and f ′(N) are the second and first derivatives of functions, respectively. Knee points are
often considered to be located where the curvature reaches a local extremum. However, neither the
inflection point nor the point with the maximum curvature can represent the knee point on capacity
fade curves of lithium-ion batteries in general.

The problem is that for capacity fade curves, there is no maximum or minimum in the slope of
the curve (as will be shown in the case studies). That is, one cannot define a knee point or draw a
tangent line because the slope is continuously monotonically changing after the knee point occurrence.
For example, Figure 1a shows a typical set of normalized capacity fade data. The slope of the capacity
fade curve (Figure 1b) shows that the tangent is monotonically changing in the fast degradation stage
(i.e., after knee point occurrence). Thus, there is no general algorithm that can assess a knee point using
the slopes.

This paper defines a knee point and develops an algorithm to determine the knee point from
test data. The approach involves two parts: the development of an empirical model to characterize
the capacity fade trend, and then identify the points with the minimum and maximum absolute
slope-changing ratio to locate two tangent lines. Section 2 presents the definition and the algorithm
used to determine a knee point. Section 3 presents case studies and the implementation of the algorithm
mentioned above, along with comparisons. Section 4 provides conclusions.
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Figure 1. (a) Discharge capacity over cycles; (b) slope of the data.

2. Definition and Detection of a Knee Point

Because of the problem that no general algorithm can be developed to assess a knee point using
the slopes, we define the knee point in a new way—as the cycle number of the intersection of two
tangent lines on the capacity fade curve. This is implemented by assessing the slope-changing ratio of
the curve:

s(N) =
l′(N + 1)

l′(N)
− 1 (2)

where l′(N) is the curve slope at the cycle interval [N − 1, N], and l′(N + 1) is the curve slope at the
adjacent cycle interval [N, N + 1]. The slope-changing ratio can then be approximated as the ratio of
the second derivative to the first derivative:

s(N) =
l′(N + 1) − l′(N)

l′(N)
=

l′(N + 1) − l′(N)

(N + 1−N) × l′(N)
≈

f ′′ (N)

f ′(N)
(3)

In this case, the tangent lines are obtained from the minimum and maximum
∣∣∣s(N)

∣∣∣. The developed
quantity (i.e., the slope-changing ratio) addresses the problem that one cannot find a generic
threshold/maximum/minimum in the first and second derivatives of the capacity fade curve to
represent a knee point.

3. Case Studies

To assess our approach, a cycling test for pouch-shaped lithium-ion batteries was conducted at
four different temperature conditions: 10, 25, 45, and 60 ◦C. Eight samples were measured at each
temperature condition. The major composition of cathode, anode, and electrolyte was LiCoO2, graphite,
and LiPF6-salt mixed with the organic solvent, respectively. The nominal capacity was 3.36 Ah and the
operation voltage range was 3.0–4.4 V. The discharge C-rate and charge cut-off C-rate were 0.7C and
C/40, respectively.

After every 50 cycles, the samples were charged and discharged using a standard profile for
discharge capacity characterization. Two constant current constant voltage (CCCV) charging stages
were recommended for these cells by battery manufacturers. These constant current (CC) and constant
voltage (CV) charging sub-stages were: 1O CC: 1.5 C until voltage reaches 4.2 V; 2O CV: 4.2 V until
current drops to 1 C; 3O CC: 1 C until voltage reaches 4.4 V; 4O CV: 4.4 V until current drops to C/40,
followed by a CC discharge at 0.7 C. The rest time between the charge and discharge stages was 5 min.
A typical characterization cycle took about 3.5 h for new cells. The cycling profile was identical to the
standard profile used for the characterization test. All characterization tests were conducted at 25 ◦C.
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Figure 2 shows the capacity degradation curves at different temperatures. Visually, one can
identify the knee point to occur around the 100th cycle for the capacity fade curves at 60 ◦C. The capacity
fade curves at 45 ◦C showed similar two-stage characteristics but with a slower degradation rate.
The knee point can be visually assessed to be around the 550th cycle. The knee points at both 45 and
60 ◦C occurred before the discharge capacity reached 80% of the nominal capacity.
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Our approach first involves a characterization of the capacity fade curve, using the model [19]:

NDC = 1− a×Nb
− c×Nd, (4)

where NDC is the normalized discharge capacity; N is the number of cycles; and a, b, c, and d are the
model coefficients to be determined. In this model, three coefficients in the double power law model in
Equation (4) vary as a function of temperature:

NDC = 1− exp(A× T + B) ×Nb
− exp(C× T + D) ×NE×T+F. (5)

The fitted results are shown in Figure 3. It is evident that the fitted curves agree well with the
experimental data (R2 = 0.9774). Figure 4a,b shows the absolute of slopes and second derivatives of
each capacity fade curve in Figure 3, and they are constantly monotonically changing in the second
degradation stage. Comparing Figure 4 with Figure 3 demonstrates again that the slope quantity or
the second derivative quantity alone [6] cannot be used to locate the knee point.

Figure 5 shows the slope-changing ratio of each fitted curve in Figure 3. The maximum point of
each slope-changing ratio curve is marked on the plot.

Figure 6 shows the identified knee points of fitted degradation curves at different temperatures.
The points with minimum and maximum absolute slope-changing ratio are marked on the plot using
black squares and black triangles, respectively. The corresponding tangent lines of each curve are
plotted, and the intersections of the tangent lines are marked using red solid circles. The number of
cycles at the intersection is when the knee occurred.

The performance of the knee identification methods mentioned in the Introduction was compared
to our developed knee definition in Table 1, based on the double power law model. The inflection points
and the points with the maximum curvature on each curve are shown in the second and third columns
of Table 1, respectively. The inflection points (also the points with minimum absolute slope-changing
ratio) are marked in Figure 6 using black squares, and they are clearly not representative of a knee point.
The knee points on the capacity fade curve also could not be identified by the maximum curvature.
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This is because—as shown in the third column in Table 1—the points with the maximum curvature in
fact did not occur in the range of battery life cycles.Energies 2019, 12, x FOR PEER REVIEW 5 of 9 
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Table 1. Knee points identified using different methods.

Ambient
Temperature

Inflection
Points

Points with the
Maximum Curvature

The Defined
Knee Points

10 ◦C Cycle 804 Cycle 1778 Cycle 1134
25 ◦C Cycle 645 Cycle 1766 Cycle 974
45 ◦C Cycle 321 Cycle 1861 Cycle 595
60 ◦C Cycle 22 Cycle 2685 Cycle 56

The effectiveness of the developed knee point definition was assessed on the data set of capacity
fade of lithium-ion batteries presented in the Introduction, based on the model defined by Equation
(4). The points with minimum (cycle = 55) and maximum absolute slope-changing ratio (cycle = 342)
are marked in Figure 7a. The identified number of cycles when the knee point occurred was 250,
which is visually consistent with the sharp transition in the capacity fade rate. As noted, the other
methods—inflection point (cycle = 55) method and maximum curvature (does not exist in this case)
method—did not provide the knee point. The MATLAB code used to identify the knee point is
provided in the Appendix A.
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Appendix  

MATLAB code for identifying the knee point in Figure 7: 

  

clear;  

a = 0.0004659; b = 0.96; c = 9.191e-11; d = 3.464; % model coefficients 

N=linspace(1,3000,3000); 

f_1=-a*b*N.^(b-1)-c*d*N.^(d-1);  % 1st derivative  

Figure 7. Validation of the developed method on another data set: (a) double power law model;
(b) polynomial model.
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A 6th-order polynomial was also fitted to these data. As shown in Figure 7b, by assessing the
slope-changing ratio, the number of cycles when the knee point occurred was around 240, which is in
agreement with the developed method (see Figure 7a).

4. Conclusions

The occurrence of knee points indicates the onset of rapid deterioration in the capacity fade
of lithium-ion batteries, and thus serves as an indicator of rapid battery degradation. It is also a
metric that can be used in combination with the 80% capacity fade threshold to assess the long-term
(useful life) performance and reliability of a battery. This indicator/metric is therefore valuable in
qualification assessment, the maintenance scheduling of batteries in commercial electronic systems,
and in evaluating and planning secondary use of batteries (e.g., in electric vehicles).

To address the challenge of identifying the knee point on capacity fade curves in a concise,
repeatable, and automated manner, the knee point was defined uniquely as the cycle number at the
intersection of two tangent lines on the capacity fade curve. The tangent lines were obtained from the
points with the minimum and maximum absolute slope-changing ratio. This procedure coped with
the problems associated with the existing methods (i.e., inflection point method, maximum curvature
method). The enhanced performance of the developed scheme was corroborated by analyzing multiple
data sets of the capacity fade of lithium-ion batteries.

Because the developed approach produced more acceptable and repeatable results than existing
methods, the definition and approach are being recommended for adoption by IEEE Standard 485™-2010
“knee” metric, along with “end-of-life” to identify “degraded” behavior in batteries.

Author Contributions: Conceptualization, W.D. and M.P.; methodology, M.P.; software, W.D.; validation, W.D.;
formal analysis, W.D.; investigation, W.D., S.S., B.H.; data curation, W.D.; writing—original draft preparation,
W.D.; writing—review and editing, S.S., B.H., M.P.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial,
or not-for-profit sectors.

Acknowledgments: The authors would like to thank the more than 150 companies and organizations that
support research activities at the Center for Advanced Life Cycle Engineering (CALCE) at the University of
Maryland annually.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

MATLAB code for identifying the knee point in Figure 7:

clear;
a = 0.0004659; b = 0.96; c = 9.191e-11; d = 3.464; % model coefficients
N=linspace(1,3000,3000);
f_1=-a*b*N.ˆ(b-1)-c*d*N.ˆ(d-1); % 1st derivative
f_2=-a*b*(b-1)*N.ˆ(b-2)-c*d*(d-1)*N.ˆ(d-2); % 2nd derivative

% Find the inflection point
[minValue,closestIndex] = min(abs(f_2));
Inf = closestIndex

% Find the point with the maximum slope-changing ratio
[maxValue,closestIndex] = max(f_2./f_1);
MRatio=closestIndex

% normalized capacity value at the inflection point and the point with maximum
slope-changing ratio

f_Inf(1)=1-a*Infˆb-c*Infˆd;
f_Ratio(1)=1-a*MRatioˆb-c*MRatioˆd;
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% 1st derivative value at the inflection point and the point with the maximum slope-changing ratio
fp_Inf(1)=-a*b*Infˆ(b-1)-c*d*Infˆ(d-1);
fp_Ratio(1)=-a*b*MRatioˆ(b-1)-c*d*MRatioˆ(d-1);

% Solve for intersection as the cycle number when knee point occurs
syms x
eqn= fp_Inf*(x-Inf)+f_Inf-(fp_Ratio*(x-MRatio)+f_Ratio)==0;
S = solve(eqn,x);
Knee=round(double(S))
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