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Abstract: Transport is recognized as a major energy consumer and environment pollutant. Recently
scholars have paid considerable attention to the evaluation of transport energy and environmental
efficiency (EEE). In this paper, the non-radial Data Envelopment Analysis (DEA) model was employed
to evaluate EEE on a macro level—i.e., of European road, rail and air sectors. The evaluation was
conducted under the joint production framework, which considers energy and non-energy inputs,
and desirable and undesirable outputs for the last ten years period. To rank decision-making units
and check the aptness of this non-radial DEA model in transport EEE evaluation, the Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS) method has been proposed. An empirical
study has been conducted for as many European countries as possible, depending on availability of
data. Based on the non-radial DEA model, it could be said that the level of EEE is improving for the
road sector, while many evaluated countries have low EEE for the rail transport sector. Additionally,
results have indicated that the TOPSIS method is more suitable than the non-radial DEA model in
transport EEE evaluation and for identification of best practices.
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1. Introduction

1.1. Background

During recent decades, there have been increased debates concerning the gradual increase of
global warming and the resulting climate change. The primary sources of global warming are increased
concentrations of greenhouse gas (GHG) emissions, primarily carbon dioxide (CO2), which is a product
of human activities. The transport sector is one of the inevitable and essential parts of human activities,
backbone of the economy, representing advantages for society in terms of transportation of goods and
people, market integration, and provision of growth and jobs. It has been estimated that transport
sector within the European Union (EU) contributes for 7% of European gross value added and 7.06%
of employment [1].

Yet despite benefits, transport activities include disadvantages related to responsibilities
for enormous energy consumption and resulting GHG emissions. According to the European
Environmental Agency [2], with 348.5 Mtoe (Million tonnes oil equivalent), the transport sector was the
biggest energy consumer in 2013, followed by households (295.9 Mtoe), industry (276.6 Mtoe), services
(152.5 Mtoe) and fishing, agriculture, forestry and non-specified (30.2 Mtoe). Among transport modes
in 2012, road transport had the largest share in the amount of consumed energy (307.5 Mtoe), followed
by air (international and domestic) transport (51.5 Mtoe), international marine bunkers (46.4 Mtoe),
rail transport (7.2 Mtoe), and domestic navigation (5.7 Mtoe) [1].
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To ameliorate these disadvantages, the European Commission periodically published White
Papers and emphasizing where the targets of EU policies were highlighted. The strategy set by the
European Commission [3] was based on targets such as:

• Low emissions through reduction of 60% of GHG emissions by 2050 with respect to their 1990 level;
• Improvement of energy efficiency by decreasing final oil consumption and dependency ratio.

The reduction was estimated at 12 to 13% by 2030 and to about 70% by 2050;
• Limited growth of congestion due to better multimodal solutions and new technologies.

Presently, the need for meeting the demands of transportation services and enhancing mobility
is increasing, as well as the need for improving the EEE [1]. Awareness and concern about the
energy consumption and environmental problems are becoming increasingly important worldwide.
Numerous techniques have been employed to address the issues related to energy and the environment.
The technique, which has received great attention, is the Data Envelopment Analysis (DEA) method
as a non-parametric approach to efficiency evaluation [4]. Recognizing the share that transport has
in energy and environmental problems, and having in mind the potential of the DEA method in
energy-environment efficiency evaluation, DEA has been included in the analysis of transport EEE.
The DEA method has been used in EEE analysis for different sectoral levels, countries and regional
levels, as well as timely levels [5]. However, EEE evaluation and comparison of transport sectors on a
macro level for EU countries is missing. Since the countries of the EU could have different strategies
and measures in energy consumption and environment protection, it is of the utmost importance to
identify the best practice.

1.2. The Aim and the Scope of the Paper

The aim of this paper is twofold. The first is to evaluate and analyze the changes of EEE of European
road, air, and rail transport sectors, where the methodology for evaluating EEE is based on a non-radial
DEA model proposed by Wu et al. [6] for 2006–2008, 2010, 2012, and 2014–2016, using the available data
for the European countries which represent DMUs. The second aim of the paper is the introduction of
the TOPSIS method in the evaluation of EEE, where the TOPSIS method is used for the ranking of
DMUs. The evaluation of transport EEE has been done under the joint production framework, using
non-energy inputs (labor and transport assets) and energy input (energy consumption) to produce
desirable outputs (volume of passenger and freight transport) and undesirable output (GHG emissions).
Aside from other widely used non-radial DEA models such as Slack-based models, Russell measure
models, and Directional distance function, in this paper, the non-radial DEA model has been chosen
due to its ability to use different non-proportional adjustments, with decision maker specified weights
assigned to each efficiency score, and because of its ability to proportionally decrease the amounts of
energy inputs and undesirable outputs simultaneously as much as possible [5,6].

The main contributions of this study are: (i) a newly systematic literature review in the field
of transport EEE evaluation, (ii) a new definition of transport EEE, (iii) the evaluation of EEE with
an extended set of used inputs, (iv) the evaluation of EEE of road, air, and rail transport sectors of
European countries and their changing tendencies in terms of the EEE, (v) use of non-radial DEA and
introduction of the TOPSIS method through DMUs ranking in the evaluation of transport EEE, as well
as the comparison of their results and the identification of the most suitable one for the evaluation of
the transport EEE. Based on the evaluation with the non-radial DEA model all stakeholders can create
a sense of tendencies in terms of EEE of EU transport sectors. Through the introduction of the TOPSIS
method for the same purpose, the science community can consider it as a potential tool for monitoring
changes regarding EEE.

The following section presents the review of previous papers which have used DEA or TOPSIS
methods in terms of transport EEE evaluation. Section 3 describes the methodology and considers
which DEA model is appropriate for our purpose as well as the adoption of the TOPSIS method.
The data used, DMUs selection, energy input, non-energy inputs, desirable outputs and undesirable
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output for EU countries are described in the second part of this section. Section 4 offers an overview of
inputs and outputs for transport sectors and compares the results produced by non-radial DEA and
the TOPSIS method, as well a discussion related to the obtained results. Finally, the summary of this
study and some future directions in transport EEE evaluation are presented in Section 5.

2. Literature Review

The aim of the literature review was to perform an overview of papers related to the evaluation
of energy efficiency and environment efficiency or both in the field of transport using different DEA
models. In addition, a literature review was conducted as a basis for the process of identification
of inputs and outputs for the non-radial DEA model. Moreover, a literature review was made in
order to confirm the novelty of the introduction of the TOPSIS method in the evaluation and ranking
of DMUs in EEE. Consequently, the literature review was focused on identifying the papers related
to the evaluation and analysis of transport EEE with the DEA and TOPSIS methods, as well as in
their combination.

The search strategy consisted of a literature review of relevant studies published in peer-reviewed
journals within scientific sources such as Ebsco, ScienceDirect, Scopus, Springer, and Taylor and Francis,
without limitation on the time period of publishing. The search, performed on titles, abstracts, and
keywords for English written full-text free-available scientific journal papers, was finished in April 2019.
Conference papers, projects, periodicals, and working papers related to this topic were not included
in our review because they went through a less rigorous peer-review process. The application of
keywords such as “energy efficiency AND Data Envelopment Analysis”, and “environment efficiency
AND Data Envelopment Analysis”, “energy efficiency AND Technique for Order of Preference by
Similarity to Ideal Solution”, and “environment efficiency AND Technique for Order of Preference
by Similarity to Ideal Solution”, as well as the combinations where acronyms of methods were used,
resulted in finding a large number of papers from various fields. To reduce this number, the reading of
abstracts was performed and only the papers that analyzed energy or environment efficiency, and those
that studied the application of the DEA method and the TOPSIS technique for the evaluation of one of
the efficiencies, related to transport were extracted. In the second step, the reading of full texts of these
papers was performed and finally, 35 relevant papers were extracted after removing duplicates.

In terms of the literature, for the evaluation of energy efficiency or environment efficiency, as well as
the EEE evaluation different methods were used; such as-frequently used DEA methods, the Stochastic
Frontier Model (SFA), and the TOPSIS method [7]. Judging by the number of papers reviewed in [4,5],
it could be said that numerous studies used DEA for evaluation of energy efficiency or environment
efficiency, as well as for EEE evaluation.

Initially, numerous papers dealing with the evaluation of energy efficiency considered energy
consumption as input within a production framework without considering undesirable outputs.
Four perspectives treating undesirable outputs could be found in the literature, such as: undesirable
variables treated as inputs, undesirable measures treated by distinguishing between weak and strong
disposability, integration of undesirable outputs into DEA models through the classification of
invariance property where classifications of efficiencies and inefficiencies are invariant to the data
transformation, and those where operational and environmental performance can be divided into two
aspects using a measure of efficiency referred to as the range-adjusted measure [8]. Consequently,
Zhou and Ang [9] proposed several DEA models within a joint production framework for energy
efficiency evaluation, including undesirable outputs that were not considered in earlier proposed DEA
models for energy efficiency evaluation.

Additionally, a considerable amount of studies employed DEA in transport EEE evaluation.
Some papers applied DEA in transport energy efficiency or environment efficiency evaluation,
while certain studies conducted the evaluation of transport EEE.

In this section, reviewed papers are categorized in terms of the used DEA models and the TOPSIS
method, studied field (energy or environment efficiency, or EEE), inputs and outputs used in the
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evaluation (see Table 1), as well as in terms of definitions of energy efficiency, environment efficiency
or EEE. Papers in which inputs and outputs were not classified as desirable and undesirable were
classified separately in one special group.

2.1. Review of Methods and Techniques for Transport Energy Efficiency, Environment Efficiency,
and EEE Evaluation

A large number of studies have presented extensions to basic DEA models such as incorporation of
undesirable outputs, using efficiency measures (radial, non-radial, slack-based, hyperbolic, directional
distance function), investigating changes in efficiency over time [4,5]. A radial DEA model has been
used by Ramanathan [10] to compare the energy efficiency of rail and road transport in India, while in
terms of the radial DEA model, Ramanathan [11] has presented an extended DEA model to estimate
the energy consumption of the same modes of transport, resulting in a pre-specified DEA efficiency.
Additionally, non-radial DEA models have been presented and have been used by Zhou and Ang [9]
for measuring the energy efficiency performance of 21 OECD countries.

Different DEA models have already been proposed for energy and environment, as well as
energy-environment efficiency evaluation. Regarding transport EEE evaluation, some authors have
used traditional DEA models as a support tool for evaluating eco-efficiency for the different types
of bioethanol transportation [12] and to evaluate the relative energy efficiency of rail, road, aviation
and water transport [13]. Some models with particular modifications have been used for transport
EEE analysis, such as radial and non-radial DEA models [8] taken from Zhou and Ang [9], a virtual
frontier benevolent DEA cross efficiency model [14], a three-stage virtual frontier DEA model [15],
a slack-based measure (SBM) DEA model [16,17], a non-radial SBM-DEA model [18–20], a parallel
DEA approach [6], and parallel SBM-DEA model [21]. Furthermore, several papers have presented
EEE evaluation in combination with other methods, such as an improved non-radial SBM-DEA model
with window analysis [21] and Tobit regression, a super-efficiency SBM model with a window DEA
model [22], bootstrapped data DEA-VRS models, DEA and directional distance functions to compute
Leunberger productivity [23], economic input output life cycle assessment (EIO-LCA) and DEA by
Egilmez and Park [24].

2.2. Review of Transport Energy Efficiency Evaluation

One of the first papers in road and rail transport energy efficiency evaluation and analysis of
changes over time in India using DEA was presented by Ramanathan [10]. The presented approach
was further extended by Ramanathan [11] in order to project energy consumption and estimate
environmental efficiency for the periods 2005–2006 and 2020–2021. The transportation energy efficiency
was evaluated by Cui and Li [15] for provincial administrative regions of China. Additionally,
Zhou et al. [8] examined maximum energy-saving potential of the transport sector in 30 administrative
regions of China. Moreover, the energy efficiency of 11 airlines was studied by Cui and Li [25].
Energy consumption by road, rail, aviation, and water transport modes using a DEA model and
future transport energy consumption using an extended DEA model in China for the period from
1971 to 2011 were estimated by Lin et al. [13]. The transportation energy efficiency of Yangtze
River Delta’s 15 cities in the period from 2009 to 2013 has been studied by Chen et al. [26]. Then,
Feng and Wang [27] have analyzed energy efficiency and the savings potential in China’s transportation
sector. Using DEA-cooperative game approach, Omrani et al. [28] have evaluated energy efficiency of
transportation sector of 20 provinces in Iran.

2.3. Review of Transport Environment Efficiency Evaluation

The environmental efficiency of the transportation sector for 30 Chinese provinces was analyzed
by Chang et al. [18]. The evaluation of the environmental performance for the transport industry was
also elaborated upon by Beltrán-Esteve and Picazo-Tadeo [23]. Their study focused on changes in
the environmental performance from eco-innovation and catching up with the best environmental
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technologies. An empirical study was conducted for 38 countries, including European, for the periods
1995–96 and 2008–09. Similarly, in terms of Europe, energy efficiency trends of five energy industries,
including transport for 23 EU countries over the period 2000–2009 were evaluated by Makridou et al. [29]
using DEA combined with the Malmquist productivity index. However, Hu and Honma [30] employed
SFA in the evaluation of energy efficiency of OECD countries for 10 industries, including transport.
Song et al. [31] presented a measurement of the environmental efficiency of highway transportation
systems in 30 regions of China. The assessment of the environmental efficiency was conducted by
Park et al. [19] through estimation of carbon efficiency and potential carbon reduction for 50 U.S.
states. Additionally, Chang [20] analyzed the environmental efficiency of ports in Korea and estimated
potential CO2 emission reduction by ports in the country. Furthermore, Leal Jr et al. [12] evaluated
eco-efficiency for chosen bioethanol transportation modes (roadway, railway, waterway, and pipeline)
in Brazil. Some papers evaluated transport sectors in terms of several different viewpoints. Overall
and individual environmental efficiency and resource use of 30 Chinese regional railway transport
and highway transport subsectors were evaluated by Liu et al. [21]. Using SBM-DEA Chang and
Zhang [32] have evaluated carbon efficiency of transportation sectors in China and Korea. In addition,
with SBM-DEA model, Chu et al. [33] have analyzed environmental efficiency of transport systems.
Chang et al. [17] studied environmental and economic efficiency of 27 global airlines. Analyzing
impacts of the European Union Emission Trading Scheme (EU ETS) on airline performance was
presented in [34]. Dynamic Environmental DEA was used for analyzing the impacts of 18 large global
airlines from 2008 to 2014. Li et al. [35] conducted an analysis of impacts of included aviation into
EU ETS on airline efficiency for 22 international airlines from 2008 to 2012 through three stages—i.e.,
operations, services and sales—using a Network Slacks-Based Measure with weak disposability and
Network Slacks-Based Measure with strong disposability. Technical and environmental performance
evaluation for major airlines from China, north Asia, and Europe over the period 2007–2010 was
studied by Arjomandi and Seufert [36]. Egilmez and Park [24] quantified transportation related carbon,
energy and water footprints of U.S. manufacturing sectors and evaluated environmental vs. economic
performance based on eco-efficiency scores.

2.4. Review of Transport Energy-Environment Efficiency Evaluation

Regarding energy-environment efficiency, Wu et al. [6] measured energy and environment performance
of passenger and freight transportation subsystems of 30 provincial-level regions in mainland China.
The energy-environmental efficiency of road and railway sectors of 30 provinces in China was presented
by Liu et al. [21]. Total factor energy and environmental efficiency of 30 of China’s regional transportation
sectors in terms of energy saving and CO2 emission reduction were elaborated by Liu and Wu (2015).

Different non-energy and energy inputs, as well as desirable and undesirable outputs, were used
in the process of energy or environmental and energy-environment efficiency evaluation with presented
DEA models (Table 1).

Table 1. Inputs and outputs in transport EEE evaluation.

Author(s) Sectors Energy Inputs Non-Energy
Inputs Desirable Outputs Undesirable

Outputs

Wu et al. [6]

passenger
subsystem

energy consumption
volume

passenger seats;
capital; highway

mileage

passenger turnover
volume CO2 emissions

freight
subsystem

energy consumption
volume

cargo tonnage;
capital; highway

mileage

freight turnover
volume CO2 emissions

Zhou et al. [8] /
million ton coal

equivalence labor passenger kilometers;
tons-kilometers CO2 emissions

Ramanathan [2,3] rail, road energy consumption /
passenger kilometers;

ton- kilometers /
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Table 1. Cont.

Author(s) Sectors Energy Inputs Non-Energy
Inputs Desirable Outputs Undesirable

Outputs

Leal Jr. et al. [4]
road, rail,

water, and
pipeline

total energy consumption;
atmospheric pollution;

GHG emission; quantity of
used lubricating oil
discarded during

maintenance

/
freight revenue

received, the total cost
of accidents

/

Lin et al. [5]
road, rail,

aviation, and
water

energy consumption /
passenger kilometers;
freight ton-kilometers /

Cui and Li [6] /
energy consumption

volume labor; capital
freight turnover

volume; passenger
turnover volume

/

Liu and Wu [7] /
the volume of energy

consumed labor; capital
a value-added amount
in the transportation

sector
CO2 emissions

Chang et al. [8] /
the volume of energy

consumed labor; capital GDP by transportation
sector CO2 emissions

Park et al. [9] / energy consumption capital expense;
labor value added (GDP) CO2 emissions

Chang [10] ports energy consumed labor; capital cargo tonnage; vessel
tonnage CO2 emissions

Liu et al. [11]

railway /
railway length;

locomotives
passenge turnover;

freight turnover CO2 emissions

highway /
highway length
and automobiles

passenger turnover;
freight turnover CO2 emissions

Cui and Li [12] airline tons of aviation kerosene labor; capital

revenue ton kilometers;
revenue passenger

kilometers; total
business income

CO2 emissions

Chen et al. [13] / energy consumption labor; capital passenger volume and
freight volume carbon dioxide

Omrani et al. [14] /
consumption volume of

gasoline, oil gas and
nature gas

labor; capital
GDP; passenger

kilometers (PKM) and
tone kilometers (TKM)

emission of
greenhouse gases

Song et al. [15] highway gasoline consumption;
diesel consumption

highway mileage;
employed
population

passenger capacity;
passenger turnover;

freight volume; freight
turnover

nitrogen oxide;
particulate matter

emissions; the
equivalent sound
level of road noise

Chu et al. [16] / energy labor; capital value-added CO2 emissions

Arjomandi and
Seufert [17] airline / labor; capital ton kilometres

available (TKA)

CO2 emissions
(only for

environmental
efficiency model)

Cui et al. [18] airline aviation kerosene number of
employees total revenue greenhouse gas

emission (GHG)

2.5. Review of Unclassified Inputs and Outputs

Moreover, some unreasonably classified and unsorted variables, such as available seat kilometers
(ASK) with fuel consumption added as inputs, revenue per ton kilometers (RTK) as output and carbon
emissions as undesirable output to estimate the environmental efficiency of airlines were employed in
Chang et al. [17]. Cui and Li [37] evaluated the transportation carbon efficiency through inputs such as
carbon dioxide emissions, number of employees in the transportation sector, and transportation service import
volume for each selected country, while freight and passenger turnover volume were used as outputs.
The evaluation was conducted with a virtual frontier DEA, while for the investigation of factors of
the impact of carbon efficiency was made with Tobit regression. Cui et al. [38] evaluated factors that
influence airline energy efficiency. The evaluation was performed using the Virtual Frontier Dynamic
Slacks Based Measure, where the number of employees and aviation kerosene are used as the inputs,
while revenue ton kilometers, revenue passenger kilometers and total business income are the outputs. The
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evaluation of impacts of including aviation into EU EST on airline efficiency, for each stage Li et al. [35]
defined inputs and outputs. Within the operations stage, the number of employees and aviation kerosene
were used as inputs, while available seat kilometers and available ton kilometers were used as outputs.
For service stage, inputs were the available seat kilometers, available ton kilometers and fleet size, while
outputs were the revenue passenger kilometers and revenue ton kilometers and undesirable output is
greenhouse gas emission (the unique undesirable output). The revenue passenger kilometers, and the revenue
ton kilometers and sales costs were inputs within the sales stage, while the total business income was output
for this stage. In addition, through stages—i.e., operations and carbon abatement stages, Cui and Li [34]
have evaluated the airline energy efficiency using Network SBM with weak disposability. Salaries,
wages and benefits, fuel expenses and total assets were used as inputs within the operation stage, while
revenue passenger kilometers, revenue ton kilometers and estimated carbon dioxide represented outputs.
In carbon abatement, stage inputs were estimated carbon dioxide and abatement expense, while carbon
dioxide represented the output. In measuring the energy efficiency of airlines Li et al. [35,39] Virtual
Frontier Dynamic range adjusted measure was used, where the number of employees and tons of aviation
kerosene represented inputs, while outputs were revenue ton kilometers, revenue passenger kilometers, and
total business income.

In Beltrán-Esteve and Picazo-Tadeo [23] three environmental pressures—i.e., global warming
potential, tropospheric ozone formation potential and acidification potential were used as inputs, while the
economic outcome of the transport industry was used as an output which was measured using real gross
output in purchasing parity power in evaluation environmental performance. The three environmental
impact categories, i.e., carbon footprint, water footprint and energy footprint represented inputs, while a
single output was $/ton-km carriage, used by Egilmez and Park [24] for evaluation of environmental vs.
economic performance of manufacturing sectors.

2.6. Review of Application of TOPSIS Method for Transport EEE Evaluation

In the field of transport EEE evaluation, the real picture regarding the TOPSIS method is rather
different compared to DEA. One could find a few studies where the TOPSIS method was employed
in the field of the estimation of environmental efficiency of thermo power plants [40], decision
making among various alternatives in eco-efficient chemical processes design [41], benchmarking
building energy performance [42], selection of optimal solutions for energy consumption and thermal
comfort [43], finding optimal solutions for district heating systems through various aspects such as
fuel, temperature regime, level of building energy efficiency [44]. Moreover, Wang et al. [7] have used
the TOPSIS method to analyze the overall hydropower efficiency in Canada from different points of
view, which imply environment, technology, economy, benefits and social responsibility. However,
the application of the TOPSIS method in the evaluation of transport EEE is not present in the literature.

2.7. Review of Definitions of EEE

Several papers have presented definitions of energy efficiency or environment/environmental
efficiency. For example, eco-efficiency in Egilmez and Park [24] was defined as “the ratio of total
economic activity in million dollars to the overall environmental impact”. Transport energy in Cui and
Li [15] was defined as “an efficiency, which is calculated by comparing the relationship between the
outputs and the inputs”. Additionally, Cui and Li [25] have considered energy efficiency for airlines
as “the relationship between the outputs and the inputs”. Environmental performance has been
defined by Beltrán-Esteve and Picazo-Tadeo [23] as “the quotient between economic performance and
ecological performance”. Since the definitions of EEE of transport are missing in the reviewed papers,
in this paper energy-environment efficiency of transport sectors is defined as the ratio of the total amount
of energy consumption to production of GHG emissions as a result of the transportation process.
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3. Methodology

DEA, as a type of multi-criteria decision analysis (MCDA) method, has mainly been applied
for evaluation of relative efficiency. Additionally, it has been used as a benchmarking tool rather
than choosing alternatives as the best solutions or directions in traditional decision making [4].
For measuring energy and environment efficiency, in the literature, radial and non-radial models are
the two most widely used in DEA [21]. Radial DEA models proportionally decrease the amount of
inputs and outputs, which may have weak discriminating power [6], lead to partial ranking in which
most of the DMUs have the same score of efficiency [45], as well as occurrence of difficulties in ranking
the environmental performance of efficient DMUs [20]. When including the environmental variable
in the model, efficiency measuring is a challenging task because the environmental pollutant need
not increase or decrease proportionally with outputs or inputs [19], and, consequently, non-radial
DEA has a higher discriminating power than radial in the environmental performance thanks to
non-proportional adjustments of different inputs/outputs in comparing DMUs [4]. Radial models
also need to especially treat a negative or zero value in a data set; they do not have the property
of “translation invariance” so cannot directly handle zero [46]. In addition, they do not provide
information regarding the efficiency of the specific inputs and outputs included in the process [18,20,47].
To overcome such weaknesses, non-radial models have been developed are widely used in empirical
research [21,48]. According to Lui et al. [21], the non-radial DEA model also causes less bias.

In this paper, a two-step methodology for the evaluation of transport EEE of EU countries has
been employed. In the first step, the non-radial DEA model proposed by Wu et al. [6] has been used for
the evaluation of transport EEE. The proposed non-radial model provides the use of decision makers’
specified weights, different non-proportional adjustments, and proportionally decreases several energy
inputs and undesirable outputs simultaneously to the degree possible. However, based on the fact that
the DEA method, in the case of the same efficiency of two DMUs, cannot rank DMUs and provide
evaluation of DMUs with simultaneously minimization and maximizations of inputs and outputs,
we have proposed a Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) as an
MCDA method for benchmarking the alternatives—i.e., decision making units (DMUs), detecting the
best practices based on alternative rank and evaluation of transport EEE.

Hence, the TOPSIS method has been proposed to rank DMUs, and simultaneously compare
efficiency scores vs. DEA results. Based on the content of TOPSIS—i.e., consideration of DMUs from
different viewpoints (for example, through inputs and outputs that are presented as cost criterion and
a beneficial criterion) this method was introduced for evaluation and ranking of DMUs for monitoring
changes of EEE. Consequently, for this purpose the following research hypothesis was defined: Any
similarity between the results of the evaluation and analyzing of EEE through the application of
non-radial DEA model and TOPSIS method does not exist.

In these terms, questions that this paper endeavors to answer involve changes to EEE for EU
transport sectors and the suitability and applicability of the TOPSIS method in the evaluation of EEE.
Therefore, the objective of this paper is not to study factors of EEE, but rather to evaluate the EEE for
EU transport sectors using the non-radial DEA model and consider the utility of the TOPSIS method
regarding evaluation of EEE.

3.1. A Brief Description of DEA Method

The DEA method was proposed by Charnes et al. [49] and presents a non-parametric frontier
approach for evaluating the relative efficiency of a set of entities, DMUs, with multiple inputs and
outputs [9,10,50]. A major stated advantage of DEA is that it does not require prior assumptions
regarding underlying functional relationships between inputs and outputs [4] and weights for input
and output is calculated based on the input oriented Charnes, Cooper and Rhodes (CCR) DEA model [4]
that can be written as: minθ; s.t Xλ ≤ θxi, Yλ ≥ yi, λ ≥ 0, where X and Y represent a set of vectors of
inputs and outputs, respectively. θ represents a goal function of technical efficiency where θ ∈ [0, 1].
Based on the result, θ indicates how much an evaluated entity could potentially reduce its input
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vector while holding the output constant. The presented CCR model exhibits the constant returns
to scale (CSR), but with additional constraint

∑
λ = 1, the CCR model becomes the classical Banker,

Chames and Cooper (BCC) model that allows the variant to return to scale (VRS) [4,51].

3.1.1. DEA Method for EEE Evaluation

DEA is strongly related to production theory, where raw materials and resources are treated as
inputs, while products are treated as outputs in the production process [5,9]. Then, in the production
process, in terms of evaluation of energy and environmental efficiency, desirable and undesirable outputs,
are jointly produced by consuming both energy and non-energy inputs, where x, e, y and u are vectors
of non-energy inputs, energy inputs, desirable outputs, and undesirable outputs, respectively. The joint
production process can be represented as T =

{
(x, e, y, u); (x, e) can produce (y, u)

}
.

Based on that let’s assume that there are K DMUs, and each DMU uses n non-energy inputs and l
energy inputs in order to produce m desirable outputs and j undesirable outputs denoted respectively
as x = (x1K, . . . , xnK), e = (e1l, . . . , xLK), y = (ymK, . . . , ymK), u =

(
u1K, . . . , uJK

)
. Then, environment

DEA production technology T exhibiting constant returns to scale (CRS) and incorporating undesirable
outputs can be written as:

T =
{
(x, e, y, u) :

∑K

k=1
λkxnk ≤ xn, n = 1, . . . , N (1)

∑K

k=1
λkelk ≤ el, l = 1, . . . , L, (2)∑K

k=1
λkymk ≥ ym, m = 1, . . . , M, (3)∑K

k=1
λku jk = u j, j = 1, . . . , J, (4)

where λk ≥ 0, k = 1, . . . , K.
Based on this, T reference technology, radial model, modified-radial, and non-radial models

such as the Russell measure model, tone’s slack-based model, range adjusted model and directional
distance function model are used in energy efficiency and carbon emission efficiency in the literature.
Additionally, there are four types of returns to scale (RTS) such as constant RTS (CRS) which is the most
commonly used RTS category, non-increasing RTS (NIRS), non-decreasing RTS (NDRS) and variant
RTS (VRS), where each of them reflects reference technology [5].

There are several DEA-type models, radial and non-radial, for pure energy efficiency evaluation
with consideration of undesirable outputs, some of which can be used for estimating potential energy
saving [9]. The radial model aims at reducing energy inputs as much as possible for the given level
of non-energy inputs, plus desirable and undesirable outputs. Since the radial model has weak
discriminating power in energy efficiency comparisons and does not consider energy mix effects,
non-radial models for energy efficiency evaluation is also proposed in [8,9]. Therefore, the application
of non-radial DEA models for energy efficiency evaluation considering undesirable outputs and
maximized energy-saving potential, all under CRS, NIRS and VRS were presented in [8]. For example,
if in the model (M) instead of limitation (5) we write

∑K
k=1 λk ≤ 1,

∑K
k=1 λk ≥ 1 or

∑K
k=1 λk = 1,

we receive non-radial model under NIRS, NDRS, and VRS, respectively. However, their non-radial
models also attempt to reduce energy inputs as much as possible for the given level of non-energy
input, desirable and undesirable outputs. In other words, their non-radial models do not consider
reduction of undesirable outputs.

3.1.2. Non-Radial DEA Model for EEE Evaluation

Radial and non-radial DEA models for evaluating DMUs’ total-factor energy and environment
efficiency have been presented in Wu et al. [6]. To overcome all disadvantages of the presented radial
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model, following [52,53], in [6] the radial DEA model has been extended to the following non-radial
model (M) for energy-environment efficiency evaluation as:

EEEI = min
1
2
(

1
L

∑L

l=1
θl +

1
J

∑J

j=1
θ j) (5)

s.t. ∑K

k=1
λkxnk ≤ xn0, n = 1, . . . . . .N (6)∑K

k=1
λkelk ≤ θlel0, l = 1, . . . . . . L (7)∑K

k=1
λkymk ≥ ym0, m = 1, . . .M (8)∑K

k=1
λku jk = θ ju j0, j = 1, . . . . . . J (9)

λk ≥ 0, k = 1, . . . , K.
The model (M) will be used in this paper for EEE evaluation of EU transport sectors. The main

advantage of the non-radial model (M) is that it proportionally decreases several energy inputs and
undesirable outputs as much as possible for the given level of non-energy inputs and desirable outputs.
The optimal values of energy-environment efficiency index (EEEI) are in the interval between 0 and 1.
An entity with a higher value of EEEI has better EEE in terms of other entities. However, if the entity
has EEEI equal to 1 it means that entity is the best, located on the frontier, and could not reduce energy
input and undesirable output. Another benefit of the model is that (M) can consider energy input mix
effects and undesirable outputs mix effects in the evaluation of EEE [6]. Such non-radial model (M) is
suitable for EEE evaluation because it has a relatively strong discriminating power and capability to
expand desirable outputs, simultaneously reducing undesirable outputs. Additionally, benefit lies
in the fact that unified efficiency can be calculated through DM specified weights assigned to each
of these two efficiency scores and depends on the preferences between energy use and environment
protection performance. However, we have retained the weights as in the paper Wu et al. [6] and both
are set to 1/2. These weights point to the similarity of the model (M) with TOPSIS method. Based on
the all above pointed out simultaneous benefits in comparison to other non-radial DEA models and
the fact that EEE evaluation in this paper couldn’t be considered to be a dynamic change over time,
we have chosen non-radial DEA model (M) by Wu et al. [6] for evaluating energy-environment efficiency.

3.2. Background of the TOPSIS Method

In this paper, the TOPSIS method proposed by Hwang and Yoon [54] has been employed as a
decision-making tool to aid DMs in trade-off the whole DMUs. In the literature, this method has
received much interest from researchers and practitioners that confirmed a wide range of real-world
applications across different fields and specific sub-areas [55]. This method is based on the assumption
that the selected alternative is to be at the least possible distance from the ideal positive solution
and ideal negative solution. As one of the best and most frequently used methods, MCDM implies
overall assessment, comparison, and ranking of alternatives. DEA divides DMUs into efficient and
inefficient [49]. However, the question is, which of these efficient DMUs can be located in the higher
position [56]. Based on that, it can be concluded that total discrimination of the DEA method can be
low in some cases, especially in terms of differentiating efficient DMUs.

Therefore, our paper has included the TOPSIS method for finding the best alternative—i.e.,
for ranking and solving the drawbacks of the DEA method. Moreover, besides the fact regarding the
great variety of existing DEA ranking methods, ranking DMUs such as cross-efficiency, super-efficiency,
benchmarking, statistical techniques and so on, all consider DMUs only from one point of view—i.e.,
input-oriented or output-oriented views [56].

Consequently, an additional reason for selection of TOPSIS for EEE evaluation and ranking of
DMUs is based on the content of TOPSIS—i.e., DM intention to rank DMU with the best ranking score
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closer to the positive ideal and to have the greatest distance from the negative ideal solution, and the
ability of consideration of DMUs from both pessimistic and optimistic viewpoints—i.e., inputs and
outputs, such as a cost and benefit criterion [56,57].

After application of DEA, the TOPSIS method was used to evaluate and rank DMUs to present
the behavior of DMUs. For our purpose, the TOPSIS method has been employed for road, rail and air
transport sectors following the steps in [7,43]:

1. Forming the decision matrix X =
[
xi j

]
n×m

; i = 1, 2, . . . , n; j = 1, 2, . . .m. Within the decision
matrix, alternatives represent DMUs—i.e., European countries (Table 2), while for the criteria
inputs and outputs for non-radial DEA model (Table 3) were chosen.

2. Normalization of decision matrix X in order to obtain normalized decision matrix R =
[
ri j

]
n×m

by

the vector normalization method that is presented as ri j = xi j/
√∑n

i=1 x2
i j.

3. Calculation of the weight normalized decision matrix as V =
[
vi j

]
n×m

=
[
w jri j

]
n×m

, where w j is a
weight given to criteria from DM and sum of weights

∑m
j=1 w j = 1. This method is appropriate

for decision making which is based on criteria of different importance.

Table 2. EU countries and abbreviations.

DMUs-Countries

Belgium (BE), Bulgaria (BG), Czech Republic (CZ), Denmark (DK), Germany (DE), Estonia (EE), Ireland (IE),
Greece (EL), Spain (ES), France (FR), Italy (IT), Cyprus (CY), Latvia (LV), Lithuania (LT), Luxembourg (LU),
Hungary (HU), Malta (MT), Netherlands (NL), Austria (AT), Poland (PL), Portugal (PT), Romania (RO),
Slovenia (SI), Slovakia (SK), Finland (FI), Sweden (SE), United Kingdom (UK), Croatia (HR)

Table 3. Variables for road, rail and air transport sectors.

Inputs/Outputs Road Rail Unit Air Unit Category

Labor
√ √

person in thousands
√

person in thousands NEI1
1

Number of assets
√ √ number in

thousands
√

total NEI 2

Volume of energy consumption
√ √

Mtoe
√

Mtoe EI 1

Volume of freight transport
√ √

thousands mio pkm
√

thousands ton DO1
3

Volume of passenger transport
√ √

thousands mio pkm million passengers DO2

GHG emissions
√ √

MtCO2e 4 √
MtCO2e UDO 5

1 Non-energy input; 2 Energy input; 3 Desirable output; 4 Million ton of CO2 equivalent; 5 Undesirable output.

In our paper, different weights have been delegated to each criterion for each transport sector.
We have assigned the same weights to criteria for each year for the road transport sector, i.e., the
number of employees (wi = 0.14), passenger cars (wi = 0.15), freight vehicles (wi = 0.15), energy consumed
(wi = 0.18), volume of passengers (wi = 0.1), freight transport (wi = 0.1), and GHG emissions (wi = 0.18).

The weights for criteria in the rail transport sector were the number of employees (wi = 0.16), total
number of locomotives and railcars (wi = 0.18), y (wi = 0.2), y (wi = 0.13), realized ton kilometers (wi = 0.13),
and GHG emissions (wi = 0.2). Finally, in the air transport sector we assigned the next weights to
criteria: number of employees (wi = 0.18), the total number of aircraft by age (wi = 0.16), energy consumed
(wi = 0.2), amount of transported goods (wi = 0.13), number of transported passengers (wi = 0.13), and GHG
emissions (wi = 0.2).

4. Determination of positive ideal and negative ideal solutions is denoted as A+ and A−, respectively.
In our case, A+ and A− represent the most efficient DMU and the most inefficient DMU, respectively,

demonstrated as: A+ =

{(
max

i
Vi j

∣∣∣∣∣∣ j ∈ J+

)
,
(

min
i

Vi j

∣∣∣∣∣∣ j ∈ J−

)∣∣∣∣∣∣i = 1, 2, . . . n
}

=
{
V+

1 , . . . , V+
m

}
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and A− =

{(
min

i
Vi j

∣∣∣∣∣∣ j ∈ J+

)
,
(

max
i

Vi j

∣∣∣∣∣∣ j ∈ J−

)∣∣∣∣∣∣i = 1, 2, . . . n
}

=
{
V−1 , . . . , V−m

}
, where J+ =

( j = 1, 2, . . .m) and J− = ( j = 1, 2, . . .m) are associated with benefit and cost criteria, respectively.
In our research benefit criteria represent desirable outputs, while cost criteria include energy
input, non-energy inputs and undesirable output (Table 3).

5. Calculation of the separation measure between each alternative by Euclidean distance.
The separation of each alternative from the positive ideal is given as S+

i =√∑m
j=1

(
Vi j −V+

j

)2
, i = 1, 2, . . . n, while the separation from the negative ideal is given as

S−i =

√∑m
j=1

(
Vi j −V−j

)2
, i = 1, 2, . . . n.

6. Calculation of the relative closeness Ai to the positive ideal solution A+ defined as

Ci = S+
i /

(
S+

i + S−i
)
, 0 < Ci < 1, i = 1, 2, . . . n. If Ci = 1, it is clear that DMU is the most

efficient, and if Ci = 0 then DMU is the most inefficient. DMU is closer to the most efficient as Ci
approaches 1.

7. Ranking the alternatives—i.e., DMUs according to Ci, where a higher value of Ci denotes a better
solution in terms transport EEE.

3.3. Selection of Data Set and DMUs

Energy-environment efficiency (EEE) of European road, rail and air transport sectors was examined.
EEE of these transport sectors was analyzed for countries presented in Table 2.

Each country was defined as a DMU for conducting the non-radial DEA model. There were
different rules of thumb for DMUs’ number. According to Golany and Roll (1989) in order to make sure
that the model was more discriminatory, the number of DMUs should be at least twice the number of
inputs and outputs considered. Each of the DMUs was analyzed according to the road, rail and air
transport sectors. DMUs were examined based on inputs and outputs represented in Table 3.

An empirical study was performed based on the available data set collected and compiled from
“EU energy and transport in figures-statistical pocketbook” for 2006–2008, 2010, 2012–2018 [58–67].
However, only data for a number of assets, the volume of passengers and freight transport for air sector were
combined with data from “Eurostat”. This combination was made because the data for the number
of assets, volume of passengers and freight transport for the air sector did not exist in the same form as
the data for the road and rail sectors. For the air sector in the EU statistical pocketbooks, there is only
the volume of traffic such as revenue ton kilometers and revenue passenger kilometers between member
states, and similar data only for major airlines-but they are not represented for each country separately.
The period of analyzing allowed us to track the changing trends in terms of EEE after the White
Papers had been published. In case of absence of some data for energy input or undesirable output for
particular DMU, the DMU was immediately eliminated from analysis. Consequently, in order to get
reliable results, all numbers in the DEA had to be strictly positive (no zero values). This was mostly
the case with the rail and air sectors.

During the application of DEA method, variables for outputs were chosen based on the research
objective, while inputs were primarily resources used to generate outputs. However, it was essential to
avoid exogenous variables which were not under the complete and direct control of DMUs [68].

Since the selection of inputs and outputs was a difficult task, we mainly chose them according to
the literature review shown in Table 1. However, we added several new inputs, which were important
in transport EEE analysis. Please note that presented inputs and outputs were used as a set of criteria in
the application of the TOPSIS method. The inputs and outputs were selected for the road, rail, and air
transport sectors in conducting non-radial DEA model and the TOPSIS method (Table 3). Their changes
through selected time periods for each transport sector are described in Section 4 and can be seen in
Figure 1a,b, Figure 2a,b and Figure 3. Based on the figures, comparison of transport sectors for each
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variable could be derived and it could be also determined, which one consumes minimum inputs and
causes undesirable output for the realization of maximum desirable outputs.
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Non-energy inputs (NEI) for all sectors were the number of assets (see Table 4), and the number
of employees (labor). The number of assets represented the basic input to form the transport, the main
energy consumers, and had a direct correlation with energy consumption. Therefore, we introduced
them as non-energy inputs. Figure 1 represents the changes of labor (Figure 1a) and the number of
assets (Figure 1b) represented as a sum for selected countries per each sector.

Table 4. Number of assets for road, rail and air transport.

Road transport Passenger Vehicles: Stock of Registered Vehicles Including Buses, Coaches, and Passenger Cars

Freight vehicles: good vehicles and powered two-wheelers

Rail transport Total number of locomotives and railcars

Air transport Total number of aircraft by age

Energy input (EI) represents the amount of energy consumed by each country per road, rail and
air transport sectors expressed in million ton oil equivalent. Figure 2a shows the trend of energy
consumption by each sector in terms of the selected period.

Desirable outputs (DO) involved a volume of passengers and freight transport (Figure 2b). For road
transport sector volume of passenger transport represented a sum of realized kilometers by passenger
cars, buses, and coaches, while the volume of freight transport consisted of realized national and
international haulage. Regarding the rail transport sector, realized passenger and ton kilometers
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represented a volume of passenger and freight transport. In terms of air transport sector, the volume
of passenger and freight transport represented the amount of transported goods and number of
passengers, respectively.

Undesirable output (UDO) was the total amount of greenhouse gas emissions by chosen sector.
Figure 3 shows the trends of undesirable output as a sum for all selected countries for all sectors.

4. Results and Discussion

4.1. Analysis of Inputs and Outputs

Figure 1, where labor and number of assets for the road, rail and air transport sectors in European
countries were shown, indicated that the road sector had a dominant number of employees, followed
by the air and rail transport sectors. Within the road sector, the number of employees increased year by
year with an insignificant decrease in 2010 and the largest number in 2008. In rail transport the number
of employees continuously decreased until 2012, after that it started do slightly increase, while in air
transport there was an increase from 2006 to 2008, an decrease from 2010 to 2014, when the number of
employees was the lowest, after that it started again slightly to increase. These trends of road and
air transport could be the result of the economic crisis. However, almost constant reduction of the
number of employees in the rail and air transport sectors could be the consequence of the intensive
improvement of economic efficiency, which does not include any measurement regarding employment
(or unemployment). Regarding the number of assets, the leading sector was again the road sector,
primarily in terms of passenger vehicles. The road sector showed steady growth of several assets,
while the rail sector highlights continuously decrease. Several assets gradually increased after 2006 in
the air sector and it were slightly reduced in 2012.

Trends of energy input, desirable outputs and undesirable output are shown in Figure 2a,b and
Figure 3, respectively. The volume of energy consumption in the rail sector was the lowest as compared
to the road and air sectors. Energy volume was reduced in road, rail and air after 2008 and started
again to increase after 2012. Reasons for decreasing energy consumption could be found in the increase
of oil prices and the strategy of de-carbonization. These reasons were especially notable in air transport
which had more dominant freight transport as compared to passenger transport, even though both
showed constant growth. Please note that the volume of both types of transport in air sector was
expressed in thousand ton and millions of passengers. The volume of rail passenger and freight
transport was increasing up to 2008, after which it continued to dominate and showed growth in
2012. However, passenger transport was reduced. The volume of freight and passenger transport
in road transport was reduced in 2008, after which the volume of freight transport decreased, while
the volume of passenger transport was constantly dominant, with a slight reduction in 2012. As for
GHG emissions, gradual reduction in road, rail, and air until 2014 could be noted, probably due to
technological advances in vehicles and sources of energy, as well as more stringent standards [23].
After 2014 in road and air transport the volume of GHG emissions started to increase, while in rail it
remained unchanged.

4.2. Results of DEA Method

In this part of the paper, based on the objective of the study, the results of the application of the
non-radial DEA model are presented. At this point, the potential factors of EEE are only mentioned,
without any statistical or other analysis.

All DEA results were calculated by Excel Solver. The calculation was conducted for each transport
sector separately and for each year. The availability of data was the best in terms of road transport
sector, followed by air and rail.

The results for the road transport sector (Tables 5 and 6) indicated that the best EEEI for countries
was in the green cells each year, meaning that these countries were relatively energy-environment
efficient. The countries in red cells with the least EEEI were: Cyprus (CY) in 2006, 2008, 2010, 2012,
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2014–2016, and Austria (AT) in 2007. Please note that EEEI was improved for both countries in 2012
and 2014 as compared to previous years, but after 2014 it slightly deteriorated. Regarding Cyprus (CY)
it can be seen (see supplementary material) that in these years, all values of data for desirable variables
were lower, while those for undesirable were higher in comparison with other DMUs. However,
Austria (AT) was inefficient, probably due to a higher number of undesirable variables in comparison
to other DMUs (see raw data in supplementary material). The improvement of EEE in the road
sector could be a result of stricter policy measures through prioritization in de-carbonization with
primary introduction of CO2 emission standards for new passenger cars and heavy vehicles [1,50],
highlighted the use of bioenergy and renewable energy [62], new technologies for vehicles and traffic
management [1], as well as improved conditions of cabotage. The best value of EEEI for each year of
the evaluation was for Lithuania (LT) and Luxemburg (LU), almost each year for Slovakia (SK) and
Slovenia (SI) and thus they could be considered the countries with the best practices. The main reason
lies in the fact that these countries had the lowest values for undesirable variables in comparison
with other DMUs, while desirable variables were higher and comparable with other DMUs (see
supplementary material). It could be also seen that most of the countries improved their EEEI in the
period of 2014–2016, while Ireland (IE) worsened drastically the values of EEEI after 2012.

Table 5. Results of efficiency of non-radial DEA model and rank of TOPSIS method for the road sector
(2006–2012).

Road Sector

DMUs

2006 2007 2008 2010 2012

DEA TOPSIS DEA TOPSIS DEA TOPSIS DEA TOPSIS DEA TOPSIS

Non-Radial Rank Non-Radial Rank Non-Radial Rank Non-Radial Rank Non-Radial Rank

BE 0.808649 17 0.929032 17 0.319853 19 0.769692 16 1 19

BG 0.546216 11 0.844309 8 0.357289 10 0.958431 9 1 7

CZ 0.637093 15 0.591504 16 0.631525 15 0.658219 18 0.612003 15

DK 1 13 1 14 0.343223 14 0.705374 13 0.91319 12

DE 1 26 1 25 0.444898 25 0.81077 25 1 28

EE 0.617846 5 0.622808 1 0.686869 6 0.708056 5 0.807294 5

IE 1 12 1 13 0.312296 13 1 12 1 14

EL 0.625318 20 0.717725 20 0.288885 20 0.81967 20 1 21

ES 0.564873 24 0.570622 24 0.607714 24 0.538116 23 0.742671 24

FR 0.86936 25 0.821412 26 0.325536 26 1 26 1 26

IT 1 27 1 27 0.289674 27 0.918007 27 0.997767 27

CY 0.419031 10 0.421868 10 0.17257 8 0.353261 8 0.493888 10

LV 0.780133 3 0.776361 5 0.741368 4 1 4 1 4

LT 1 1 1 3 1 2 1 2 1 1

LU 1 9 1 9 1 9 1 7 1 11

HU 0.550362 14 0.612014 12 0.623609 12 0.810149 10 0.941513 9

MT 0.747098 7 0.685189 7 0.091075 5 0.651429 6 0.669092 6

NL 0.605102 21 0.614736 21 0.511777 21 0.535244 21 0.681301 22

AT 0.43343 19 0.409689 19 0.398355 18 0.440404 19 0.490857 20

PL 0.769045 22 0.869976 22 0.697239 22 0.954807 22 0.993453 23

PT 0.560112 18 0.70439 15 0.446918 17 0.61483 17 0.792474 16

RO 1 6 1 4 0.808434 11 0.765552 14 0.78381 17

SI 1 4 1 6 0.753484 3 1 3 1 3

SK 1 2 1 2 1 1 1 1 1 2

FI 1 8 1 11 0.525652 7 0.887975 11 0.917381 13

SE 0.536462 16 0.605111 18 0.415428 16 0.875713 15 0.967949 18

UK 1 23 1 23 0.268397 23 0.878957 24 1 25

HR / / / / / / / / 0.744544 8

Green color: the best EEEI. Red color: the least EEEI.



Energies 2019, 12, 2907 16 of 27

Table 6. Results of efficiency of non-radial DEA model and rank of TOPSIS method for the road sector
(2014–2016).

Road Sector

DMUs

2014 2015 2016

DEA TOPSIS DEA TOPSIS DEA TOPSIS

Non-Radial Rank Non-Radial Rank Non-Radial Rank

BE 1 22 1 24 1 23

BG 1 9 1 10 1 9

CZ 0.735 17 0.762 16 0.705 14

DK 0.705 11 0.705 13 0.709 11

DE 1 25 1 27 1 26

EE 0.841 15 0.918 17 0.867 16

IE 0.769 8 0.716 8 0.695 7

EL 1 7 1 4 1 3

ES 0.732 24 1 25 1 24

FR 1 27 0.932 28 0.948 28

IT 1 26 1 26 1 25

CY 0.549 14 0.523 12 0.475 13

LV 0.898 16 0.944 18 0.895 15

LT 1 2 1 2 1 1

LU 1 10 1 9 1 8

HU 0.924 12 0.879 14 0.854 12

MT 0.675 6 0.622 6 0.691 6

NL 1 23 1 22 1 20

AT 0.571 18 0.554 23 0.554 22

PL 1 20 1 15 1 17

PT 0.853 5 0.808 11 0.837 10

RO 0.813 21 0.901 20 0.906 19

SI 1 1 1 3 1 2

SK 1 4 1 7 1 4

FI 0.902 13 1 19 0.710 18

SE 0.995 19 0.929 21 0.990 21

UK 0.868 28 1 1 1 27

HR 0.768 3 0.721 5 0.698 5

Green color: the best EEEI. Red color: the least EEEI.

As far as the rail transport sector was concerned, the number of DMUs was smaller due to data
unavailability (Tables 7 and 8). It could be noticed that the number of units with the highest value
of EEEI was in 2006. The most efficient countries were represented in green cells per year. The least
value of EEE Index in 2006, 2007, 2008, and period 2014–2016 was in a red cell for Greece (EL), due to
lack of data, the second one for 2010 and 2012 were the United Kingdom (UK) and Romania (RO).
However, similar to the case with road transport, inefficiency of these countries can be related to
higher values of undesirable variables while desirable variables were lower in comparison with other
DMUs (see supplementary material). It would be interesting to note that Latvia (LV), Italy (IT) and
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Sweden (SE) (data available only for 2006–2008, 2010, and 2012) had a constant best value of EEEI and
represented the best practices. Based on the supplementary material, i.e., raw data, it can be seen that
these countries had lower values for energy and GHG emissions while values for volume of passenger and
freight transport were high in comparison with other DMUs. In terms of countries considered per each
year, it could be concluded that scores of efficiency were not homogeneous. In 2012 half of DMUs
were improved, while the other half of DMUs deteriorated. In the period 2014–2016 it could be noted
drastically improvement of EEEI for Germany (DE), Austria (AT), and Poland (PL). In terms of the rail
sector, the value of efficiency scores declined and a decline in efficiency for some countries could be
attributed to insufficient market opening and modernization of rail sectors, incomplete implementation
of modern traffic management systems such as ERTMS for European railway, insufficient European
high speed rail network and interoperability, lack of modal shift in each country—i.e., involvement in
the transport market [1,3]-as well as incomplete electrification of railway networks.

Table 7. Results of efficiency of non-radial DEA model and rank of TOPSIS method for the rail sector
(2006–2012).

Rail Sector

DMUs

2006 2007 2008 2010 2012

DEA TOPSIS DEA TOPSIS DEA TOPSIS DEA TOPSIS DEA TOPSIS

Non-Radial Rank Non-Radial Rank Non-Radial Rank Non-Radial Rank Non-Radial Rank

BE 0.771182 10 0.593661 9 0.716647 9 1 8 1 5

BG 0.490449 11 0.45795 8 0.309252 10 / / / /

CZ 0.474833 16 0.467384 14 0.336824 13 0.391971 15 0.271762 10

DK 0.971713 8 0.899017 10 0.637045 11 0.413052 11 0.625863 8

DE 0.836313 19 0.857799 20 0.651819 19 0.653537 1 0.913981 15

EE 1 4 / / / / 0.371963 13 / /

IE / / / / / / / / / /

EL 0.170862 9 0.177281 11 0.158075 12 / / / /

ES 0.666978 15 0.618655 16 0.454679 16 0.347673 17 0.528261 12

FR 1 18 1 19 1 18 0.948728 3 1 14

IT 1 17 1 17 1 14 1 4 / /

CY / / / / / / / / / /

LV 1 6 1 4 1 3 1 6 1 4

LT 0.901956 5 0.984458 5 0.833261 5 0.712766 9 0.115761 7

LU / / / / / / / / / /

HU 1 12 0.57653 13 0.465083 7 0.323137 14 1 1

MT / / / / / / / / / /

NL 1 13 1 6 1 6 0.651163 10 0.963769 9

AT 0.951996 2 0.689355 2 0.563669 2 0.661709 7 0.879885 3

PL 1 16 0.933333 18 0.85144 17 0.777128 12 0.395634 11

PT 0.519374 7 0.670578 7 0.433445 8 / / / /

RO 0.754073 14 0.394416 15 0.288133 15 0.329787 16 0.10985 13

SI / / / / / / / / / /

SK / / 0.830108 12 / / / / / /

FI 0.980779 3 0.897204 3 0.705479 4 1 5 0.348291 6

SE 1 1 1 1 1 1 1 2 1 2

UK 0.593252 20 0.518208 21 0.382882 20 0.289564 18 0.607946 16

HR / / / / / / / / / /

Green color: the best EEEI. Red color: the least EEEI.
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Table 8. Results of efficiency of non-radial DEA model and rank of TOPSIS method for the rail sector
(2014–2016).

Rail Sector

DMUs

2014 2015 2016

DEA TOPSIS DEA TOPSIS DEA TOPSIS

Non-Radial Rank Non-Radial Rank Non-Radial Rank

BE 1 5 0.468 10 0.442 9

BG / / 0.221 16 / /

CZ 0.335 11 0.418 9 0.439 8

DK 0.295 16 0.329 17 0.317 18

DE 1 19 1 20 1 20

EE 0.5 8 0.5 14 0.5 13

IE 0.5 17 0.5 18 0.5 16

EL 0.049 15 0.075 15 0.090 14

ES 1 6 0.620 4 1 6

FR 0.559 20 1 12 1 17

IT 1 2 1 6 1 4

CY / / / / / /

LV 1 9 1 7 1 7

LT 0.591 12 0.609 11 0.689 10

LU / / / / / /

HU 0.410 7 0.605 5 0.763 5

MT / / / / / /

NL 0.357 10 0.587 3 0.603 3

AT 1 1 1 1 1 1

PL 1 3 1 8 1 2

PT / / / / / /

RO 0.201 13 0.273 15 0.299 12

SI / / / / / /

SK 0.5 4 0.5 2 0.5 15

FI 0.623 18 0.633 19 0.762 19

SE / / / / / /

UK 0.291 21 0.351 21 0.358 21

HR 0.181 14 0.132 13 0.131 11

Green color: the best EEEI. Red color: the least EEEI.

For the air transport sector, the availability of data was better than in the rail sector (Tables 9
and 10), and the EEEI was also better compared to rail. The highest values of EEEI were for countries
Cyprus (CY) and Luxembourg (LU). They had the best scores of efficiency throughout the entire
evaluation period. Belgium (BE) and the Netherlands (NL) had the best value until 2012, after that
their EEE indices drastically decreased. The lowest value of EEEI was in red cells for the United
Kingdom (UK) in 2006, followed by Finland (FI) in 2007, the United Kingdom (UK) in 2008 and 2010,
Portugal (PT) in 2012, Ireland (IE) in 2014 and 2015, and France (FR) in 2016. Similar to previous
modes of transport, DMUs with higher values of desirable variables and lower values of undesirable
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variables (see supplementary material) in comparison with other DMUs have better values of EEEI.
Surprisingly, the United Kingdom (UK) with three red values until 2012, had the best values for all
three last years of evaluation period. The inefficiency of DMUs could be attributed to old aircraft,
waiting for improvement of their aircraft’s fuel efficiency, or switching to green fuels [36].

Table 9. Results of efficiency of non-radial DEA model and rank of TOPSIS method for the air sector
(2006–2012).

Air Sector

DMUs

2006 2007 2008 2010 2012

DEA TOPSIS DEA TOPSIS DEA TOPSIS DEA TOPSIS DEA TOPSIS

Non-Radial Rank Non-Radial Rank Non-Radial Rank Non-Radial Rank Non-Radial Rank

BE 1 1 1 1 1 2 1 2 1 1

BG / / 0.706722 12 0.65753 10 0.821158 7 0.82482 11

CZ 0.980766 10 0.83411 9 0.827037 19 1 6 0.890042 6

DK 0.859713 14 0.69759 15 0.937466 3 0.897875 10 0.612392 14

DE 0.768173 19 0.642743 22 0.696089 23 1 19 0.751725 23

EE / / 0.71923 4 / / / / / /

IE 1 12 1 14 0.829558 16 1 14 0.844267 19

EL / / 1 11 1 14 1 11 1 3

ES 1 18 0.946155 20 1 22 1 20 0.865467 21

FR 0.672936 20 0.625645 21 0.64646 24 0.580559 21 0.641927 24

IT 1 17 0.87757 19 0.924698 21 0.842596 18 0.878126 20

CY 1 3 1 5 1 4 1 3 1 7

LV 1 7 0.764706 7 0.888889 9 0.977778 5 0.923833 9

LT 0.729208 5 0.661475 6 1 7 / / 0.842346 10

LU 1 2 1 2 1 1 1 1 1 2

HU 1 4 1 3 0.812856 8 1 4 1 4

MT 0.938662 6 / / 1 5 / / 0.703901 13

NL 1 16 1 18 1 20 1 17 1 15

AT 0.945716 13 0.833572 17 0.829785 17 0.916049 13 0.795946 16

PL 1 9 1 10 1 11 1 8 0.902043 8

PT 0.742749 15 0.629629 16 0.609771 18 0.647523 15 0.567826 17

RO 1 8 0.988549 8 0.844111 12 0.670554 9 / /

SI / / / / / / / / / /

SK / / / / 1 6 / / / /

FI 0.733084 11 0.566175 13 0.60486 15 0.609107 12 0.70449 5

SE / / / / 0.939663 13 0.869726 16 1 18

UK 0.648914 21 0.571663 23 0.574808 25 0.500327 22 1 22

HR / / / / / / / / 0.766475 12

Green color: the best EEEI. Red color: the least EEEI.

Observing the highest values of EEEI for all transport sectors, Luxembourg (LU) was most
frequently present in road and air transport sector, while data for the Luxembourg rail transport sector
were missing. United Kingdom (UK) showed the lowest values of EEEI for rail and air transport sector.

4.3. Results of the TOPSIS Method

As with any other method, DEA also has its drawbacks. Regardless of its orientation, the DEA
method has a tendency to assign maximum or minimum values to input and output, regardless of their
initial values, by assigning the best value for EEEI. To eliminate this problem, weights of TOPSIS were
used for considering the initial values of input and output variables. Furthermore, non-radial DEA
shows discriminating power but does not indicate the difference between DMUs with efficiency results
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of 1. Consequently, a defect in the DEA analysis is the existence of multiple efficient units. In the
literature, different DEA ranking methods exist for ranking DMUs that attempt to consider DMUs
from input or output oriented aspects.

Table 10. Results of efficiency of non-radial DEA model and rank of TOPSIS method for the air sector
(2014–2016).

Air Sector

DMUs

2014 2015 2016

DEA TOPSIS DEA TOPSIS DEA TOPSIS

Non-Radial Rank Non-Radial Rank Non-Radial Rank

BE 0.459 22 0.404 22 0.064 22

BG 0.759 13 0.621 11 1 3

CZ 0.843 6 0.757 7 0.225 6

DK 0.697 2 0.554 9 1 1

DE 1 26 1 26 1 26

EE 0.5 11 0.5 12 0.5 10

IE 0.299 23 0.267 23 0.196 23

EL 1 9 1 10 0.144 17

ES 0.821 25 0.761 25 0.147 25

FR 0.417 27 0.439 27 0.063 28

IT 0.932 20 0.928 18 0.229 18

CY 1 7 1 6 1 8

LV 0.680 8 0.541 14 0.217 15

LT 0.656 14 0.594 13 0.210 16

LU 1 1 1 1 1 2

HU 1 3 1 4 0.384 5

MT 0.436 17 0.531 19 0.200 19

NL 0.355 24 0.382 24 0.055 24

AT 0.443 18 0.307 20 0.254 20

PL 0.952 5 0.969 5 0.214 7

PT 0.506 21 0.499 21 0.148 21

RO 1 12 0.734 15 0.197 12

SI 0.324 15 0.332 17 0.346 14

SK 0.5 10 0.5 8 0.243 9

FI 0.633 19 0.605 2 0.219 4

SE 0.836 4 0.822 3 0.179 11

UK 1 28 1 28 1 27

HR 0.858 16 1 16 0.217 13

Green color: the best EEEI. Red color: the least EEEI.

Therefore, the TOPSIS method with both viewpoints—i.e., pessimistic and optimistic-was used in
order to evaluate and rank DMUs. Moreover, TOPSIS was employed with the aim of checking the
results of the non-radial DEA model. Based on all these considerations, in order to verify differences



Energies 2019, 12, 2907 21 of 27

between these two methods a research hypothesis was formed. The results of the TOPSIS method
were calculated using Excel environment.

In terms of the road sector one country ranked first in three years, Lithuania (LT) in 2006, 2012
and 2016, while Slovakia (SK) ranked first in two years, 2008 and 2010. In 2007 the best ranked was
Estonia (EE), in 2014 Slovenia (SI), and in 2015 United Kingdom (UK). In all cases, the EEEI was 1 (see
Tables 5 and 6).

In the rail sector, Sweden (SE) received a rank of 1 in 2006, 2007 and 2008, and Austria (AT) in
2014, 2015, and 2016. Germany (DE) and Hungary (HU) were ranked first in 2010 and 2012 (see Tables 7
and 8). In all cases, except in the case of Germany (DE), the IEEE was 1.

As for air transport, Belgium (BE) was ranked 1 in 2006, 2007, and 2012, Luxembourg (LU) in
2008, 2010, 2014, and 2015, while Denmark (DK) received rank of 1 in 2016. In all cases the EEEI was 1.
(see Tables 9 and 10).

All the countries with a rank of 1 for the rail and air transport sectors (except the DE in 2010 for
the rail sector) at the same time had the best value of EEEI. However, the results of TOPSIS method
were different. For instance, for the road sector Lithuania (LT) was ranked 1 by TOPSIS in 2006, 2012
and 2016 and also had the best EEEI for those years, as well as Slovakia (SK) in 2008 and 2010, while in
2007 Estonia (EE) whose EEEI was 0.622 had a rank of 1.

In addition, the results of the TOPSIS method were different from the results of the non-radial
DEA model. Estonia (EE), for example, had a rank of 1 in 2007 even though the result of the EEEI of
the DEA model was lower: 0.622. Furthermore, considering other DMUs, we note similar situations.
For the road sector in 2012, DMUs with ranks from 1 to 4 obtained from TOPSIS had efficiency scores
of 1 obtained by the non-radial DEA model, while DMU with rank 5 had an efficiency score of 0.807.
Moreover, for the same year Belgium (BE) with a rank of 19 by TOPSIS had an efficiency score 1 by the
non-radial DEA method. The situation is similar for other years; for example, Luxembourg (LU) had
an efficiency score of 1 for 2008 and Ireland for 2010, while with TOPSIS Luxembourg (LU) had 9 and
Ireland (IE) 12. From 2014 to 2016 Belgium (BE) has EEEI equal 1, but it was ranked as 22, 24, and 23
respectively. The similar is for Bulgaria (BG), Germany (DE), Italy (IT), Luxemburg (LU), Netherlands
(NL), and Poland (PL).

It is significant to note that the results of the TOPSIS method for the rail and air transport sectors
were different for a large number of DMUs in comparison to the non-radial DEA model. For example,
for rail Sweden (SE) was ranked first in 2006, 2007 and 2008, while in 2012 the best ranked was Hungary
(HU); on the other side, both DMUs had the highest efficiency scores. However, in 2010 Germany (DE)
was ranked first, although by the non-radial DEA model the obtained efficiency score was 0.653537.
Germany (DE), Italy (IT), Latvia (LV), and Poland (PL) had the efficiency scores for 2014, 2015, and
2016 equal 1, while they were not ranked as first by TOPSIS.

Similar to the results of the TOPSIS for road, for rail France (FR) received an efficiency score of
1 in 2006 and 2008, yet was ranked 18; and for 2007 and 2012 it ranked 19 and 14 while having the
highest efficiency score.

Regarding the air sector, the picture in terms of results given by DEA and TOPSIS is the same as
with the road and rail sectors. Belgium (BE), with an efficiency score of 1 in 2006, 2007 and 2012 had a
rank of 1, while in 2008 and 2010 Luxembourg (LU), with the highest efficiency score, ranked first.
However, for example, Spain (ES), with an efficiency score of 1 by DEA model in 2006, 2008 and 2010
had ranks of 18, 22, and 20, while in 2007 the Netherlands (NL) ranked 18 with a 1 efficiency score,
and in 2012 the United Kingdom (UK) ranked 22 yet had the highest efficiency score. Furthermore,
Germany (DE) with the highest efficiency scores in 2014, 2015, and 2016 ranked 26.

Therefore, it could be said that the DEA is not the most suitable benchmarking tool in the field of
the evaluation of the transport EEE.

Consequently, based on the significant differences between the results of the non-radial DEA
model and the TOPSIS method, our research hypothesis could be confirmed. The reason for differences
in results should be found in the fact that DEA considered inputs for a given level of outputs, while the
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TOPSIS method, in order to find the best DMUs, closest to the ideal positive solution and furthest from
the negative weights its criteria. Another reason for differences in results of the TOPSIS method and
the DEA method is the involvement of weights for each criterion, not only for variables in the goal
function in the non-radial DEA model.

4.4. Discussion

Within Tables 5 and 6, the results of non-radial DEA model and TOPSIS method for road sector
were presented. Based on the results of non-radial DEA model efficient and non-efficient DMU can be
seen. Considering the results of evaluation through the selected period, it can be seen that the lowest
number of countries with the efficiency score of 1 was in 2008. Numerous DMUs are efficient, while one
of them has the lowest score of efficiency. However, due to discrimination power of non-radial DEA
model there is a little difference between non-efficient DMUs. In addition, it can be noticed that many
countries obtained the efficiency score of 1 by DEA model, while only one was ranked as first with
TOPSIS. In 2007, the country ranked as first by TOPSIS received relatively low efficiency score—i.e.,
only 7 countries were less efficient. However, considering the raw data (see supplementary material)
the main reason for that is related to the TOPSIS method and values of raw data. For EE (Estonia) in
2007 the values of data are lower than that used as minimum criteria in TOPSIS and other data as
maximum criteria for that country were sufficient in comparison with other alternatives. In general,
the efficiency scores of more than three quarters of evaluated countries constantly increased after the
2012. Only one country was inefficient throughout the entire evaluation period by DEA, while it was
ranked among first half of all countries by TOPSIS. The primarily reason for the difference between
results of DEA and TOPSIS lies in the fact that TOPSIS evaluates countries with different criteria from
two points of view. However, with the DEA method it is possible to change the efficiency of some
DMUs if the raw data for them is changed. Based on that, some inefficient DMUs can become efficient
and vice versa.

Considering the rail sector (Tables 7 and 8) in comparison with road sector it can be seen that a
significantly smaller number of countries have the highest efficiency. Within the rail sector, the most
efficient countries were in 2006 and 2016. Regarding the application of TOPSIS method similar picture
appears as in road sector. Beside the best efficiency score obtained with non-radial DEA model,
some countries were near to the worst ranked by TOPSIS. Only one country had the efficiency score
constantly very low throughout the entire evaluation period, and at the same time it was mostly ranked
at the bottom of the list by TOPSIS.

Regarding the air sector (Tables 9 and 10) it can be seen that the number of countries that obtained
the highest efficiency score by DEA method was greater in comparison with rail and road sectors.
However, such results were obtained due to the highest volume of transport realized by air sector with
the lowest number of used assets. Furthermore, the level of consumed energy and produced emissions
were lower in comparison with road sector.

5. Conclusions

Over the last decade, the main and intensive topics of research among scholars were energy
consumption and environmental impacts caused by transport systems. One of the major contributors
to energy consumption and endangerment of the environment in Europe has been the overall transport
sector. Among all modes of transport, the road sector was recognized as the main energy consumer
and environmental pollutant. Notwithstanding the importance of this fact, there was not any research
on energy-environment efficiency of European transport sectors.

In this paper, therefore energy-environment efficiency (EEE) of European road, rail and air transport
sectors were evaluated using a modified non-radial DEA model under the joint production framework
proposed by Wu et al. [6]. The evaluation was conducted for European countries in terms of road,
rail and air transport sectors for the period 2006 to 2008, 2010, 2012, 2014, 2015, and 2016. The first
reason for the adoption of non-radial DEA model was simultaneous minimization of energy inputs and
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undesirable outputs for the given level of inputs and outputs, and this was a primary motivation for our
paper. This non-radial DEA model has benefits in terms of the ability to use different non-proportional
adjustments and weighting for energy inputs and undesirable outputs. In the paper, non-energy inputs,
named several assets (see Table 3), were defined and used in the evaluation of transport EEE for the
first time.

Furthermore, the concept of transport EEE was introduced in this study through the reflection of
the relationship among transport energy, non-energy inputs, and transport desirable and undesirable
outputs. Following the aims of the paper, all used variables were described and their changes
were presented only through figures-without any statistical analysis, while factors of EEE were
only mentioned.

An additional contribution provided in the paper was the introduction of the TOPSIS method as a
tool in the evaluation of transport EEE through the ranking of DMUs. With this evaluation of EEE for
European road, rail, and air transport sectors, the stakeholders from each member state may find the
best practices toward the most efficient means of improving overall efficiency.

Based on the results of the DEA approach, we found that the lowest number of DMUs with the
best value of EEEI for the road sector was in 2008. In terms of rail transport, the highest DMUs had
the best EEEI in 2006, and after a decrease in 2007, has since remained fairly unchanged. As far as air
transport was concerned, the best value of EEEI was attributed to the least number of DMUs in 2007
and 2012.

Rail and air transport had much more room for EEE improvement than the road transport sector,
which was relatively efficient in many European countries. Accordingly, it could be concluded that
periodical documents of EU policies for sustainable transport contributed to the improvement of EEE
in road transport sector. However, a modal shift as one of the policies and advanced technologies
was not fully completed for rail transport. Therefore, the potential of the rail transport sector was
not totally realized, which resulted in inefficiency within the rail transport sector. Ramanathan’s [11]
findings confirmed this, stating that rail transport could capture around 50% of the expected traffic,
which would result in saving of about 37% in energy consumption and associated CO2 emissions that
would result if the existing patterns of modal split did not change. Additionally, Song et al. [22] stated
that a higher rate of railway concentration was associated with higher environment efficiency. In terms
of air transport, the measures for EEE improvement implied newer and more fuel-efficient aircraft
through new technology and larger planes [36].

The main conclusions could be drawn through the application of the TOPSIS method. All DMU
with EEEI result 1 had the first rank. However, in some cases DMUs with an EEEI score 1 and
lower had a rather wildly varying ranks. This is because the non-radial DEA model minimizes
desirable and undesirable inputs for a given level of the desirable outputs. Then, the non-radial model
benchmarks one DMU in comparison with others DMUs. However, based on the changes of raw data
(see supplementary material) with the non-radial DEA model some inefficient DMUs can become
efficient and vice versa. Then, the consequence could be a result of the TOPSIS method considering
all inputs and outputs with the possibility of minimization and maximization during the process of
analysis–they strove for clear values. Furthermore, the weights used in the TOPSIS method were
assigned to each input and output.

The authors proposed using the TOPSIS method for finding the best practice in accordance with
the challenges of European transport. The main European challenge is the demand for transport,
which has significantly increased since 2000 and is expected to continue growing. On the other hand,
the European transport sector is heavily dependent on oil. It releases GHGs and air pollutants into the
atmosphere and contributes to climate change, but also makes the European economy more vulnerable
regarding fluctuations in global energy supplies and prices [69]. The overall improvement of transport
EEE in Europe could be achieved through progress in terms of EEE for each member state for each
transport sector.
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Bearing that in mind, finding the best practice which realizes the highest volume of freight and
passenger transport with minimal energy consumption and environmental impact could be found
through the TOPSIS method rather than any DEA approach.

Consequently, the authors highlight the importance of including of the TOPSIS method in future
evaluation of transport EEE. Some proposals for the development of the European transport sector in
terms of energy-environment efficiency are:

I. Intensifying efforts in the implementation policy of modal shift from road and air transport
sectors to eco-friendly sectors, such as rail transport, primarily in developed countries, in order
to increase total EEE.

II. Strengthening transport infrastructure and infrastructure components in terms of rail transport
at bottlenecks, as well as total modernization of rail transport sectors.

III. Reinforcing the adoption of technological innovations and standards in each transport sector.
IV. Employment of alternative sources of energy and modes of transport that have a potential to

reduce energy consumption and environment impacts.

As for future work, the focus should be on research in terms of changes in results of non-radial
DEA models with weights assigned to all inputs and outputs, as compared to the TOPSIS method.
Additionally, TOPSIS could be used with other DEA models for checking results during the evaluation
of transport EEE. Moreover, attention should be drawn to research into the impacts of technological
innovation for improving transport EEE, primarily in the rail transport sector.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/15/2907/s1,
Table S1: Real data.
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