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Abstract: The objective of this paper is to present a new approach to the problem of combustion
engine efficiency characteristic development in dynamic working states. The artificial neural network
(ANN) method was used to build a mathematical model of the engine comprising the following
parameters: Engine speed, angular acceleration, engine torque, torque change intensity, and fuel
mass flow, measured on a test bed on a spark ignition engine in static and dynamic working states.
A detailed analysis of ANN design, data preparation, the training method, and the ANN model
accuracy are described. The paper presents conducted calculations that clearly show the suitability of
the approach in every aspect. Then, a simplified ANN was created, which allows a two dimensional
characteristic in dynamic states, including 4 variables, to be determined.
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1. Introduction

The overall efficiency of the internal combustion engine is one of its most important operational
parameters. It directly influences fuel consumption, which is an extremely important factor both for
drivers and car manufacturers who have to meet the strict EU regulations [1].

The overall engine efficiency is defined as the quotient of the mechanical power on the flywheel
to the power of the fuel injected into the cylinders. It takes into account all losses related to both
thermodynamic processes, internal friction mainly among moving parts in the crank and piston system,
as well as losses in the alternator drive, the coolant pump, and other accessories.

Currently, the efficiency of internal combustion engines is up to 40% for spark ignition (SI)
naturally aspirated engines [2] and up to 36% for SI turbocharged engines [3]. Over the last 20 years,
efficiency has grown by about 10%, due to numerous factors. The main ones are as follows: The use of
fuel injection systems, modern lubricants, coatings on pistons and cylinders [4], optimization of the
valve timing [5], the use of the Atkinson cycle [2], improved fuels, increased compression ratio and
many others.

A well-known method for presenting the efficiency of engines is with the specific fuel consumption,
which has been used for many years [6]. It represents isolines of specific fuel consumption as a function
of engine rotational speed and torque. It illustrates the efficiency of the engine in the whole working
range and makes it possible to compare different constructions. An important limitation of this
characteristic is the possibility of applying it only to steady states of engine operation, where the
rotational speed and torque are constant and the throttle position is fixed. Therefore, its use in
simulations of vehicle fuel consumption is dedicated to significant errors, because vehicle engines work
dominantly in dynamic working states [7], where energy accumulation in rotating masses, mixture
enrichment at throttle opening, and fuel cut off during deceleration significantly influence engine
efficiency. Despite this big disadvantage, this characteristic is often used in simulations of vehicle
fuel consumption in different driving cycles. However, it can only be used with sufficient accuracy
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in comparative simulations, e.g., concerning gear ratio selection [8], allowing differences between
different constructions to be shown, rather than nominal values of fuel consumption to be calculated.

A technical problem, where many factors that influence other factors can often be solved with
the ANN method, which is capable of approximating non-linear relationships based on a data set
from performed measurements. The applications of the ANN method for solving engine performance
problems are numerous. The authors of Reference [9] have developed dynamic models of the engine,
where speed, throttle angle, and angular acceleration are considered as ANN inputs and engine
torque and fuel consumption are the outputs. In References [7,10], the author undertook another
attempt. The inertia-related engine features are included in the ANN model enabling fuel flow
calculation in dynamic states. In contrast with Reference [9], this model includes not only engine speed,
torque, and angular acceleration, but also torque increase over time, which is an important factor
including air-fuel mixture enrichment. This method is very precise, but no 2D or 3D characteristic
was presented, thus a simple and quick assessment of the engine dynamic parameters is impossible
in this case. Computational simulations must be performed to obtain engine efficiency for each
particular engine working state. In Reference [11], the ANN method was used to predict the exhaust
emissions and performance (e.g., brake specific fuel consumption) of a compression ignition engine
based on engine load, engine speed, and the percentage of biodiesel fuel derived from waste cooking
oil in diesel fuel. Although this article provides relationships between engine speed, load, and
performance, it refers only to static working states. Very similar problems and approaches are
presented in References [12,13], however, in these cases the fuel blends are as follows: Diethyl ether
diesel fuel mixtures and Jatropha biodiesel, respectively. Artificial intelligence can also be used in
more sophisticated problems concerning the efficiency of a combustion engine working in a hybrid
drivetrain [14]. The literature shows that, apart from the ANN method, other approaches are also
possible when solving the problems of engine efficiency (specific fuel consumption). In Reference [15],
the authors’ approach was to analytically calculate energy expenditure and fuel consumption, taking
into account the instantaneous specific fuel consumption, approximated by two generalized single
dimension polynomial functions. The authors of Reference [16] developed a dynamic model based on
the static characteristic complemented by a factor including vehicle speed and acceleration. This model
provides a closer characteristic to real engine behaviour, however, such an attempt also includes vehicle
features such as gear ratios. The authors of Reference [17] used the mean value model representing the
engine. A non-linear model includes air flow and engine inertia, however fuel-air mixture composition
is assumed constant and values of some efficiencies are assumed, not measured. The authors of
Reference [18] invented the new transient fuel consumption model whose basic structure is steady-state
estimation plus transient correction, including engine speed and torque change resulting from the
instantaneous speed and acceleration of the vehicle in specific driving cycles.

The need to reduce research costs and shorten the time of prototype preparation leads to the use
of computer simulations to the widest possible extent. This, in turn, involves the need to develop more
and more accurate mathematical models that reflect the physical construction as closely as possible.
The above examples present different approaches to the problem of combustion engine efficiency and
the use of different calculation methods. Unfortunately, the development of a graphic representation
of combustion engine efficiency in dynamic states is complex, because it requires a multidimensional
relationship to be developed. Taking the above into consideration, the author used the ANN to develop
a novel method that allows graphical representations to be created with the highest possible match
with measurement data from dynamic engine working states.

The rest of the manuscript is organized as follows. Section 2 describes the basics of engine
efficiency, including the well-known specific fuel consumption characteristic as well as the problem
of engine inertia influencing efficiency in dynamic working states. Section 3 provides information
concerning engine tests and the measurement system in static and dynamic states. All the aspects of the
ANN (creating mathematical dependency between engine speed, torque, and its efficiency) concerning
its architecture, data scaling, and training method, are precisely described. Section 4 presents a novel
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approach to the problem of drawing engine efficiency in dynamic working states and, finally, shows
two dimensional characteristics, allowing engine efficiency to be quickly and precisely calculated.
Section 5 presents the simulation results, which prove the correctness of the adopted approach.

2. Problem Formulation

Engine efficiency can be measured for every point in the whole field of work, however, only the
maximum values of individual engines are usually given. The efficiency of the engine in the entire
work area shows the specific fuel consumption, where, in the coordinate system, torque M vs. the
rotational speed n, the contours of specific fuel consumption are presented. Such a characteristic is
presented in Figure 1.

Energies 2019, 12, x FOR PEER REVIEW 3 of 13 

 

and, finally, shows two dimensional characteristics, allowing engine efficiency to be quickly and 97 
precisely calculated. Section 5 presents the simulation results, which prove the correctness of the 98 
adopted approach.  99 

2. Problem Formulation  100 
Engine efficiency can be measured for every point in the whole field of work, however, only the 101 

maximum values of individual engines are usually given. The efficiency of the engine in the entire 102 
work area shows the specific fuel consumption, where, in the coordinate system, torque M vs. the 103 
rotational speed n, the contours of specific fuel consumption are presented. Such a characteristic is 104 
presented in Figure 1.  105 

2000 3000 4000 5000 6000
0

20

40

60

80

n [rpm]

M
 [N

m
]

226

230

240

260

290

1000

 g e [g/kWh]

 106 
Figure 1. Engine specific fuel consumption characteristic. 107 

The graph in Figure 1 is created based on a method presented in Reference [8], where the 108 
algorithm of drawing such a characteristic, based on only 4 operating points, is described in detail. 109 
This characteristic can be directly converted to a characteristic of engine efficiency: 110 

ded

3600
WgWG

N
⋅

=
⋅

=η , (1)

where N is the engine power in kW, G is fuel mass flow in g/s, and Wd is the heat value of the fuel in 111 
MJ/kg. 112 

As mentioned in the Introduction, these characteristics are based on measurements in static 113 
states. In dynamic states, the efficiency of the engine can vary significantly. This results from the 114 
following factors: Enrichment of the mixture during load increase (in relation to static states), delay 115 
of the system response to the control signal, and accumulation of combustion energy in moving 116 
parts of the engine (Figure 2). Although this energy can be partially recovered during deceleration 117 
with engine braking, it is usually lost in the form of pumping losses when the throttle is closed and 118 
the engine speed is reduced. 119 

It is therefore important to determine the characteristics that, as well as the engine speed n and 120 
torque M, also take into account the angular acceleration and the increase in the torque over time, 121 
which significantly affect efficiency, as shown in Figure 3. 122 

Such an attempt is strongly desired, because car engines work for a predominant percentage of 123 
time in dynamic working conditions, which results from the specificity of road traffic, especially in 124 
the area of large urban agglomerations, the impact of road resistance, wind resistance, or the driver's 125 
own operation of the vehicle. It turns out that, in such working conditions, the efficiency of the 126 
engine is even smaller. In the WLTP homologation test (Worldwide harmonized light duty vehicle 127 
test procedure), the phases in which the engine operates with a constant load are only under 17% of 128 
the entire test time. This clearly shows that the use of fuel consumption characteristics in dynamic 129 
work states is insufficiently accurate. 130 

Figure 1. Engine specific fuel consumption characteristic.

The graph in Figure 1 is created based on a method presented in Reference [8], where the
algorithm of drawing such a characteristic, based on only 4 operating points, is described in detail.
This characteristic can be directly converted to a characteristic of engine efficiency:

η =
N

G·Wd
=

3600
ge·Wd

, (1)

where N is the engine power in kW, G is fuel mass flow in g/s, and Wd is the heat value of the fuel in
MJ/kg.

As mentioned in the Introduction, these characteristics are based on measurements in static states.
In dynamic states, the efficiency of the engine can vary significantly. This results from the following
factors: Enrichment of the mixture during load increase (in relation to static states), delay of the system
response to the control signal, and accumulation of combustion energy in moving parts of the engine
(Figure 2). Although this energy can be partially recovered during deceleration with engine braking, it
is usually lost in the form of pumping losses when the throttle is closed and the engine speed is reduced.

It is therefore important to determine the characteristics that, as well as the engine speed n and
torque M, also take into account the angular acceleration and the increase in the torque over time,
which significantly affect efficiency, as shown in Figure 3.

Such an attempt is strongly desired, because car engines work for a predominant percentage of
time in dynamic working conditions, which results from the specificity of road traffic, especially in
the area of large urban agglomerations, the impact of road resistance, wind resistance, or the driver’s
own operation of the vehicle. It turns out that, in such working conditions, the efficiency of the
engine is even smaller. In the WLTP homologation test (Worldwide harmonized light duty vehicle test
procedure), the phases in which the engine operates with a constant load are only under 17% of the
entire test time. This clearly shows that the use of fuel consumption characteristics in dynamic work
states is insufficiently accurate.
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Figure 2. Main parts of the combustion engine influencing its overall inertia: 1—crankshaft,
2—connecting rod, 3—piston, 4—valve-train chain, 5—camshaft, 6—variable valve timing, 7—valve,
8—dual mass fly-wheel, 9—clutch cover, 10—pressure plate, 11—diaphragm spring, 12—coolant pump,
13—accessories pulley, 14—oil pump, 15—turbocharger, 16—oil, 17—coolant, and 18—throttle valve.
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Figure 3. Engine efficiency in dynamic states.

3. Methodology

3.1. Measurements in Dynamic Working States

The presented engine efficiency characteristic, using the ANN, is determined based on
measurement data from the engine test bench, which allows measurements of the fuel consumption
in dynamic operating states to be performed. This is necessary to ensure an appropriate training set
for the ANN. Such a set must contain measurement data from all the possible operating states of
the engine, covering the entire engine work field, in this case n = 1000–5500 rpm and M = 0–65 Nm.
The measurement methodology is described in detail in Reference [7]. Measurements were performed
on an SI engine with a displacement of 899 cm3, a nominal power of 29 kW at 5500 rpm, and a nominal
torque of 65 Nm at 3000 rpm. Resistant torque was generated by a hydraulically controlled friction
brake enabling smooth and rapid load changes (Figure 4). Two parameters, the brake load and throttle
opening angle (in the full range 0–90◦), were controlled so all the engine working states could be
realized. Measurements were performed at a nominal engine temperature. No warm-up period
was included. The engine speed was measured with the use of a Tacho GT 3.10 L/405 tachometer.
To match the measurement range of the data acquisition device (0–10 V), an additional tooth belt drive,
with a ratio of 2.909, was used. The fuel flow was measured indirectly. A Bosch 0 280 217 123 air
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mass flow meter measured the airflow and an LSU-4.1 Innovate Motorsport LC-1 wideband oxygen
sensor (measurement range of λ = 0.5 ÷ 1.523), with a controller, constantly measured the air-fuel
ratio. The brake caliper was pivoted and the reaction force was generated by a compression spring,
whose shortening was measured by a potentiometer, and a lever system. Such a system measured the
moment of resistance, taking into account both the contact pressure between the pads and the disc, as
well as the friction coefficient between these elements. The moment of inertia of all elements is known
and is taken into account at the stage of building the training set for the ANN. All 4 sensors generated
analog voltage signals and were connected to a National Instruments NI USB-6009 data acquisition
device. LabVIEW software was used to collect the data on the computer.
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Figure 4. Test stand used for measurements in dynamic states: 1—engine, 2—friction brake,
3—compression spring, 4—potentiometer, 5—tachometer, 6—tooth belt gear, 7—mass air flow
meter, 8—wideband oxygen sensor, 9—oxygen sensor controller, 10—throttle valve, 11—NI
USB-6009, 12—computer.

All the possible engine states that might occur during normal engine operation in a vehicle must
be performed during measurements. All of them are presented in Figure 5.
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Figure 5. Possible engine working states.

Figure 5 represents all the situations that might occur during driving. The first one is driving at
constant speed on a flat road, the second one is sudden throttle opening—a demand for acceleration,
the third one is acceleration with constant torque, the fourth case is engine braking, and the fifth one is
slow acceleration with torque and speed increase.

3.2. Data Analysis with the Use of ANN

To use the ANN for measurement data approximation, the ANN architecture, data scaling, transfer
functions, and training methods must be defined. The aim is to calculate engine efficiency (resulting
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from fuel mass flow), which is a function of 4 parameters, as follows: Engine speed n, torque M and
angular acceleration εn, and torque increase over time εM. Thus, the considered ANN must have 4
inputs and one output. Only one hidden layer can be used because, with a proper number of hidden
neurons, such a network is capable of approximating non-linear relationships with high accuracy [19].
The non-linear function in the hidden layer was set to logsig, which is one of the transfer functions
available. It ensures similar results to other functions (e.g., tansig), however, it can be calculated
quickly, thus accelerating calculations [19]. Data scaling for all inputs and the output is proportional,
because an increase of every single input results in an increase of the output. The ANN used for
calculations is presented in Figure 6.
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Figure 6. ANN used for computing engine efficiency in dynamic states.

The number of hidden neurons depends on many factors, e.g., the data number (in this case, the
training set contained nearly 13,800 data parts from measurements in dynamic and static states), the
homogeneity of measurement data, and the method of data scaling, and thus cannot be set up front.
The author verified mean squared error (mse) for subsequent numbers of hidden neurons, as presented
in Figure 7.
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Figure 7. Mean squared error vs. hidden neurons number H.

The mse decreases with increasing numbers of hidden neurons H, however, the higher the H the
higher the possibility of data overfitting (mse < 0.00200), resulting in discontinuities on the graph
(Figure 7), which are created based on the ANN. Taking these two factors into consideration, it turned
out that H = 5 is optimal, because it ensures high accuracy and does not lead to data overfitting.

The ANN approximates measurement data, thus setting the dependency between engine speed
torque and fuel mass flow. The input data vector X0 are engine parameters given in their basic units, as
follows: Engine speed n in rpm, engine angular acceleration εn rpm/s, engine torque M in Nm, engine
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torque increase εM in Nm/s, and the fuel flow G in g/s. The parameters εn and εM are considered in the
time interval 0.3 s [7]. The input vector,

X0 =
[
x0

1, x0
2, x0

3, x0
4

]T
= [n(t0), εn(t0÷0.3), M(t0), εM(t0÷0.3)]

T, (2)

must be scaled to the range (−1; 1) resulting in the vector X1:

X1 =
[
x1

1, x1
2, x1

3, x1
4

]T
. (3)

To ensure proper ANN training, data scaling is conducted according to the following formulas
(with regard to Figure 6):

x1
1 = 0.0004338·x0

1 − 1.4686
x1

2 = 0.0004012·x0
2 − 0.2800

x1
3 = 0.0277800·x0

3 − 1.0000
x1

4 = 0.0062300·x0
4 − 0.1713

, (4)

The ANN output Y0, which is the fuel mass flow G.

Y0 = y0
1 = G(t0), (5)

was also scaled to the range (−1; 1) according to the following formula:

y2
1 = 0.717·y0

1 − 1.136. (6)

The hidden layer weights matrix is:

W1 =


w1

1,1 . . .

. . .w1
h,in . . .

. . . w1
H,IN

, (7)

and hidden layer biases are:

b1 = [b1
1 . . . b

1
h . . . b

1
H]

T
, (8)

where h (h = 1 . . . H) is the number of a hidden neuron, and in is the number of the input (in = 1 . . . IN
= 4). In a summing member, the input, multiplied by its weights, is summed with bias:

p1
h =

IN∑
in=1

1w1
h,in·x

1
in + b1

h. (9)

The sum ph
1 is then calculated with the use of the non-linear logsig transfer function f 1:

y1
h = f 1(p1

h) =
1

1 + e−p1
h

, (10)

and multiplied by the output layer weights:

W2 = [w2
1,1 . . . w2

1,h . . . w2
1,H]

T
. (11)

The sum of p1
2 is converted with the use of the simple linear transfer function f 2:

y2
1 = f 2(p2

1) = p2
1. (12)
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The output layer bias matrix is:
b2 = [b2

1]. (13)

The whole training set was divided as follows: 60% training set, 20% validation set, and 20% test
set. The ANN was trained with the Lavenberg–Marquardt algorithm [19,20]. The training process took
49 epochs, which resulted in the mean squared error of 0.00224. Its graph during the learning process
is presented in Figure 8.Energies 2019, 12, x FOR PEER REVIEW 8 of 13 
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Figure 8. Mean squared error vs. training epochs and regression plot.

Achieving the expected value of mse is equivalent to the completion of the ANN training.
The matrices W1, b1, W2, b2, which represent the result of the network learning and represent the
ANN engine dynamic model, are the following:

W1 =


−2.9957 −2.9347 −0.4181 1.5487
−0.6117 0.8342 0.6878 −0.8130
−1.9564 −0.9297 −0.8992 −2.3007
3.3275 −1.5137 −0.4126 −2.1666
−1.3134 −2.1830 −2.5913 −4.4844


, (14)

b1 = [3.9769 2.2505− 0.5819 3.5082 3.1910]T, (15)

W2 = [−1.4632 2.2144− 1.2476 0.7342− 1.9261]T, (16)

b2 = [b2
1] = 0.9945. (17)

After ANN training, engine torque is re-scaled from the (−1; 1) range to the basic range (0.1897 ÷
2.979 g/s), based on the following relationship:

Y0 = G(t0) =
y2

1 + 1.136

0.717
. (18)

By simulation of such an ANN, a static efficiency characteristic can be obtained. It is shown in
Figure 9.
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Figure 9. Engine efficiency characteristic in static states.

The characteristic, which is entangled in weights, biases (Equations (14)–(17)), transfer functions
(Equations (10) and (12)), and scaling factors (Equation (4) and (6)), can be used in different simulations
for precise calculations of engine efficiency. However, the engine efficiency cannot be assessed in a
straightforward manner, as in the case of graphic representation. As a consequence of this, the author’s
method for graphical representation of such a characteristic is presented in the next chapter.

4. Development of the Graphic Engine Efficiency Characteristic

The ANN presented in Section 3 can be used in computer simulations, because it ensures high
accuracy. However, it does not allow a simple 2D or 3D characteristic to be obtained. Thus, a modified
ANN, with a new architecture, will be used in this chapter to develop such a characteristic. First of
all, an ANN with only one hidden neuron will be used. Secondly, it will differ from the previous
one, because, in this case, engine efficiency is directly the ANN output. The logsig shape of the
transfer function f 1 will be the base for the characteristic. All of the 4 variables must be presented
simultaneously, because they influence each other. The architecture used is presented in Figure 10.
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The fact that the output is engine efficiency means that the 2nd and 4th inputs must be scaled
inversely proportionally (different than in the first ANN with 5 hidden neurons (Figure 6)), because
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both high angular acceleration and increased torque reduce engine efficiency. The input values remain
the same:

X0 =
[
x0

1, x0
2, x0

3, x0
4

]T
= [n(t0), εn(t0÷0.3), M(t0), εM(t0÷0.3)]

T. (19)

They are scaled to the range (−1; 1), thus creating the vector X1:

X1 =
[
x1

1, x1
2, x1

3, x1
4

]T
. (20)

Data scaling is the following:

x1
1 = 0.0004338·x0

1 − 1.4686
x1

2 = −0.0004012·x0
2 + 0.2800

x1
3 = 0.0277800·x0

3 − 1.0000
x1

4 = −0.0062300·x0
4 + 0.1712

. (21)

The ANN output Y0 is the engine efficiency η [%]:

Y0 = y0
1 = η(t0). (22)

It was also scaled to the range (−1; 1), according to the following formula:

y2
1 = 0.0606·y0

1 − 1. (23)

The training process took 18 epochs this time, which resulted in the mean squared error of 0.00854.
Its graph during the learning process is presented in Figure 11.
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Figure 11. Mean squared error vs. training epochs and regression plot.

The matrices W1, b1, W2, b2 are now the following:

W1 = [−0.0463 0.2889 1.6809 0.2402 ], (24)

b1 = [3.2176], (25)

W2 = [11.2440], (26)

b2 = [−10.3915]. (27)
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After ANN training, engine torque is re-scaled from the (−1; 1) range to the basic range (0–33%)
based on the following relationship:

Y0 = η(t0) =
y2

1 + 1

0.0606
. (28)

Then, it must be verified if only one hidden neuron is capable of approximating the whole data
set, because it is essential to create a characteristic with reasonable accuracy. Based on the two neural
networks above, static characteristics are created. The result obtained with the use of the ANN with
one hidden neuron differs no more than 5% for 95% of the engine working field from the ANN with
5 neurons. Thus, the accuracy is reasonable and the ANN with 1 neuron can be used further for 2D
characteristic development.

To obtain a simple and direct relationship between the engine parameters and its efficiency
scaling coefficients (Equation (21)), its input weights are multiplied and simplified, according to the
following equations:

Σ1 =
(
a1·x0

1 + c1
)
·w1

1,1 +
(
a2·x0

2 + c2
)
·w1

1,2 +
(
a3·x0

3 + c3
)
·w1

1,3 +
(
a4·x0

4 + c4
)
·w1

1,4 + b1
1. (29)

After transformation:

Σ1 =
(
a1·x0

1 + c1
)
·w1

1,1 +
(
a2·x0

2 + c2
)
·w1

1,2 +
(
a3·x0

3 + c3
)
·w1

1,3 +
(
a4·x0

4 + c4
)
·w1

1,4 + b1
1, (30)

Σ1 = A1·x0
1 + A2·x0

2 + A3·x0
3 + A4·x0

4 + S. (31)

The final coefficients are the following: A1 = −0.0000200, A2 = −0.0001159, A3 = 0.0467000, A4 =

−0.0015000, S = 1.7265.
Taking into account (Equation (2)), this results in the final dependency, which can be directly

moved further on the graph:

Σ1 = A1·n(t0) [rpm] + A2·εn(t0÷0.3) [rpm/s] + A3·M(t0) [Nm] + A4·εM(t0÷0.3) [Nm/s] + S. (32)

Finally, the logsig function is converted by the output layer weight W2, and then by rescaling the
output data. This is presented in Figure 12.
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Figure 12. Operations on the logsig function inside the AN.

To create a graphic representation, the coefficients are scaled to specific lengths in a graph. This
allows a simple and quick assessment of engine efficiency. The final characteristic is presented in
Figure 13.
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Figure 13. A new engine efficiency characteristic.

This characteristic allows a simple assessment of engine efficiency in the whole working range.
The length of the measurement sections clearly shows the influence of individual components on the
overall efficiency of the engine and, in particular, how it decreases where angular acceleration or torque
increase occur. The main advantage of the characteristic is that it is a continuous and differentiable
function, which allows the efficiency to be calculated at any working point.

5. Simulation Results and Comparison of Dynamic and Static Characteristic

The ANN network with 5 hidden neurons can be used, as mentioned, in simulations of vehicle
fuel consumption in WLTP homologation tests, for example. Based on vehicle speed and vehicle
parameters (wheel radius, gearbox ratios, and vehicle weight), one can calculate engine speed and
torque, and the ANN will calculate engine efficiency at every moment. A sample course of engine
parameters is presented in Figure 14, which allows the newly developed characteristic ηdyn to be
compared with the static characteristic ηstat.
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It can be clearly seen that the engine efficiency drops by 10% during sudden throttle opening
(2). In phase (3) when the torque is constant, the increase in engine speed decreases the efficiency
by up to 15%. An unusual situation occurs in phase (4–5). Sudden throttle closing results in air-fuel
mixture depletion, however, the engine generates torque (due to the speed decrease). This leads to
the situation that the engine efficiency reaches up to 42%, whereas its maximum efficiency in steady
states is 33%. Phase (7) represents slow engine load and speed increase. In this situation, the difference
between characteristics is only 4%. Phases (1,4,6,8) represent static states, so ηdyn = ηstat. This proves
that static characteristics (specific fuel consumption characteristic) can only be used in quasi-static
conditions. Taking into consideration the accuracy requirements of modern simulation programs, as
well as the wide range of engine operation, this is not enough. Only the newly developed characteristic
can calculate engine efficiency in any working state with high accuracy.

6. Summary and Conclusions

The article presents a detailed algorithm for developing the combustion engine efficiency
characteristic, both in a full version with 5 hidden neurons, dedicated for computer simulations,
and a simplified one with only one hidden neuron, which visually describes the engine properties
with the accuracy of 5% with regard to the detailed characteristic. Both methods describe every step
exactly, including the coefficients of data scaling and weights and biases of both networks, which can
be recreated by any researcher. ANN design and the training method prove the correctness of the
presented attempt. The mse and regression plots are correct and R > 0.98, which also means that the
network architecture and scaling methods were assumed correctly. However, one should remember
that the specific values of weights and lengths reflect the specificity of the tested engine. With different
propulsion, the weight and length coefficients will be different; however, the methodology remains the
same. The example presented in Section 5 shows that the discrepancy between the static characteristic
and the new characteristic can reach up to 15% in the case of high angular acceleration and sudden
throttle opening. Scaling lengths (Figure 13) clearly show the influence of each component (n, εn, M,
and εM) on the overall efficiency in the whole working range and allow a quick and precise assessment
of the engine properties.
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