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Abstract: The initial conditions such as temperature, pressure and dilution rate can have an effect on
the laminar burning velocity of natural gas. It is acknowledged that there is an equivalent effect on
the laminar burning velocity between any two initial conditions. The effects of initial temperatures
(323 K–423 K), initial pressures (0.1 MPa–0.3 MPa) and dilution rate (0–16%, CO2 as diluent gas) on
the laminar burning velocity and the flame instability were investigated at a series of equivalence
ratios (0.7–1.2) in a constant volume chamber. A chemical kinetic simulation was also conducted to
calculate the laminar burning velocity and essential radicals’ concentrations under the same initial
conditions. The results show that the laminar burning velocity of natural gas increases with initial
temperature but decreases with initial pressure and dilution rate. The maximum concentrations of
H, O and OH increase with initial temperature but decrease with initial pressure and dilution rate.
Laminar burning velocity is highly correlated with the sum of the maximum concentration of H
and OH.

Keywords: natural gas; diluent gas; laminar burning velocity; flame instability; concentration
of radicals

1. Introduction

Natural gas, of which the major constituent is methane, is now regarded as a promising alternative
fuel with excellent prospects owing to its huge quantity, cleaner emissions and high thermal efficiency [1–3].
In order to reduce the emissions and to improve engine performance, combining hydrogen-natural
gas blending fuel with exhaust gas recirculation (EGR) [4–8] is a feasible approach. However, the
addition of EGR has a certain impact on combustion. Many researchers have conducted research on
the combustion characteristics of natural gas [9–12].

To date, laminar flame and chemical kinetic models of natural gas is increasingly interesting
to many researchers. Zeng [13] investigated the ignition characteristics of methane-air mixture.
Their results showed that GRI mech_3.0 mechanism gave the most accurate prediction on ignition
delay time comparing to USC_2.0 mechanism and NUI_Galway mechanism, and the ignition delays
were sensitive to small radicals such as H, O and OH. However the burning velocity was not taken into
account. Xu [14] investigated the chemical effect of CO2 on laminar flame speed of CH4. The conclusion
that the chemical effect was stronger than radiative effect but weaker than thermal effect was confirmed,
but the flame instability was not investigated.

Many researchers have also studied the effects of initial conditions on the combustion characteristics
of flames. Zhang et al. [15] analyzed the influence on the laminar burning velocity and Markstein length.
The results show that the laminar burning velocity of dissociated methanol-air mixture increases with
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an increase in initial temperature and decreases with an increase in initial pressure. The Markstein
length decreases with an increase in initial temperature and initial pressure. By using a constant volume
chamber, Miao et al. [16] studied the influence of fuel-air equivalent ratio, hydrogen-doping ratio and
dilution degree on the laminar burning velocity and Markstein length for the hydrogen-mixed natural
gas-air-diluted gas. The results show that the laminar burning velocity decreases when the hydrogen
doping ratio decreases and the dilution increases. The diluent gas CO2 inhibits the laminar burning
velocity more than N2. The diluent is an inert gas that hardly participates in the chemical reaction, but
has the dual functions of dilution and heat absorption. Therefore, the addition of diluent gas slows
down the chemical reaction rate of the mixture, resulting in a decrease in flame propagation speed and
burning velocity; The increase of the initial temperature of the constant volume chamber will promote
the chemical reaction rate of the mixed gas, while the increase of the initial pressure will inhibit the
chemical reaction rate of the mixed gas. Therefore, there should be an equivalent effect between the
dilution rate, the initial temperature and the initial pressure on the laminar burning velocity of the
mixed gas. In this paper, the effect of initial conditions (initial temperature, initial pressure, dilution
ratio and equivalence ratio) on burning characteristics (laminar burning velocity, flame instability,
flame structure and concentration of essential radicals) are investigated comprehensively.

2. Experimental Setup

The experiments in this study were conducted in a constant volume chamber (CVC) test system
with wrapped in heating tapes and surrounded by thermo-insulating asbestos, which can heat
the bomb to the set initial temperature and reduce the heat loss as well. The test rig is capable
of temperature monitoring and controlling, data acquisition, Schlieren photographing, ignition,
intake and exhaust. The temperature was measured by a type-K thermocouple and controlled by a
proportional-integral-derivative (PID) controller within ±3 K. The data acquisition system includes a
pressure sensor (type 6125C, KISTLER, Winterthur, Switzerland), a data acquisition card (DAQ, type
USB-6365, sampling frequency 100 KHz, NI, Austin, TX, USA) and a charge amplifier (type 5018A,
KISTLER). The Schlieren system consists of an illuminant (power 100 W), two concave reflecting
mirrors (focal length 110 mm), two plane reflecting mirrors and a high speed digital camera (type
V7.3, frequency 10,000 fps, image resolution 512 × 512 pixels, Phantom, Wayne, IN, USA). Ignition,
photographing and data acquisition were triggered simultaneously by a controller (type Calibration
V2, ECTEK, Changzhou, China).

Table 1 shows parameters of the constant volume chamber. Figure 1 shows the CVC experimental
setup. The CVC was evacuated initially, and each gas can then be charged to the specified pressure in
the order of CO2, natural gas and compressed air, and the mixture was heated to the initial temperature;
Before ignition, the mixture was premixed for at least 5 min; After combustion, the valve and air
compressor were opened to discharge the residual exhaust gas, and then the CVC was cleaned by fresh
air three times to ensure that there was no residual exhaust gas influence for the following test.

Table 1. Parameters of the constant volume chamber.

Parameter (Unit) Value

Inner diameter (mm) 350
Volume (L) 22.4

Maximun heating temperature (K) 600
Maximum pressure (MPa) 4

Effective diameter of windows (mm) Φ120
Primary ignition voltage (V) 14
Ignition electrode gap (mm) 2

Ignition pulse width (ms) 2



Energies 2019, 12, 2892 3 of 19

Energies 2019, 12, x FOR PEER REVIEW 3 of 19 

 

 

Figure 1. The experimental setup, consisting of a constant volume chamber, a Schlieren system, a 

temperature controlling and monitoring system, an intake and exhaust system, an AVL exhaust 

analyzer and a computer as a controller. 

In order to avoid the influence of ignition energy and combustion pressure change on the 

combustion analysis [17], the laminar combustion characteristics were analyzed mainly in the flame 

radius of 6 mm to 25 mm. 

In this study, dilution rate (DR) is defined as the mole fraction of CO2 in mixtures, which is 

calculated according to Equation (1). Table 2 lists the test conditions of natural gas-CO2-air blending 

fuel. Natural gas used in this study is mainly composed of methane: 

2 4 2CO CH CO air/ ( )DR V V V V    (1) 

Table 2. Test conditions of natural gas-CO2 mixture. 

Parameter (Unit) Value 

Initial temperature Tu (K) 323, 348, 373, 398, 423 

Initial pressure pu (MPa) 0.1, 0.15, 0.2, 0.25, 0.3 

Φ 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 

DR (%) 0, 2, 4, 6, 8, 10, 12, 14, 16 

3. Data Processing 

3.1. Extraction of Flame Radius 

The Schlieren photographs were analysed to compute the flame radius. In this study, canny 

edge detector was applied to detect the boundary of the photograph due to its high accuracy, and 

there were five steps before detecting the boundary, named background removed, gray-scale 

contrast enhanced, extracted flame front, boundary identified and fitting, respectively. Three 

diameters (6 radii) were extracted with the interval angle of 60° (the horizontal line was regarded as 

X axis, and the positive side was regarded as 0° while the negative side was regarded as 180°). The 

average of these 6 values was computed, which is regarded as the radius of a photograph. These 
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Figure 1. The experimental setup, consisting of a constant volume chamber, a Schlieren system,
a temperature controlling and monitoring system, an intake and exhaust system, an AVL exhaust
analyzer and a computer as a controller.

In order to avoid the influence of ignition energy and combustion pressure change on the
combustion analysis [17], the laminar combustion characteristics were analyzed mainly in the flame
radius of 6 mm to 25 mm.

In this study, dilution rate (DR) is defined as the mole fraction of CO2 in mixtures, which is
calculated according to Equation (1). Table 2 lists the test conditions of natural gas-CO2-air blending
fuel. Natural gas used in this study is mainly composed of methane:

DR = VCO2 /(VCH4 + VCO2 + Vair) (1)

Table 2. Test conditions of natural gas-CO2 mixture.

Parameter (Unit) Value

Initial temperature Tu (K) 323, 348, 373, 398, 423
Initial pressure pu (MPa) 0.1, 0.15, 0.2, 0.25, 0.3

Φ 0.7, 0.8, 0.9, 1.0, 1.1, 1.2
DR (%) 0, 2, 4, 6, 8, 10, 12, 14, 16

3. Data Processing

3.1. Extraction of Flame Radius

The Schlieren photographs were analysed to compute the flame radius. In this study, canny edge
detector was applied to detect the boundary of the photograph due to its high accuracy, and there were
five steps before detecting the boundary, named background removed, gray-scale contrast enhanced,
extracted flame front, boundary identified and fitting, respectively. Three diameters (6 radii) were
extracted with the interval angle of 60◦ (the horizontal line was regarded as X axis, and the positive
side was regarded as 0◦ while the negative side was regarded as 180◦). The average of these 6 values
was computed, which is regarded as the radius of a photograph. These were implemented in MATLAB
(type R2016a, The MathWorks, Natick, MA, USA). The diagram of extracting the flame radius is shown
in Figure 2.



Energies 2019, 12, 2892 4 of 19

Energies 2019, 12, x FOR PEER REVIEW 4 of 19 

 

 

Figure 2. Diagram of extracting the flame radius. 

3.2. Data Calculation 

The instantaneous stretched flame propagation speed can be calculated as instantaneous radius 

versus time, as shown below: 

ud / dnS R t  
(2) 

The stretch rate can be calculated as logarithm of a tiny area on spherical flame surface versus 

time, shown as follows: 

n u nd(ln ) / d 2 /K A t S R S    
(3) 

In which κ = 2/Ru is the curvature of the flame front. 

To obtain the un-stretched flame propagation speed and Markstein length, there are three 

models named linear model, non-linear model I and non-linear model II respectively, shown in 

Equations (4) and (5) [18] and Equation (6) [19]: 

l n bS S L K   (4) 

n l l bS S S L    (5) 

n l l b nln( ) ln( ) /S S S L S   (6) 

According to Chen [20] the selection of model is based on Lewis number, which is defined as 

ratio of thermal diffusion to mass diffusion (methane to nitrogen when Φ < 1.0, oxygen to nitrogen 

when Φ > 1.0): 

u p m T m= / = /Le c D D D   (7) 

where λ is the thermal conductivity, ρu is density of unburned gas, cp is specific heat at constant 

pressure of the mixture. Non-linear model I is the most suitable model for mixtures whose Le > 1 

while non-linear model II is the most suitable model for mixtures whose Le < 1. 

The unstretched laminar burning velocity can be calculated as below: 

L l b u l/ = /u S S   （ ）  (8) 

where σ is density of burned gas, σ is thermal expansion ratio. In this study, σ was calculated from 

initial physical parameters while σ was computed by a thermal equilibrium model in Chemkin-Pro. 

Figure 2. Diagram of extracting the flame radius.

3.2. Data Calculation

The instantaneous stretched flame propagation speed can be calculated as instantaneous radius
versus time, as shown below:

Sn = dRu/dt (2)

The stretch rate can be calculated as logarithm of a tiny area on spherical flame surface versus
time, shown as follows:

K = d(ln A)/dt = 2Sn/Ru = κSn (3)

In which κ = 2/Ru is the curvature of the flame front.
To obtain the un-stretched flame propagation speed and Markstein length, there are three models

named linear model, non-linear model I and non-linear model II respectively, shown in Equations (4)
and (5) [18] and Equation (6) [19]:

Sl − Sn = LbK (4)

Sn = Sl − SlLbκ (5)

ln(Sn) = ln(Sl) − SlLbκ/Sn (6)

According to Chen [20] the selection of model is based on Lewis number, which is defined as ratio of
thermal diffusion to mass diffusion (methane to nitrogen when Φ < 1.0, oxygen to nitrogen when Φ > 1.0):

Le = λ/ρucpDm = DT/Dm (7)

where λ is the thermal conductivity, ρu is density of unburned gas, cp is specific heat at constant
pressure of the mixture. Non-linear model I is the most suitable model for mixtures whose Le > 1 while
non-linear model II is the most suitable model for mixtures whose Le < 1.

The unstretched laminar burning velocity can be calculated as below:

uL = Sl(ρb/ρu) = Sl/σ (8)

where σ is density of burned gas, σ is thermal expansion ratio. In this study, σ was calculated from
initial physical parameters while σ was computed by a thermal equilibrium model in Chemkin-Pro.
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The flame thickness can be calculated through Equation (9):

lf = λ/ρuuLcp (9)

3.3. Uncertainty in Schlieren Method

According to Zuo [21], the uncertainty mainly comes from the error in Schlieren photograph
analysis, model selection, the calculation error sensitive to stretch rate and the inaccuracy caused by
ignition and radiation.

In this study, the maximum error in photograph recognition is 1 pixel, leading to a maximum
error in radius of 0.25 mm. The minimum interval among the photographs is 0.2 ms, resulting in a
maximum stretched flame propagation speed of 1.25 m·s−1, and thus a maximum error in laminar
burning velocity of approximately 0.01 m·s−1. The uncertainty due to model selection and ignition is
negligible as the most suitable model and photographs with suitable radii were selected.

According to Cai [22], the uncertainty caused by radiation can be calculated by Equation (10):

uL,RCFS − uL,EXP = 0.82uL,EXP(uL,EXP/S0)
−1.14(Tu/T0)(pu/p0)

−0.3 (10)

where uL,EXP is the experimentally measured laminar burning velocity while uL,RCFS is the laminar
burning velocity with radiation taken into account. There are three constants in this equation,
S0 = 0.01 m·s−1, T0 = 298 K, p0 = 0.1 MPa. The maximum uncertainty resulting from radiation in this
study was approximately 0.006 m·s−1 (negligible).

Lowry [23] proposed a formula to calculate the inaccuracy in flame speed:

δSl =

√
(BSl)

2 +
(
tM−1.95SSl /

√

M
)2

(11)

where δSl is the total bias uncertainty, which can be calculated as Equation (11) [23]. BSl is the system
error, tM−1.95 is t value at a 95% confidence interval and M − 1 degrees of freedom, SSl is the standard
deviation of repeated experiments, and M is the number of repeated experiments per test point. It is
clear that the more the repeated experiments are, the smaller the uncertainty is:

BSl =

√√ n∑
i=1

{
ui[∂Sl(xi)/∂xi]

}2 (12)

where ui is the fixed error for each variable xi, Sl(xi) describes the relationship between the flame
speed and each variable xi. According to Lowry [23], for test points with fixed initial temperature and
pressure, Sl(xi) is just a function of equivalence ratio:

Sl,u = (a + bφ+ cφ2) × (1/pi)
(d+eφ+ fφ2) (13)

For methane, the values are shown in Table 3. In this study, equivalence has a tolerance of
±(0.03–0.05), resulting in an error in laminar burning velocity of ±(0.008–0.011) m·s−1. Each test point
was conducted for three times to reach a higher accuracy.

Table 3. Correlation Coefficients for Methane.

A B C D E F

−141.362 331.485 −156.243 2.586 −4.390 2.174

3.4. Chemical Kinetic Model

GRI_mech 3.0 was adopted in the simulation study by using Chemkin Pro. GRI_mech is a series
of mechanisms aiming for combustion of methane, which were proposed by Gas Research Institute,
and GRI_mech 3.0 is the latest version [24]. GRI_mech 3.0 mechanism contains 53 components and 325
elementary reactions and works well in combustion of methane, carbon monoxide, hydrogen, etc.
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4. Results and Discussion

4.1. Laminar Burning Velocity

In this study, laminar burning velocities were calculated from both Schlieren images (see as
Appendix A) and Chemkin model, and the results from these two methods show small differences.
The validation of experimental experimental study is conducted by comparing present data with
previous data [22,25], and the simulation model is validated by comparing them with experimental
data, as shown in Figure 3. It is clear that laminar burning velocities from Schlieren and Chemkin agree
well. The present results are close to literature results. Error bars in burning velocity from Schlieren
are shown in corresponding graphs.
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Figure 3. Validation of present experimental and simulation studies. (a) Comparing with previous
data; (b) Comparing Chemkin with Schlieren.

Figure 4 shows the laminar burning velocities under different initial temperatures (initial pressure
of 0.2 MPa, dilution rate of 0%). It is clear that the laminar burning velocity increases to a peak value
and then decreases with increased equivalence ratio. The peak burning velocity occurs at equivalence
ratio of 1.0–1.1, and it does not change with varying initial temperature, which agrees with what was
reported in previous study [15]. On both the lean and rich sides, laminar burning velocities under
higher initial temperature are larger than those under lower initial temperature. It can be concluded
that elevating initial temperature will result in an extended flammable limit.
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Figure 5 shows the laminar burning velocities under different initial pressures (initial temperature
of 423 K, dilution rate of 0%). At both lean and rich sides, laminar burning velocities under lower
initial pressure are larger than those under higher initial pressure. Under each initial pressure, the peak
burning velocity occurs at equivalence ratio of 1.0–1.1 and does not shift when initial pressure changes.
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initial pressure of 0.1 MPa). (a) From Schlieren; (b) From Chemkin. 

From Figure 4b, the intervals among each curve are very close. For the stoichiometric mixture, 

the interval values are 0.043 m·s−1, 0.046 m·s−1, 0.050 m·s−1 and 0.053 m·s−1 respectively. From Figure 

5b, the intervals among curves show an increasing trend with decreasing initial pressure. For 

stoichiometric mixture, the interval values are 0.035 m·s−1, 0.044 m·s−1, 0.058 m·s−1 and 0.084 m·s−1 

respectively. From Figure 6b, the intervals among curves show an increasing trend with decreasing 

fraction of CO2. For stoichiometric mixture, the interval values are 0.095 m·s−1, 0.122 m·s−1 and 0.158 

Figure 5. Laminar burning velocities under different initial pressures (initial temperature of 423 K,
dilution rate of 0%). (a) From Schlieren; (b) From Chemkin.

Figure 6 shows the laminar burning velocities under different dilution rates (initial temperature of
423 K, initial pressure of 0.1 MPa). At both lean side and rich side, laminar burning velocities under
lower dilution rate are larger than those under higher dilution rate. Decreasing dilution rate will result
in an extended flammable limit. The peak burning velocity occurs at equivalence ratio of 1.0–1.1, but it
shift towards stoichiometric mixture slightly with an increasing fraction of CO2.
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Figure 6. Laminar burning velocities under different dilution rates (initial temperature of 423 K, initial
pressure of 0.1 MPa). (a) From Schlieren; (b) From Chemkin.

From Figure 4b, the intervals among each curve are very close. For the stoichiometric mixture, the
interval values are 0.043 m·s−1, 0.046 m·s−1, 0.050 m·s−1 and 0.053 m·s−1 respectively. From Figure 5b,
the intervals among curves show an increasing trend with decreasing initial pressure. For stoichiometric
mixture, the interval values are 0.035 m·s−1, 0.044 m·s−1, 0.058 m·s−1 and 0.084 m·s−1 respectively.
From Figure 6b, the intervals among curves show an increasing trend with decreasing fraction of
CO2. For stoichiometric mixture, the interval values are 0.095 m·s−1, 0.122 m·s−1 and 0.158 m·s−1,
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respectively. Figure 7 illustrates the interval values at stoichiometric ratio, with linear fitting applied.
The R-Square is a value to evaluate the linearity. The closer it gets to 1, the higher the linearity is. It is
clear that the intervals in burning velocity among different temperature have the highest linearity.
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4.2. Flame Structure and Concentration of Radicals

4.2.1. Flame Structure

Flame structure mainly shows the mole fraction of reactants (CH4 and O2), products (CO, H2, CO2

and H2O) and radicals (OH, H, O, HO2 and H2O2) versus the distance from the burner. Figures 8–10
illustrate the flame structures under different initial pressures, initial temperature and dilution rates,
respectively. It can be seen that the mole fractions of reactants and products are of the largest order,
from 10−2 to 10−1. For the radicals, OH, H and O are of the order of 10−3. Among these three kinds of
radicals, OH accounts for the largest fraction, followed by H, and the fraction of O is the smallest. HO2

and H2O2 are of the order of 10−4 and HO2 is more than H2O2. The results can agree well with [24].
From Figure 8, fractions of reactants and products are approximately constant after the reaction

under each initial pressure. When the distance is between 0.1 cm and 0.2 cm, the curves of reactants
and products’ fractions are steeper, which means that the concentration of each reactant or product in
the main reaction zone is more sensitive to the distance. It may be speculated that increasing initial
pressure can reduce the size of reaction zone. For the radicals, fractions of HO2 and H2O2 just rise
slightly with an increasing in initial pressure while there are significant increases in fractions of OH,
H and O. So it can be concluded that concentrations of OH, H and O mainly influence the combustion
process, which agrees with previous research [26].
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Figure 8. Flame structures under different initial pressures. (a) Tu = 373 K, pu = 0.1 MPa, DR = 0%,
Φ = 1.0; (b) Tu = 373 K, pu = 0.15 MPa, DR = 0%, Φ = 1.0; (c) Tu = 373 K, pu = 0.2 MPa, DR = 0%, Φ = 1.0;
(d) Tu = 373 K, pu = 0.25 MPa, DR = 0%, Φ = 1.0; (e) Tu = 373 K, pu = 0.3 MPa, DR = 0%, Φ = 1.0.

From Figure 9, initial and final concentrations of reactants and products do not have significant
variations. For the radicals, with initial temperature increasing, fractions of HO2 and H2O2 almost
stay constant while fractions of OH, H and O rise obviously. This can also confirm the close relation
between OH, H, O and laminar burning velocity.
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Figure 9. Cont.
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Figure 9. Flame structures under different initial temperatures. (a) pu = 0.2 MPa, Tu = 323 K, DR = 0%, 

Φ = 1.0; (b) pu = 0.2 MPa, Tu = 348 K, DR = 0%, Φ = 1.0; (c) pu = 0.2 MPa, Tu = 373 K, DR = 0%, Φ = 1.0; (d) 

pu = 0.2 MPa, Tu = 398 K, DR = 0%, Φ = 1.0; (e) pu = 0.2 MPa, Tu = 423 K, DR = 0%, Φ = 1.0. 

From Figure 10, for the reactants and products, with the increase in the fraction of CO2, both 

CH4 and O2 decrease, and O2 decreases more significantly than CH4. So it can be speculated that 

decrease in concentration of O2 can mainly decrease burning velocity. Besides, the final fraction of 

H2O and H2 decrease slightly due to the decrease in CH4 (the source of H). The maximum fraction of 

CO decreases slightly due to the suppression on reactions. With the increase in fraction of CO2, an 

expansion in range of reaction zone occurs, from the range of 0.1–0.2 cm to 0.075–0.25 cm. For the 

radicals, it is clear that all the concentrations decrease dramatically except H2O2 as it accounts for a 

really small fraction. OH experiences the most significant decrease, followed by H. It can be 

Figure 9. Flame structures under different initial temperatures. (a) pu = 0.2 MPa, Tu = 323 K, DR = 0%,
Φ = 1.0; (b) pu = 0.2 MPa, Tu = 348 K, DR = 0%, Φ = 1.0; (c) pu = 0.2 MPa, Tu = 373 K, DR = 0%, Φ = 1.0;
(d) pu = 0.2 MPa, Tu = 398 K, DR = 0%, Φ = 1.0; (e) pu = 0.2 MPa, Tu = 423 K, DR = 0%, Φ = 1.0.

From Figure 10, for the reactants and products, with the increase in the fraction of CO2, both CH4

and O2 decrease, and O2 decreases more significantly than CH4. So it can be speculated that decrease
in concentration of O2 can mainly decrease burning velocity. Besides, the final fraction of H2O and H2

decrease slightly due to the decrease in CH4 (the source of H). The maximum fraction of CO decreases
slightly due to the suppression on reactions. With the increase in fraction of CO2, an expansion in
range of reaction zone occurs, from the range of 0.1–0.2 cm to 0.075–0.25 cm. For the radicals, it is clear
that all the concentrations decrease dramatically except H2O2 as it accounts for a really small fraction.
OH experiences the most significant decrease, followed by H. It can be concluded that diluent gas can
suppress the combustion through decreasing the concentrations of active radicals.
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Figure 10. Flame structures under different dilution rates. (a) DR = 0%, Φ = 1.0; (b) DR = 4%, Φ = 1.0;
(c) DR = 8%, Φ = 1.0; (d) DR = 12%, Φ = 1.0.

4.2.2. Concentration of Radicals

From Section 4.2.1, OH, H and O are the most essential active radicals in the combustion of
natural gas, and the fraction of OH is the largest among them, followed by H, O accounts for the
smallest fraction. In addition, in natural gas-air premixed flame, O mainly comes from the air while
H mainly comes from methane. Previous studies proposed that OH and H participate in important
elementary reactions [27,28], so this study focuses on the relation between laminar burning velocity
and concentrations of OH and H.

Figure 11 illustrates the maximum concentration of H, OH and H + OH under different initial
pressures, temperatures and dilution rates, respectively. It is clear that both the maximum concentrations
of H and OH increase with initial temperature but decrease with initial pressure and dilution rates.
Besides, the maximum fraction of H increases with equivalence ratio monotonously while that of OH rise
first and then decreases with the peak value occurs at stoichiometric ratio. The maximum concentration
of H + OH shows a similar trend with OH, but the decrease is not as sharp as OH. In addition, it can be
seen that the trend of maximum concentration of H + OH is close to that of laminar burning velocity.
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To reach a clear understand of the correlation between laminar burning velocity and maximum 

concentration of H + OH, Figure 12 illustrates the laminar burning velocity (from Chemkin, to avoid 

the influence of the uncertainty in data from Schlieren) versus maximum concentration of H + OH 

under different pressures, temperatures and dilution rates with linear fit applied to show the 

correlation. A simple fitting formula is applied, which is show as Equation (14): 

L max(O+OH)u Ac B   (14) 

The R-square coefficient is used to evaluate the correlation. The larger the R-square is (close to 

1), the higher the correlation is. Tables 4–6 show the coefficients (slope, intercept and R-square) of 

the linear fit to the data of laminar burning velocity versus maximum concentration of H + OH 

under different initial pressures, temperatures and dilution rates, respectively. The close correlation 

between laminar burning velocity versus maximum concentration of H + OH can be confirmed 

under any initial condition as all the R-square values are extremely close to 1. The maximum 

concentration of H + OH has a high accuracy in predicting burning velocity. 
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Figure 12. Laminar burning velocity versus maximum concentration of H + OH. (a) Under different 

initial pressures; (b) Under different initial temperatures; (c) Under different dilution rates. 

Table 4. Coefficients of the linear fit to the data of laminar burning velocity versus maximum 

concentration of H + OH under different initial pressures. 

Tu = 373 K, DR = 0% 
Φ 

0.8 1.0 1.2 

A 43.27645 38.23116 31.58986 

B −0.01949 −0.0398 0.02985 

R2 0.99998 0.99999 0.99991 

 

Figure 11. Maximum concentration of H, OH and H + OH. (a) Under different initial pressures; (b)
Under different initial temperatures; (c) Under different dilution rates.

To reach a clear understand of the correlation between laminar burning velocity and maximum
concentration of H + OH, Figure 12 illustrates the laminar burning velocity (from Chemkin, to avoid the
influence of the uncertainty in data from Schlieren) versus maximum concentration of H + OH under
different pressures, temperatures and dilution rates with linear fit applied to show the correlation.
A simple fitting formula is applied, which is show as Equation (14):

uL = Acmax(O+OH) + B (14)
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To reach a clear understand of the correlation between laminar burning velocity and maximum 

concentration of H + OH, Figure 12 illustrates the laminar burning velocity (from Chemkin, to avoid 

the influence of the uncertainty in data from Schlieren) versus maximum concentration of H + OH 
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initial pressures; (b) Under different initial temperatures; (c) Under different dilution rates.

The R-square coefficient is used to evaluate the correlation. The larger the R-square is (close to 1),
the higher the correlation is. Tables 4–6 show the coefficients (slope, intercept and R-square) of the
linear fit to the data of laminar burning velocity versus maximum concentration of H + OH under
different initial pressures, temperatures and dilution rates, respectively. The close correlation between
laminar burning velocity versus maximum concentration of H + OH can be confirmed under any
initial condition as all the R-square values are extremely close to 1. The maximum concentration of
H + OH has a high accuracy in predicting burning velocity.

Table 4. Coefficients of the linear fit to the data of laminar burning velocity versus maximum
concentration of H + OH under different initial pressures.

Tu = 373 K, DR = 0%
Φ

0.8 1.0 1.2

A 43.27645 38.23116 31.58986
B −0.01949 −0.0398 0.02985

R2 0.99998 0.99999 0.99991
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Table 5. Coefficients of the linear fit to the data of laminar burning velocity versus maximum mole
fraction of H + OH under different initial temperatures.

pu = 0.2 MPa, DR = 0%
Φ

0.8 1.0 1.2

A 106.77247 113.60037 88.93747
B −0.47819 −0.91848 −0.56212

R2 0.99891 0.99897 0.99851

Table 6. Coefficients of the linear fit to the data of laminar burning velocity versus maximum mole
fraction of H + OH under different dilution rates.

Tu = 423 K, pu = 0.1 MPa
Φ

0.8 1.0 1.2

A 49.05268 44.14693 44.08372
B −0.01146 −0.04367 −0.07669

R2 1 0.99997 0.99946

5. Conclusions

Based on the initial study of equivalent effect, the effect of initial conditions (initial temperature,
initial pressure, dilution ratio and equivalence ratio) on burning characteristics (laminar burning
velocity, flame instability, flame structure and concentration of essential radicals) are investigated
comprehensively. The main conclusions to prepare for the later equivalent effect study are as follows:

(1) Laminar burning velocity increases with initial temperature but decreases with initial pressure
and fraction of CO2. The intervals in burning velocity among different initial temperature have
the highest linearity when comparing with different initial pressure and fractions of CO2.

(2) Changing initial pressure and temperature do not have significant influence on fractions of
reactants and products. Changing fraction of CO2 can slightly decrease the final concentration of
some products.

(3) Fractions of OH, H and O increase with initial temperature but decrease with initial pressure and
fraction of CO2. Laminar burning velocity is highly related to the maximum concentration of H + OH.
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Abbreviations

EGR exhaust gas recirculation λ thermal conductivity, W·(m·K)-1

DAQ data acquisition cp specific heat capacity, J·(kg·K)-1

CVC constant volume chamber DT thermal diffusion coefficient, m2
·s−1

DR dilution rate Dm mass diffusion coefficient, m2
·s−1

Tu initial temperature, K Le Lewis number
pu initial pressure, MPa ρu density of unburned gas, kg·m−3

Φ equivalence ratio ρb density of burned gas, kg·m−3
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Ru instantaneous flame radius, mm uL laminar burning velocity, m·s−1

Sn stretched flame propagation speed, m·s−1 σ thermal expansion ratio
K stretch rate, s−1 lf flame thickness, mm
κ curvature of spherical flame, mm−1 H hydrogen radical
Sl unstretched flame propagation speed, m·s−1 O oxygen radical
Lb Markstein length, mm OH hydroxide radical

Appendix A
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