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Abstract: Wind energy, one of the most sustainable renewable energy sources, has been extensively
developed worldwide. However, owing to the strong regional and seasonal differences, it is necessary
to first evaluate wind energy resources in detail. In this study, the offshore wind characteristics
and wind energy potential of Bohai Bay (38.7◦ N, 118.7◦ E), China, were statistically analyzed using
two-year offshore wind data with a time interval of one second. Furthermore, Nakagami and Rician
distributions were used for wind energy resource assessment. The results show that the main wind
direction in Bohai Bay is from the east (−15◦–45◦), with a speed below 12 m/s, mainly ranging from 4
to 8 m/s. The main wind speed ranges in April and October are higher than those in August and
December. The night wind speed is generally higher than that in the daytime. The Nakagami and
Rician distributions performed reasonably in calculating the wind speed distributions and potential
assessments. However, Nakagami distribution provided better wind resource assessment in this
region. The wind potential assessment results suggest that Bohai Bay could be considered as a wind
class I region, with east as the dominant wind direction.
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1. Introduction

Wind energy is currently the most competitively priced technology in many markets, and China
leads the wind power market. Over 52 GW of clean, emissions-free wind power was installed in 2017,
bringing the total global installation to 539 GW [1]. However, unlike its onshore wind counterparts
in Gansu, Xinjiang Jilin, and Inner Mongolia, the first 1000 MW/year of offshore wind in China was
installed only in 2017 owing to the great cost of constructing, maintaining, and repairing offshore wind
turbines [1]. Zhao [2] claimed that the “golden period” of offshore wind power will arrive in 2020,
based on their analysis of Chinese policies, markets, technology, and development plans. The Chinese
government is expected to substantially expand the offshore wind market over the next few years [1].

Although wind power, as one of the most sustainable renewable energies, is abundant, it requires
the in-depth analysis of wind characteristics and potential in order to determine the feasibility of
installing offshore wind turbines [3,4].

As the demand for renewable energy is rapidly increasing, the Chinese government has focused
on the potential for offshore wind power in Bohai Bay, and it is imperative to understand the wind
characteristics and potential in advance. Wind characteristics include its speed and direction. Many
studies have described these characteristics using an adequate statistical model, and the probability
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density functions (PDFs) are among the most suitable models for estimating wind power density [5–9].
Recently, an increasing number of researchers have attempted to assess the feasibility of installing
offshore wind power farms in different parts of China [10], such as the waters around Hong Kong [11,12],
the Bohai Rim Economic circle [13], the East China Sea [14], and the South China Sea [15,16].

This study aimed to assess wind characteristics using the wind data measured in Bohai Bay
(38.7◦ N, 118.7◦ E) by Weibull, Nakagami, Rician, and Rayleigh distributions. Nakagami and Rician
distributions were first used to analyze the wind characteristics, and they exhibited a reasonable
performance in forecasting wind speed distributions and conducting wind potential assessments.
This aids in the production of an efficient plan for installing offshore wind power farms in Bohai Bay.

2. Wind Data Analysis Methods

Many two-parameter PDFs have been employed to evaluate the potential of wind energy resources,
such as the Weibull, lognormal, gamma, and Gumbel PDFs [17]. However, the Weibull and Raleigh
distributions are two of the most suitable and widely used tools for assessing wind potential [18,19].
Hennessey [20], Deaves and Lines [21], and Kumar [22] improved the Weibull PDF to accurately
represent wind speed and estimate wind potential. Carta et al. [23] compared the Weibull PDF to
12 other probability density models and found that Weibull PDF has several advantages in terms of
its flexibility and accuracy. Wais [8] developed the Weibull PDF to allow it to be used for null wind,
while Ali et al. [4] used the two-parameter Weibull and Rayleigh PDFs to estimate the wind energy
potential in South Korea. Chang et al. [24] and Jiang et al. [25] employed different PDFs, including the
Weibull PDF, to estimate the wind energy potential in Taiwan and the Yangtze River Delta City Group
in China, respectively.

Nakagami (Nakagami-m) distribution was first proposed in 1960 for studying signal wave
propagation. It was then gradually applied for different functions [26], such as signal-to-noise
ratio estimation [27], fading channel [28], quantitative ultrasound imaging [29], and so on. Rician
(Nakagami-n) distribution was first proposed in 1945 in the fields of information theory, communication
theory, and telecommunication, which are the same application fields as those for Nakagami
distribution [30,31]. To date, there has been no relevant research regarding Nakagami (Rician)
distribution in the field of wind energy resource assessment.

According to previous studies, there are mathematical approaches to estimate the distribution
parameters, such as the least-squares, maximum likelihood, moment, and empirical methods [6,25].
The distribution parameters should be determined as accurately as possible to indicate the abscissa and
ordinate ranges of wind speed data [4]. Parameter estimation is not the focus of this study and will be
discussed in further research. In this study, the parameters were calculated by nonlinear least-squares
methods using MATLAB software. In this section, the Nakagami and Rician distributions are first
examined for assessing wind energy resources. In Section 4, these two functions are reviewed and
compared to the conventional Weibull and Rayleigh functions for fitting wind speed distributions and
assessing wind energy potential.

2.1. Weibull Distribution

The general form of the two-parameter Weibull PDF is written as follows [4]:

fWei(k, c, v) =
(

k
c

)(v
c

)k−1
e−(

v
c )

k
(v > 0, c > 0) (1)

where f (v) is the probability of the observed wind speed v (m/s), k is the shape parameter
(dimensionless), and c is the scale parameter (m/s). The corresponding cumulative distribution
function (CDF) is as follows:

FWei(k, c, v) = 1− e−(
v
c )

k
(2)

where F(v) represents the probability of all wind speeds less than v.
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2.2. Nakagami Distribution

The Nakagami distribution (or Nakagami-m distribution) is a probability distribution related
to the gamma distribution, which has two parameters, i.e., a shape parameter µ ≥ 1/2 and a scale
parameter ω > 0 controlling spread. Its PDF and CDF are as follows:

fNak(µ,ω, v) = 2(
µ

ω
)
µ 1
Γ(µ)

v(2µ−1)e−
µv2

ω (3)

FNak(µ,ω, v) =
γ
(
µ, µωv2

)
Γ(µ)

(4)

where fNkg(v) and FNkg(v) are the PDF and the CDF of observed wind speed v, respectively, and Γ(x)
is the gamma function:

Γ(x) =

∞∫
0

tx−1e−tdt (5)

γ(µ, µωv2) is the upper incomplete gamma function:

γ(µ,
µ

ω
v2) =

∞∫
µ
ω v2

tµ−1e−tdt (6)

2.3. Rician Distribution

Rician distribution (or the Nakagami-n distribution) is the probability distribution of the magnitude
of a circular bivariate normal random variable with potential nonzero mean [30]. Its PDF is as follows:

fRic(a, b, v) =
v
a2 e

−(v2+b2)
2a2 I0(

bv
a2 ) (a ≥ 0, b ≥ 0) (7)

where a and b are the scale and location parameters of Rician distribution, respectively. b is the distance
between the reference point and centre of the bivariate distribution, and I0(z) is the modified Bessel
function of the first-kind Iα(z) with an order of zero, where

Iα(z) =
∞∑

k=0

(
z
2

)2k+α

k!Γ(k + α+ 1)
(8)

Its CDF is as follows:

FRic(a, b, v) = 1−Q1

(
b
a

,
v
a

)
(9)

where Q1
(

b
a , v

a

)
is the Marcum Q-function:

Q1(
b
a

,
v
a
) =

∫
∞

v/a
xe−

x2+b2/a2
2 I0(

bx
a
)dx (10)

2.4. Rayleigh Distribution

The Rayleigh distribution, a one-parameter continuous probability distribution, is a special form
of Weibull distribution with a shape parameter k of 2. Its PDF and CDF are as follows [4]:

fray(v; σ) =
x
σ2 e−

v2

2σ2 (11)
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Fray(v; σ) = 1− e−
v2

2σ2 (12)

where σ is the scale parameter, and v is the observed speed.

2.5. Coefficient of Determination

The correlation coefficient (R2) and root mean square error (RMSE) were used to determine the
performance of different distributions. R2 is the statistical relationship between two variables, which
is expressed by the proportion of variance in the dependent variable that is predictable from the
independent variables, while RMSE is a frequently used measure of the differences between the values
predicted by a model and the observed values. These can be calculated as follows [6]:

RMSE =

√
1
m

∑m

i=1
(yi − ŷi)

2 (13)

R =

√√
1−

∑m
i=1(yi − ŷi)

2∑m
i=1(yi − y)2 (14)

where yi is the observed data in the ith bin, ŷi is the corresponding predicted value, y is the mean of
the total observed data, and m is the number of bins. More accurate predicted models have higher
correlation coefficient R values and lower RMSE values.

3. Wind Data

Although it is easier to install wind energy generators onshore, offshore wind energy is more
attractive as it is more reliable and consistent [32]. As wind is highly temporally variable, detailed
analysis of wind characteristics should be conducted at different timescales, such as seasons, months,
and hours.

Figure 1 shows the wind data collected from the wind anemoscope installed on the top of
‘HYSY112’ floating production storage and offloading (FPSO) unit, which remained at the same location
around the single point mooring system in the western part of Bohai Bay (38.7◦ N, 118.7◦ E), China,
approximately 90 km west of Tianjin Xingang Port at a depth of 20 m (as shown in Figure 2). The wind
data used in this study were supported by the China National Offshore Oil Corporation (CNOOC)
Energy Technology & Services Limited. The height of the anemometer was approximately 60 m above
sea level, which is similar to the height of offshore wind turbines. The wind data, including the wind
speed and direction, were recorded from March 2015 to March 2017 with an interval of one second.
Wind data should be measured for at least one year to increase the reliability of the results, which is also
the baseline for wind power projects [33]. Table 1 provides in brief the parameters of the measuring
apparatus. As the measuring region is far away from the public, noise was not considered.

Energies 2019, 12, x FOR PEER REVIEW 4 of 20 

 

𝐹௥௔௬(𝑣; 𝜎) = 1 − 𝑒ି ௩మଶఙమ (12) 

where 𝜎 is the scale parameter, and v is the observed speed. 

2.5. Coefficient of Determination 

The correlation coefficient (𝑅ଶ) and root mean square error (RMSE) were used to determine the 
performance of different distributions. 𝑅ଶ is the statistical relationship between two variables, which 
is expressed by the proportion of variance in the dependent variable that is predictable from the 
independent variables, while RMSE is a frequently used measure of the differences between the 
values predicted by a model and the observed values. These can be calculated as follows [6]: 

RMSE = ඨ 1𝑚 ෍ (𝑦௜ − 𝑦ො௜)ଶ௠௜ୀଵ  (13) 

𝑅 = ඨ1 − ∑ (𝑦௜ − 𝑦ො௜)ଶ௠௜ୀଵ∑ (𝑦௜ − 𝑦ത)ଶ௠௜ୀଵ  (14) 

where 𝑦௜ is the observed data in the ith bin, 𝑦ො௜ is the corresponding predicted value, 𝑦ത is the mean 
of the total observed data, and m is the number of bins. More accurate predicted models have higher 
correlation coefficient R values and lower RMSE values. 

3. Wind Data 

Although it is easier to install wind energy generators onshore, offshore wind energy is more 
attractive as it is more reliable and consistent [32]. As wind is highly temporally variable, detailed 
analysis of wind characteristics should be conducted at different timescales, such as seasons, months, 
and hours. 

Figure 1 shows the wind data collected from the wind anemoscope installed on the top of 
‘HYSY112′ floating production storage and offloading (FPSO) unit, which remained at the same 
location around the single point mooring system in the western part of Bohai Bay (38.7° N, 118.7° E), 
China, approximately 90 km west of Tianjin Xingang Port at a depth of 20 m (as shown in Figure 2). 
The wind data used in this study were supported by the China National Offshore Oil Corporation 
(CNOOC) Energy Technology & Services Limited. The height of the anemometer was approximately 
60 m above sea level, which is similar to the height of offshore wind turbines. The wind data, 
including the wind speed and direction, were recorded from March 2015 to March 2017 with an 
interval of one second. Wind data should be measured for at least one year to increase the reliability 
of the results, which is also the baseline for wind power projects [33]. Table 1 provides in brief the 
parameters of the measuring apparatus. As the measuring region is far away from the public, noise 
was not considered. 

 
Figure 1. Measuring apparatus and its surrounding environment. 

Wind Anemoscope 

Figure 1. Measuring apparatus and its surrounding environment.



Energies 2019, 12, 2879 5 of 19

Energies 2019, 12, x FOR PEER REVIEW 5 of 20 

 

 
Figure 2. Bohai Bay and the location of the floating production storage and offloading (FPSO) unit 
(from Google Earth). 

Table 1. Wind data collected by the measurement sensors. 

Location Latitude Longitude Begin End Height (m) Interval Recovery Rate 
Bohai Bay 38.7° N 118.7° E 2015.03 2017.05 60 1 s 96% 

The Bohai Bay region experiences a temperate monsoon climate with clear seasonal variations. 
The summer is very hot and humid, while the winter is extremely cold and dry. In this study, the 
wind data have been divided into three groups according to the season (four seasons), month (12 
months), and hour (24 h) the data were collected in to better understand the wind behavior. The 
seasons are defined as follows: 

(1) Spring: March–May; 
(2) Summer: June–August; 
(3) Autumn: September–November; 
(4) Winter: December–February. 

4. Results and Discussion 

The detailed statistical analyses of the wind data collected during different time periods are 
presented in Section 4.1. The wind rose diagram can be used to understand both the wind speed and 
direction. Turbulence intensity (TI) at each wind speed range and different periods can help us 
classify wind turbines. The prevailing wind direction in Bohai Bay can be determined easily, so the 
optimal position of wind turbine projects can be determined in the future. PDFs are introduced to fit 
the wind speed distribution and conduct the wind energy potential analysis in Sections 4.2 and 4.3. 

4.1. Statistical Analysis of Wind Data 

Figure 3 shows the main wind direction and wind speed magnitudes, along with the seasonal 
variations. Tables 2 and 3 show the total observed annual, seasonal, and monthly wind speed ranges 
(WSRs). 

The main wind speed ranges exhibit two wave motion patterns throughout the year. The main 
wind speed ranges are 2–5 m/s in December and August and 4–9 m/s in April and October. Almost 
98% of the winds are below 12 m/s, 70% of which are within in the range of 2–8 m/s; separated by 
season, this percentage is 72.83% in spring, 82.29% in summer, 73.88% in autumn, and 73.98% in 
winter. The percentages of gales (wind speed >12 m/s) in autumn and winter are higher than those 
in spring and summer. 
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(from Google Earth).

Table 1. Wind data collected by the measurement sensors.

Location Latitude Longitude Begin End Height (m) Interval Recovery Rate

Bohai Bay 38.7◦ N 118.7◦ E 2015.03 2017.05 60 1 s 96%

The Bohai Bay region experiences a temperate monsoon climate with clear seasonal variations.
The summer is very hot and humid, while the winter is extremely cold and dry. In this study, the wind
data have been divided into three groups according to the season (four seasons), month (12 months),
and hour (24 h) the data were collected in to better understand the wind behavior. The seasons are
defined as follows:

(1) Spring: March–May;
(2) Summer: June–August;
(3) Autumn: September–November;
(4) Winter: December–February.

4. Results and Discussion

The detailed statistical analyses of the wind data collected during different time periods are
presented in Section 4.1. The wind rose diagram can be used to understand both the wind speed and
direction. Turbulence intensity (TI) at each wind speed range and different periods can help us classify
wind turbines. The prevailing wind direction in Bohai Bay can be determined easily, so the optimal
position of wind turbine projects can be determined in the future. PDFs are introduced to fit the wind
speed distribution and conduct the wind energy potential analysis in Sections 4.2 and 4.3.

4.1. Statistical Analysis of Wind Data

Figure 3 shows the main wind direction and wind speed magnitudes, along with the seasonal
variations. Tables 2 and 3 show the total observed annual, seasonal, and monthly wind speed
ranges (WSRs).

The main wind speed ranges exhibit two wave motion patterns throughout the year. The main
wind speed ranges are 2–5 m/s in December and August and 4–9 m/s in April and October. Almost
98% of the winds are below 12 m/s, 70% of which are within in the range of 2–8 m/s; separated by
season, this percentage is 72.83% in spring, 82.29% in summer, 73.88% in autumn, and 73.98% in winter.
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The percentages of gales (wind speed >12 m/s) in autumn and winter are higher than those in spring
and summer.

The main wind direction is from the (E −15◦–45◦), followed by the southeast (SE −55◦–−45◦) and
northeast (NE 55◦−75◦). The wind directions in spring, autumn, and winter are very similar, while the
probability of the easterly winds in summer is lower than that in the other seasons. The prevailing
wind direction is from the Pacific Ocean to the land, which may be due to the temperate monsoon
climate of Bohai Bay [4].

Tables 4 and 5 show that the mean wind speed (MWS) in summer is relatively lower than that
during the other seasons, but the corresponding extreme wind speed (EWS) is higher than that during
the other seasons due to the typhoons and seasonal monsoons that occur in the summer. The EWS
events could be negligible for wind resource assessment because the EWS events (>24.7 m/s) lasted
less than 19 min in two years. In spring, the MWS is relatively higher, and the standard deviation
(SD) is lower than that during the other seasons. Therefore, during spring, wind energy could be
used more effectively. The monthly MWS exhibits the same tendency as the main wind speed ranges.
The minimum and maximum MWS values occur in August and April, respectively. The monthly
SDs are stable at approximately 2.3 from February to September and then exceed 3.1 from October
to January. This may be due to the winter monsoon originating in Mongolia and Siberia, which has
a higher pressure than the summer monsoon originating in the Pacific Ocean due to the differences
between the thermal properties of the land and sea.
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Table 2. Percentages of the annual and seasonal wind speed ranges (WSRs).

WSR (m/s) Percentage of Total Wind Occurrence (%)

Spring Summer Autumn Winter Annual Sum

[0,1) 0.81 3.43 1.48 1.53 1.82 1.82
[1,2) 2.30 5.10 4.59 5.43 4.38 6.20
[2,3) 5.46 12.65 11.23 11.99 10.39 16.59
[3,4) 7.95 16.66 13.77 14.14 13.19 29.78
[4,5) 11.77 17.92 14.15 14.73 14.27 44.45
[5,6) 15.15 15.20 13.62 13.15 12.54 58.72
[6,7) 16.29 11.60 11.46 10.99 10.71 71.26
[7,8) 16.21 8.26 9.65 8.98 6.64 81.97
[8,9) 10.63 4.03 6.19 5.89 4.38 88.61

[9,10) 7.09 2.15 4.37 4.03 2.70 92.99
[10,11) 3.72 1.25 3.06 2.80 1.59 95.69
[11,12) 1.59 0.78 2.05 1.95 1.04 97.28
[12,13) 0.67 0.45 1.50 1.51 0.57 98.32
[13,14) 0.19 0.20 0.90 0.97 0.38 98.89
[14,15) 0.09 0.12 0.62 0.69 0.27 99.27
[15,16) 0.04 0.08 0.44 0.50 0.18 99.54
[16,17) 0.02 0.06 0.32 0.33 0.13 99.72
[17,∞) 0.01 0.09 0.62 0.40 0.15 100

Table 3. Percentages of the monthly WSRs.

WRS (m/s) Percentage of Total Wind Occurrence

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

[0,1) 1.53 1.32 0.76 1.00 0.68 1.74 3.02 5.62 2.77 0.74 0.80 1.71
[1,2) 5.59 4.14 2.31 2.30 2.29 3.25 4.86 7.23 6.93 3.11 3.55 6.41
[2,3) 12.55 9.59 6.44 4.97 5.09 6.88 12.23 18.94 15.53 8.05 9.87 13.55
[3,4) 14.03 13.34 9.07 7.08 7.81 13.13 17.57 19.11 17.71 11.27 12.00 14.96
[4,5) 13.89 15.22 12.34 10.26 12.64 16.02 19.95 17.38 16.83 12.24 13.20 15.12
[5,6) 12.41 14.58 16.92 13.18 15.46 15.89 16.38 13.08 14.13 13.26 13.44 12.62
[6,7) 10.56 12.98 16.61 15.06 17.14 14.93 11.38 8.50 9.52 12.86 12.12 9.65
[7,8) 8.84 10.29 15.53 16.52 16.51 13.02 7.52 4.37 6.61 11.79 10.73 7.96
[8,9) 5.97 6.68 9.39 11.79 10.62 7.11 3.16 1.98 3.65 7.88 7.23 5.10

[9,10) 4.32 4.13 6.02 8.87 6.38 3.74 1.57 1.25 2.49 5.75 4.98 3.66
[10,11) 3.13 2.50 2.70 5.17 3.27 2.18 0.73 0.94 1.80 4.09 3.34 2.73
[11,12) 2.30 1.57 1.09 2.41 1.28 1.24 0.51 0.62 1.03 2.88 2.28 1.94
[12,13) 1.84 1.18 0.50 0.94 0.56 0.60 0.37 0.41 0.56 2.19 1.79 1.47
[13,14) 1.17 0.75 0.19 0.24 0.16 0.16 0.21 0.24 0.24 1.33 1.19 0.95
[14,15) 0.77 0.58 0.08 0.11 0.07 0.04 0.16 0.14 0.11 0.92 0.90 0.72
[15,16) 0.48 0.46 0.03 0.06 0.03 0.01 0.13 0.08 0.05 0.63 0.69 0.55
[16,17) 0.29 0.32 0.01 0.03 0.01 0.01 0.10 0.05 0.02 0.43 0.54 0.39
[17,∞) 0.31 0.37 0.00 0.02 0.00 0.04 0.17 0.05 0.02 0.59 1.37 0.51

Remark: The yellow highlight represents the high-frequency WSRs.

Table 4. Annual and seasonal parameters of observed wind speeds.

Season Annual Spring Summer Autumn Winter

MWS (m/s) 5.2503 5.9326 4.4912 5.3854 5.2428
SD (m/s) 2.8103 2.3761 2.3941 3.1001 3.0694

EWS (m/s) 36.8 26.1 36.8 32 25.2
MTI (%) 6.69 5.01 6.69 7.20 7.32
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Table 5. Monthly parameters of observed wind speeds.

Month MWS (m/s) SD (m/s) EWS (m/s) MTI (%)

Jan 5.3038 3.1389 22.1 7.40
Feb 5.3633 2.8825 25.0 6.72
Mar 5.6911 2.2996 18.8 5.05
Apr 6.2222 2.5077 26.1 5.04
May 5.8739 2.2892 17.6 4.87
Jun 5.2333 2.3676 36.8 5.66
Jul 4.3855 2.3024 36.3 6.56

Aug 3.8087 2.3116 24.0 7.59
Sep 4.3213 2.4466 32.0 7.08
Oct 6.0446 3.1622 25.4 6.54
Nov 5.8785 3.3763 25.8 7.18
Dec 5.0746 3.1522 25.2 7.76

Turbulence intensity in this analysis is calculated as the standard deviation of the wind speed
(SD10min) in each 10 min period divided by the mean wind speed (MWS10min) in each 10 min period [34]:

TI =
SD10min

MWS10min
(15)

The analyses in Tables 4 and 5 show that mean turbulence intensity (MTI) is less than 7.5% due to
the low offshore surface roughness and thus weakens the impact of wind wake [35]. The MTIs in each
season, as function of wind speed, are shown in Figure 4. The variations by period are not significant
compared to the variability of TI at each wind speed. The TIs at low WRSs are highest, decrease rapidly
to a minimum of around 4–8 m/s, which is the high-frequency WSRs, and then remain constant.
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Figure 5 shows the mean wind speed during each hour of the day (24 h) in each season and
month. As shown in Figure 5, the MWS magnitudes in spring are relatively higher and more stable,
while those in summer are relatively lower than other seasons. This is similar to the conclusion of
Ali et al. [4], who studied a similar location (latitude and longitude of 37.22◦ N, 126.14◦ E compared
with 38.7◦ N, 118.7◦ E in this study). Although the wind speed varies significantly between each hour,
it exhibits two distinct patterns. First, the wind speed usually decreases at approximately 04:00 (4 h in
Figure 5), reaches the minimum value of the day at approximately 14:00 (14 h in the figure), and then
begins to increase. Second, the wind speed at night (20–24 h and 1–8 h) is usually higher than that in
the day (8–20 h).
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Figure 6 shows the variations in the average wind angles with each hour of the day (24 h) in
different months and seasons. The daily average wind angle fluctuates vertically at approximately 0◦

(east) between 60◦ (northeast) and −60◦ (southeast). As shown in Figures 5 and 6, throughout the year,
the wind mainly originates from the east (0◦) with a speed ranging from 4 to 8 m/s, which is consistent
with the above conclusion.
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4.2. Wind Speed Probability Distributions

Wind is highly spatiotemporally variable; thus, it is necessary to understand the wind speed
distribution in advance.

Figure 7a shows the Weibull (Wei), Nakagami (Nak), Rician (Ric), and Rayleigh (Ray) probability
and cumulative distributions of the observed annual wind speeds. The real data and fitting curves
are both presented on the same diagram to allow the differences to be easily distinguished. Figure 7b
shows the Q–Q probability plots between the observed annual data and data from the corresponding
probability distribution functions. The Q–Q plots could describe a linear relationship between the
real data and forecasted values. Figure 8 shows four distributions for the observed seasonal wind
speeds, while Tables 6 and 7 present the important parameters of the observed wind speed and four
distribution models based on the nonlinear least-squares method. Tables 8 and 9 present the RMSE
and R2 between the observed and predicted values by the four distributions.

Table 6. Parameters of corresponding distributions based on annual and seasonal wind data.

Season Annual Spring Summer Autumn Winter

Weibull
k 2.086 2.839 2.174 1.951 1.895
c 5.851 6.772 5.045 5.818 5.646

Nakagami µ 1.068 1.753 1.148 0.9751 0.9331
ω 33.96 43.97 25.04 33.91 32.12

Rician
a 3.375 2.544 2.664 4.099 3.962
b 3.225 5.334 3.155 0.3342 0.424

Rayleigh σ 5.864 6.821 5.072 5.805 5.617

Table 7. Parameters of corresponding distributions based on monthly observed wind data.

Month
Weibull Nakagami Rician Rayleigh

k c µ ω a b σ

Jan 1.81 5.74 0.871 36.8 4.02 0.18 5.68
Feb 2.14 5.83 1.12 33.5 3.15 3.54 5.86
Mar 2.80 6.48 1.7 40.3 2.47 5.07 6.53
Apr 2.84 7.18 1.75 49.4 2.7 5.66 7.21
May 2.94 6.67 1.87 42.6 2.42 5.33 6.73
Jun 2.48 5.93 1.41 33.9 2.56 4.35 5.98
Jul 2.34 4.88 1.29 23.2 2.26 3.42 4.93

Aug 2.03 4.28 1.04 18.2 2.98 0.755 4.29
Sep 1.98 4.75 1 22.5 3.35 0.176 4.74
Oct 2.105 6.589 1.09 43 4.66 0.586 6.61
Nov 2.02 6.23 1.02 38.7 4.33 1.17 6.24
Dec 1.81 5.36 0.873 29.2 3.72 0.642 5.29

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Wei k
c

1.81
5.74

2.14
5.83

2.80
6.48

2.84
7.18

2.94
6.67

2.48
5.93

2.34
4.88

2.03
4.28

1.98
4.75

2.105
6.589

2.02
6.23

1.81
5.36

Nak µ
ω

0.871
36.8

1.12
33.5

1.70
40.3

1.75
49.4

1.87
42.6

1.41
33.9

1.29
23.2

1.04
18.2

1.00
22.5

1.09
43.0

1.02
38.7

0.873
29.2

Ric a
b

4.02
0.18

3.15
3.54

2.47
5.07

2.70
5.66

2.42
5.33

2.56
4.35

2.26
3.42

2.98
0.755

3.35
0.176

4.66
0.586

4.33
1.17

3.72
0.642

Ray σ 5.68 5.86 6.53 7.21 6.73 5.98 4.93 4.29 4.74 6.61 6.24 5.29
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Weibull, Nakagami, and Rician distributions all performed well in comparison to the observed
wind speed, as indicated by the high R2

≥ 97% and low RMSE < 0.008, excluding those in August,
which were 0.95 and 0.012, respectively. According to Figure 9, the four distributions did not fit the
observed wind speeds in August as accurately due to the high percentage of null winds, which will be
improved in future work. In most cases, the R2 and RMSE of Nakagami distribution were higher and
lower, respectively, than those of other distributions. Rayleigh distribution exhibited the poorest R2

and RMSE. However, this distribution has only one parameter, which allows it to be calculated more
quickly. Therefore, Nakagami distribution may be better for assessing wind resources in this region.
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Table 8. Error evaluation of PDFs in the whole year and each season.

Distribution Indicators Annual Spring Summer Autumn Winter Sum

Weibull
RMSE (10−3) 4.44 5.155 7.283 4.817 4.843 22.098

R2 0.9921 0.9907 0.9829 0.9901 0.9901 3.9538

Nakagami RMSE (10−3) 4.409 5.153 7.123 4.914 5.102 22.292
R2 0.9922 0.992 0.9836 0.9897 0.989 3.9543

Rician
RMSE (10−3) 4.58 4.19 7.707 4.988 5.625 22.51

R2 0.9916 0.9938 0.9809 0.9894 0.9866 3.9507

Rayleigh RMSE (10−3) 4.845 17.4 8.532 4.909 5.539 36.38
R2 0.9906 0.8935 0.9765 0.9897 0.9871 3.8468

Table 9. Error evaluation of PDFs in each month.

Weibull Nakagami Rician Rayleigh

Month R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Jan 0.987 0.0054 0.9845 0.0059 0.9747 0.0076 0.9755 0.0074
Feb 0.994 0.0038 0.9946 0.0037 0.9927 0.0043 0.9895 0.0052
Mar 0.989 0.0057 0.9908 0.0056 0.9924 0.0048 0.9007 0.0172
Apr 0.987 0.0060 0.9858 0.0060 0.9903 0.0050 0.8879 0.0172
May 0.992 0.0049 0.9932 0.0051 0.9944 0.0041 0.8784 0.0191
Jun 0.990 0.0054 0.9888 0.0057 0.9896 0.0055 0.9476 0.0124
Jul 0.987 0.0068 0.9874 0.0066 0.985 0.0072 0.9642 0.0111

Aug 0.953 0.0128 0.9539 0.0117 0.9532 0.0128 0.9547 0.0126
Sep 0.984 0.0070 0.9839 0.0071 0.9839 0.0071 0.9845 0.0069
Oct 0.992 0.0041 0.9925 0.0040 0.989 0.0048 0.9894 0.0048
Nov 0.990 0.0046 0.9902 0.0046 0.99 0.0047 0.9903 0.0046
Dec 0.984 0.0062 0.9813 0.0067 0.9723 0.0082 0.9732 0.0081
Sum 11.830 0.0727 11.827 0.0737 11.808 0.0761 11.436 0.1266
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4.3. Wind Potential Analysis at Bohai Bay

The most probable wind speed (vmp), which has the highest percentage of occurrence during a
specified time period, and the wind speed carrying the maximum energy (vme), which is usually used
as the designed wind speed of wind turbines [36], were introduced to assess the wind resources in
Bohai Bay and were determined by the Weibull and Rayleigh distributions [4]:

vmp−wei = c(1−
1
k
)

1/k
(16)
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vme−wei = c(1 +
2
k
)

1/k
(17)

vmp−ray = σ/
√

2 (18)

vme−ray =
√

2σ (19)

The vmp and vme values determined by the Nakagami and Rician distributions were first used in
wind resource assessment and calculated as follows:

vmp−nak = (ω−
ω
2µ

)
1/2

(20)

vme−nak = (ω+
ω
µ
)

1/2
(21)

Owing to the difficulty of solving and expressing the accurate function, the vmp and vme, determined
by Rician distributions, were calculated as follows:

I0

(bvmp−ric

a2

)
−

(vmp−ric

a

)2
I0

(bvmp−ric

a2

)
+

bvmp−ric

a2 I1

(bvmp−ric

a2

)
= 0 (22)

4I0

(
bvme−ric

a2

)
−

(vme−ric
a

)2
I0

(
bvme−ric

a2

)
+

bvme−ric

a2 I1

(
bvme−ric

a2

)
= 0 (23)

The wind power density (WPD) and wind energy density (WED), which are indicators of the
power and energy of winds at a particular geographical location, respectively, could also be calculated
by the parameters of the distributions and determined by the Weibull and Rayleigh distributions as
follows [37]:

WPDwei =
P
A

=

∞∫
0

1
2
ρv3 f (v)dv =

1
2
ρc3Γ(1 +

3
k
) (24)

WPDRay =
3
√
π

8
ρσ3 (25)

WED = WPD·T (26)

where WPD is the wind power density (W/m2), WED is the wind energy density (kWh/m2), T is the
time period, and ρ is the air density (assumed to be 1.25 km/m3) [38]. Similarly, WPDNak and WEDNak
were determined by Nakagami and Rician distributions and used to assess the wind potential, which
were calculated as follows:

WPDNak =
1
2
ρ

(
ω
µ

) 3
2 Γ(µ+ 3

2 )

Γ(µ)
(27)

WPDRic =

√
2π

8a
ρe−

b2

4a2

[
I0

(
b2

4a2

)(
6a4 + 6I0a2b2 + b4

)
+ I1

(
b2

4a2

)(
4a2b2 + b4

)]
(28)

The observed WPD can be calculated as follows:

WPD =

∑n
i=1 0.5ρvi

3

n
(29)

where n is the total number of data points, and vi is the ith entry of the observed wind speed data.
Table 10 summarizes the PDFs, CDFs, and important parameters of wind energy assessment

based on the four distributions used in the paper. Tables 11 and 12 show the results of the annual,
seasonal, and monthly wind potential assessments based on four distributions. The results of all four
estimation methods were similar. The largest vmp and vme values were observed in April, during spring,
while the smallest values were observed in August, during autumn. The values of vmp based on Rician
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distribution were largest, followed by those based on Weibull and Nakagami distributions, and those
based on Rayleigh distribution were lowest, with maximum values of 6.20, 6.27, 5.94, and 5.10 m/s,
respectively. The values of vme based on Rayleigh distribution were generally largest, followed by
those based on Nakagami and Weibull distributions. Finally, those based on Rician distribution were
lowest, with maximum values of 10.20, 8.81, 8.66, and 8.60 m/s, respectively. The forecasted WEDs
(kWh/m2) were highest in April and lowest in August.

Figure 10 presents the seasonal distributions of observed WPDs, which are mostly below 200 W/m2

in Bohai Bay but are relatively higher during autumn and winter (higher percentage of WPDs over
600 W/m2) than those in summer. The corresponding prevailing winds carrying the highest WPD blow
from the east, as shown in Figure 3. Therefore, Bohai Bay could be considered as a wind class I region
(WPD < 200 W/m2) [39], with east as the predominant energy-flow direction [40].
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(d) winter.
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Table 10. PDFs, CDFs, and the parameters of wind potential assessment.
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Table 11. Annual and seasonal wind potential assessment.

Time Weibull Nakagami Rician Rayleigh

vmp vme WED vmp vme WED vmp vme WED vmp vme WED

Annual 4.3 8.1 115.0 4.3 8.1 116.7 4.3 8.1 112.1 4.2 8.3 120.6
Spring 5.8 8.2 143.3 5.6 8.3 143.2 5.9 8.1 142.4 4.8 9.7 189.8

Summer 3.8 6.8 70.9 3.8 6.8 72.8 3.9 6.8 68.5 3.6 7.2 78.1
Autumn 4.0 8.4 121.0 4.1 8.3 118.8 4.1 8.2 117.1 4.1 8.2 117.0
Winter 3.8 8.3 114.3 3.9 8.2 110.6 4.0 8.0 106.1 4.0 7.9 106.0

Remark: vmp (m/s), vme (m/s), WED (kWh/m2).

Table 12. Monthly wind potential assessment.

Time Weibull Nakagami Rician Rayleigh

vmp vmacE WED vmp vmacE WED vmp vmacE WED vmp vmacE WED

Jan 3.7 8.7 127.0 4.0 8.9 137.8 4.0 8.0 109.8 4.0 8.0 109.7
Feb 4.3 7.9 110.7 4.3 8.0 113.4 4.4 7.9 106.9 4.1 8.3 120.1
Mar 5.5 7.9 126.4 5.3 8.0 126.1 5.6 7.8 125.2 4.6 9.2 166.6
Apr 6.2 8.7 170.7 5.9 8.8 171.3 6.2 8.6 169.8 5.1 10.2 224.4
May 5.8 8.0 134.9 5.6 8.1 135.1 5.8 7.9 134.9 4.8 9.5 182.5
Jun 4.8 7.5 103.7 4.7 7.6 110.7 4.9 7.4 100.3 4.2 8.5 128.1
Jul 3.8 6.4 60.2 3.8 6.4 63.4 3.9 6.2 56.2 3.5 7.0 71.7

Aug 3.1 6.0 46.2 3.1 6.0 46.0 3.0 6.1 47.1 3.0 6.1 47.1
Sept 3.3 6.8 64.9 3.4 6.7 63.6 3.4 6.7 64.0 3.4 6.7 63.8
Oct 4.9 9.1 162.6 4.8 9.1 165.5 4.7 9.4 173.1 4.7 9.4 173.1
Nov 4.4 8.8 143.7 4.5 8.8 143.4 4.4 8.8 145.2 4.4 8.8 145.2
Dec 3.4 8.1 103.6 3.5 7.9 97.2 3.7 7.5 88.8 3.7 7.5 88.7
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4.4. Evaluation of the Probability Density Functions

Table 13 compares observed and forecasted WPDs during different time spans, such as the whole
year, four seasons, and 12 months. The error percentage is calculated as follows:

ERROR =

(
observed WPD− f orecasted WPD

observed WPD

)
100% (30)

Table 13 indicates that the given PDFs can all accurately assess the wind potential and forecast
the wind characteristics in Bohai Bay. However, the forecasted WPDs were slightly smaller than the
observed WPDs in most cases as the forecasted WPD calculation does not consider extreme wind speeds,
such as those during typhoons. Nakagami distribution performed best for forecasting WPD, followed
by Weibull, Rician, and Rayleigh distribution, according to the error sum values. The performances of
the different distributions in WPD were similar to those for the wind speed distributions.

Table 13. Evaluation of the errors between the observed and forecasted WPD.

Time Real Wei Error% Nak Error% Ric Error% Ray Error%

Annual 180.5 159.7 11.5 162.1 10.2 155.7 13.8 167.5 7.2
Spring 194.1 199.0 −2.5 198.9 −2.5 197.8 −1.9 263.7 −35.9

Summer 111.3 98.4 11.6 101.1 9.1 95.1 14.5 108.4 2.6
Autumn 215.4 168.1 22.0 165.0 23.4 162.7 24.5 162.5 24.5
Winter 201.8 158.8 21.3 153.6 23.9 147.4 26.9 147.2 27.0

Jan 209.8 176.4 15.9 191.4 8.8 152.6 27.3 152.3 27.4
Feb 195.4 153.8 21.3 157.5 19.4 148.5 24.0 166.9 14.6
Mar 172.9 175.6 −1.6 175.1 −1.3 173.9 −0.6 231.5 −33.9
Apr 224.0 237.1 −5.9 237.9 −6.2 235.8 −5.3 311.7 −39.2
May 184.9 187.4 −1.3 187.6 −1.5 187.4 −1.3 253.5 −37.1
Jun 148.2 144.0 2.8 153.7 −3.8 139.3 6.0 177.9 −20.1
Jul 105.2 83.7 20.5 88.0 16.4 78.1 25.8 99.6 5.4

Aug 81.5 64.2 21.2 64.0 21.5 65.5 19.7 65.4 19.7
Sept 107.3 90.1 16.1 88.4 17.6 88.9 17.2 88.5 17.5
Oct 268.4 225.8 15.9 229.8 14.4 240.5 10.4 240.4 10.4
Nov 282.4 199.6 29.3 199.2 29.5 201.7 28.6 201.7 28.6
Dec 199.4 143.8 27.9 134.9 32.3 123.4 38.1 123.2 38.2
Sum 248.4 241.6 285.9 389.2

5. Conclusions

In this study, the wind characterization and energy potential of Bohai Bay, China, during 2015–2016
at different timescales, such as seasons, months, and hours, were analyzed in detail to more accurately
predict the wind behavior. Based on the analysis and results, the following conclusions can be drawn:

1. In Bohai Bay, the wind mainly blows from the east (E −15◦–45◦), followed by the southeast
(SE −55◦–−45◦) and northeast (NE 55◦–75◦). The winds speed in Bohai Bay is mostly lower than
12 m/s, generally in the range of 4–8 m/s, and the main wind speed ranges in April and October
are higher than those in August and December. However, in summer, the magnitude of average
wind speeds is lower but the magnitude of extreme wind speeds is higher due to the occurrence
of monsoons, such as typhoons. The wind speed from 20:00 to 08:00 is higher than that from 08:00
to 20:00 and exhibits a sinusoidal pattern over each hour of each day. The turbulence intensity is
low due to the low surface roughness and mainly depends on wind speeds instead of periods.

2. Weibull, Nakagami, Rician, and Rayleigh distributions all performed well in comparison to the
observed wind speed, where Nakagami and Rician distributions were first introduced in the
field of wind energy and performed well in predicting the wind speed distributions. However,
none of the distributions fit the wind speed distributions in August due to the high percentage of
null winds.
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3. The most probable wind speed, the most energy-carrying wind speed, and the wind power
density based on Nakagami (Rician) distributions were first proposed and used to assess the wind
potential and forecast the wind characteristics in Bohai Bay. Nakagami distribution performed
better than the other three distributions in forecasting WPD. Based on the results of the analysis,
Bohai Bay can be considered as a wind class I region, with east as the dominant direction as the
corresponding WPD is mostly below 200 W/m2 and mainly faces the east.
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Notations and Abbreviations

PDF Probability density function
R2 Correlation coefficient
FPSO Floating production storage and offloading
k Weibull shape parameter
µ Nakagami shape parameter
Γ Gamma function
a Rician scale parameter
Iα The modified Bessel function of the first-kind with an order of α
σ Rayleigh scale parameter (m/s)
Nak Nakagami
Ric Rician
WSR Wind speed range
SD Standard deviation
vme Most energy-carrying wind speed
WED Wind energy density (kWh/m2)
TI Turbulence intensity
CDF Cumulative distribution function
RMSE Root mean square error
ρ Air density (kg/m3)
c Weibull scale parameter (m/s)
ω Nakagami scale parameter
γ Upper incomplete gamma function
b Rician location parameter
Q1 Marcum Q-function
v Wind speed (m/s)
Wei Weibull
Ray Rayleigh
MWS Mean wind speed
vmp The most probable wind speed
WPD Wind speed density (W/m2)
T Time period
MTI Mean turbulence intensity
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