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Abstract: This paper presents a robust continuous control set model predictive control (CCS-MPC)
method to control the output voltage of a three-phase inverter in uninterruptible power supplies
(UPS). A robust disturbance observer (DOB) is proposed to estimate the load current of the three-phase
UPS without a steady-state error, taking the effect of model uncertainties into account. A CCS-MPC is
designed using the DOB for reference voltage tracking purpose, and input constraints are considered
in the controller design to calculate the optimal control input. Model uncertainties are defined using
polytopic uncertainty class, and a linear matrix inequality (LMI) optimization method is used to
compute the optimal observer gain matrix. Another robust controller (RC) is designed based on
the DOB and compared with CCS-MPC. The effectiveness of the proposed method (the DOB based
CCS-MPC) is evaluated for resistive, inductive, and nonlinear loads then compared with other control
methods using a three-phase 5-KVA laboratory experiment UPS system.

Keywords: model predictive control (MPC), robust disturbance observer; optimal voltage control;
three-phase inverter; uninterruptible power supplies (UPS)

1. Introduction

The main control objective for an uninterruptible power supply (UPS) is to regulate the output
voltage in presence of parameter uncertainties and disturbances. The characteristic of a UPS is measured
with its output voltage quality. The disturbances caused by various loads, such as inductive, nonlinear
loads, and uncertainties caused by model mismatch lead to a lower tracking performance and high total
harmonic distortion (THD) in the output voltage. The effect of the disturbances and uncertainties should
be decreased to obtain a good voltage tracking performance [1]. Accordingly, control methods, such as
deadbeat control [1,2], repetitive control [3,4], robust control [5–8], and model predictive control [9–15],
have been used in conjunction with different observers to solve the aforementioned problems.

The deadbeat control method combined with state and disturbance observers, was successfully
applied to a single-phase UPS inverter to compensate for the model uncertainties and load current
disturbances [1]. A parameter estimation method with a deadbeat controller [2] can compensate for
the white noise caused by sensed variables. However, this method requires a high sampling frequency,
and is vulnerable to plant-model mismatch. The repetitive control method can provide satisfactory
performances in the case of periodic errors if the internal model of the system is well defined [3,4].
However, this method is highly sensitive to parameter variation because of its dependence on the
internal model and delays in the calculations. Other control methods, such as model reference
control, can be included in the repetitive controller design to provide satisfactory performances [5].
Therefore, the resulting controller is complicated, and leads to a high computation burden during the
implementation. Dissipativity-based adaptive robust control can eliminate the effects of parameter
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uncertainties and load distortions with good voltage tracking performance in a UPS system [6].
Despite its fast-transient response and low THD, the resulting controller cannot compensate for the
disturbances, and can yield a steady-state error in the presence of large parameter uncertainties and
highly distorted loads.

In overcoming these problems, the model uncertainties can be defined as a polytopic uncertainty
class [7], and controller gains can be calculated using the linear matrix inequality (LMI) method [7,8]
for the purpose of robustness and optimality. A Luenberger-type observer is used in Reference [7] for
the prediction of the system states. A robust controller is designed using the LMI method to control
the output voltage of a UPS system. The output voltage THD is reasonable under nonlinear load,
but is still high under linear loads. Moreover, the designed controller cannot be robust against a larger
parameter variation.

Model predictive control has also been widely applied to the power converters in the last
decade [9–15]. It can efficiently handle physical constraints and yields good performances. One of the
main drawbacks of MPC is the steady-state offset error possibly caused by the prediction error, due to
model uncertainties and disturbances. An integrator can be included in the MPC design to remove the
offset error. In the UPS system, the lumped disturbances (model uncertainties and disturbance effect
of the load current) can cause an offset error. Different kinds of disturbance observer (DOBs) were
used with MPC, such as the Luenberger, Kalman filter types, etc., to compensate for these lumped
disturbances and improve the close loop system performance [12–15]. A Luenberger-type disturbance
observer was adopted in References [12,13] to compensate for the lumped disturbances in conjunction
with the finite control set model predictive control (FCS-MPC) and the continuous control set model
predictive control (CCS-MPC), respectively. Robust performance with a fast-transient response can
be obtained with these methods; however, the offset error cannot be precisely removed because
an integrator is not included in the DOB design [12,13], and the output voltage THD can be high [13].
A combined version of FCS-MPC and CCS-MPC was used with two different observers to remove the
offset error and reduce the THD in the output voltage on the three-phase UPS system [14]. The first
observer was a Luenberger-type observer used to compute the reference states. The second one was
a disturbance observer designed to compensate for the lumped disturbances, including parameter
uncertainties and noise. The output voltage THD was successfully reduced; however, a high sampling
frequency was required, and an offset error existed in the output voltage.

An observer-based CCS-MPC method was suggested in Reference [15] for the purpose of the
output voltage control of a UPS. A disturbance observer was designed to compensate for the effects of
uncertainties and compute the reference states. The proposed method was successfully applied to the
UPS system, and a stability analysis of the closed-loop system was well defined. However, a higher
output THD was obtained under resistive and inductive loads, and the effectiveness of the method
was not investigated under the nonlinear load. Moreover, the uncertainties were not well defined.

The disturbance observer based control methods have been applied to some other areas.
A frequency domain disturbance observer was designed to remove the effect of the uncertainties in
an induction motor application in Reference [16]. A disturbance observer was proposed for nonlinear
systems in Reference [17] for DC motor control in Reference [18] and for robot system in Reference [19]
to compensate the uncertainties in the systems.

Based on these observations in power converter systems and the MPC design mentioned earlier,
a discrete time robust disturbance observer (DOB)-based CCS-MPC method is proposed for the purpose
of the output voltage control of a UPS. The lumped disturbances caused by the model uncertainties
and the load current are estimated by the proposed DOB. The DOB contains an integrator and enables
the precise prediction of states in a steady state, despite the uncertainties. Thus, offset errors can
be removed when this DOB is used in conjunction with CCS-MPC for the purpose of state tracking
control. In earlier works [12–14], multiple disturbance observers, including Leunberger type observer
were used in order to estimate the load current and model uncertainties, respectively to control the
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UPS output voltage. In this approach, however, the use of only one disturbance observer is made to
estimate the lumped disturbances, including the effect of load current and model uncertainties.

The control system is designed in the d–q reference frame, and the control signal is implemented
using the SVPWM method. An LMI matrix is defined with an optimization problem to compute the
observer gain matrix. The effectiveness of the control system is evaluated in a three-phase UPS system
and compared to the robust control method [7], which is based on a Luenberger-type observer for
resistive, inductive, and nonlinear loads for different uncertainty ranges.

The remainder of this paper is structured as follows: Section 2 describes the three-phase UPS
system and modeling of uncertainties; Section 3 introduces a robust discrete time disturbance observer
and shows an LMI method to find the observer gain matrix; Section 4 describes the control objective
and provides the CCS-MPC design procedures; Section 5 provides the simulation and experimental
results following by conclusion in Section 6.

2. System Description

2.1. Dynamic Model of the UPS

Figure 1 shows a three-phase two-level inverter with an output LC filter used in the UPS system.
An unknown load that can be linear or nonlinear is connected to the filter output.
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Applying Kirchhoff’s law, the filter dynamics can be obtained using three-phase quantities,
as follows [7,20,21]:

diabc
f (t)

dt
=

Vabc
i (t) −Vabc

o (t)

L f
, (1)

dVabc
o (t)
dt

=
iabc

f (t) − iabc
l (t)

C f
, (2)

where Vabc
i (t) = (Via, Vib, Vic), Vabc

o (t) = (Vao, Vbo, Vco), iabc
f (t) =

(
i f a, i f b, i f c

)
, and iabc

l (t) =

(ila, ilb, ilc) are the vectors of the filter input voltage, output voltage (capacitor voltage), filter, and load
currents, respectively. The input voltages can be defined using a switching function Uh(h = a, b, c) as:

Vabc
i (t) =


Via(t)
Vib(t)
Vic(t)

 = Vdc


2
3 −

1
3 −

1
3

−
1
3

2
3 −

1
3

−
1
3 −

1
3

2
3




Ua

Ub
Uc

, (3)

where

Uh =

{
1, Sh = ON; Sh = OFF
0, Sh = OFF; Sh = ON

(h= a, b, c and h = a, b, c) . (4)
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The two switches of an inverter leg are operated in a complementary mode to prevent short circuit
of Vdc in the same leg.

The three-phase quantities in Equations (1) and (2) can be transformed into the rotating d–q frame
using Park’s transformation as follows:

didq
f (t)

dt
= ωMidq

f (t) +
Vdq

i (t)

L f
−

Vdq
o (t)
L f

, (5)

dVdq
o (t)
dt

= ωMVdq
o (t) +

idq
f (t)

C f
−

idq
l (t)

C f
, (6)

where idq
f (t) =

[
i f d(t)
i f q(t)

]
= Ttd(ωt)iabc

f (t), Vdq
o (t) =

[
Vod(t)
Voq(t)

]
= Ttd(ωt)Vabc

o (t),

Vdq
i (t) =

[
Vid(t)
Viq(t)

]
= Ttd(ωt)Vabc

i (t), idq
l (t) =

[
ild(t)
ild(t)

]
= Ttd(ωt)iabc

l (t),

M =

[
0 1
−1 0

]
, Ttd(ωt) = 2

3

 cosωt cos
(
ωt− 2

3π
)

cos
(
ωt + 2

3π
)

− sinωt − sin
(
ωt− 2

3π
)
− sin

(
ωt + 2

3π
) .

Ttd(ωt), ω = 2π fs and fs are the transformation matrix, the angular frequency and the main
frequency, respectively. The state space representation of Equations (5) and (6) in continuous time can
be defined as

dx(t)
dt

= Acx(t) + Bcu(t) + Wci
dq
l (t), (7)

where Ac =

 ωM −
1

L f
I

1
C f

I ωM

, Bc =

 1
L f

I

02×2

, Wc =

 02×2

−
1

C f
I

, u(t) = Vdq
i (t) =

[
Vid(t)
Viq(t)

]
, I ∈ R2×2

is an identity matrix, 02×2 ∈ R2×2 is a zero matrix, C f and L f are the filter capacitor and inductor,
respectively.

The continuous time dynamics should be discretized to design an MPC. Here, with the assumption
of a constant load current during the sampling period Ts, the discrete model of Equation (7) is obtained
using Euler forward approximation [22] as follows:

x(k + 1) = Anx(k) + Bnu(k) + Wnil(k), (8)

where An ∈ R4×4 = eAcTs , Bn ∈ R4×2 =
∫ Ts

0 eActBc, Wn ∈ R4×2 =
∫ Ts

0 eActWc, u(k) =

[
ud(k)
uq(k)

]
,

x(k) =
[
i f d(k)i f q(k)Vod(k)Voq(k)

]T
, idq

l (k) =
[

ild(t)
ild(t)

]
. u(k) and x(k) are the vectors of the control input,

and system state, T denotes transpose of a vector or a matrix. Vdq
o (k) =

[
Vod(k)
Voq(k)

]
is the output voltage

vector to be controlled.

2.2. Modeling of Uncertainties

The resistive part of the three-phase load is assumed to be dominant, and io is considered to be
a disturbance signal. The current source can be considered as a disturbance source for the filter, and the

disturbance part of the load current is io(t) =
Vdq

o (t)
R , as shown in Figure 2 [7]. With this disturbance

term, Equation (8) can be rewritten as follows:

dx(t)
dt

= Âcx(t) + B̂cu(t) + Wci
dq
o (t), (9)
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where Â ∈ R4×4 =

 wM −
1

L f
Iu

−
1

C f
Iu wM− 1

RC f
Iu

, Iu =∈ R4×4 is an identity matrix.
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It is assumed that the disturbance current io(t) is constant during the sampling period Ts,
Equation (9) can be discretized as

x(k + 1) = Âx(k) + B̂u(k) + Wnio(k), (10)

where Â ∈ R4×4 = eÂcTs , B̂ ∈ R4×2 =
∫ Ts

0 eÂctB̂c, Wn ∈ R4×2 =
∫ Ts

0 eÂctWc

It is supposed that the three-phase parameters (resistors, inductors and capacitors) are equal
and the load resistance R, the filter parameters L f and C f are uncertain, but have some values within
a certain ranges, R1 ≤ R ≤ R2, L1 ≤ L f ≤ L2, C1 ≤ C f ≤ C2. The uncertain matrices (Â and B̂) have
ranges between the lower bounds (R1, L1, C1) and the upper bounds (R2, L2, C2) of the parameters.
Assume that the matrix pairs (Â, B̂) belongs a polytopic uncertain class P [7]:

P =

(Â, B̂
) p∑

i=1

γi(Ai, Bi)

∣∣∣∣∣∣∣
p∑

i=1

γi = 1, γi ≥ 0

 (11)

where P is the polytopic uncertain class; γ is the increment of the parameter; and p is a positive integer
(i = 1, 2, . . . , p and p = 2np = 8, np is the number of uncertain parameters in the system, in this paper,
these parameters are L f , C f , and R.). ith

(
Â, B̂

)
pair of matrices are different from each other, and these

pairs compose a convex set, in which Â and B̂ matrices are located. The upper and lower bounds of the
uncertain parameters can be defined using an uncertainty norm η as follows:

L1 = L f /η, C1 = C f /η, R1 = R/ηL2 = L fη, C2 = C fη, R2 = Rη, (12)

3. Disturbance Observer Design

3.1. Dynamics of the Disturbance Observer

The predictive control algorithm highly depends on a system model; hence, the disturbances,
model mismatches, etc., should be properly estimated. In this section, a discrete time robust DOB is
proposed to estimate the lumped disturbance, including the effects of parameter uncertainties and
unknown disturbance load currents.

The uncertain system (10) can be rewritten using nominal matrices (An, Bn) as follows:

x(k + 1) = Anx(k) + Bnu(k) + dL(k), (13)

where dL(k) ∈ R4×1 represents the lumped disturbance vector represented as:

dL(k) = ∆Ax(k) + ∆Bu(k) + d(k), (14)

where ∆Ax(k) + ∆Bu(k) corresponds the model uncertainties and ∆A ∈ R4×4 = Â−An, ∆B ∈ R4×2 =

B̂− Bn, d(k) = Wnio(k) corresponds the disturbance effect of the load current.
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A disturbance observer is designed to estimate the lumped disturbance vector dL(k) as follows:

d̂L(k) = d̂L(k− 1) + L
(
x(k) −Anx(k− 1) − Bnu(k− 1) − d̂L(k− 1)

)
, (15)

where d̂L(k) =
[
d̂L1 d̂L2 d̂L3 d̂L4

]T
∈ R4×1 is the estimated lumped disturbance vector, and L is the

diagonal observer gain matrix to be determined.
The estimated lumped disturbance vector d̂L(k) can asymptotically converge to its actual value

dL(k) if the observer gain matrix L is chosen, such that the error between the actual state and the
predicted state in Equation (15) converges to zero in the steady state. Using a constant input u0 yields
steady-state x0 and steady-state disturbances, and two different representations can be obtained from
Equations (10) and (13) as follows:

x0 = Âx0 + B̂u0 + d, (16)

and
x0 = Anx0 + Bnu0 + dL. (17)

It is assumed that there is no error between the actual value and nominal value in the steady state,
and subtracting Equation (17) from Equation (16), we have:

∆Ax0 + ∆Bu0 + d− dL = 0. (18)

Inserting the relation (18) into (15), we have:

d̂L(k) = d̂L(k− 1) + L
(
Âx(k− 1) + B̂u(k− 1) + d− ∆Ax0 − ∆Bu0 − d + dL −Anx(k− 1) − Bnu(k− 1) − d̂L(k− 1)

)
, (19)

and if we assume the use of a constant control input uo, Equation (19) can be rewritten as

d̂L(k) = (I − L)d̂L(k− 1) + L(∆Axe(k− 1) + dL), (20)

where xe(k− 1) = x(k− 1) − x0. Furthermore, subtracting Equation (16) from Equation (13) yields:

xe(k) = Âxe(k− 1) + B̂ue(k− 1), (21)

where ue(k− 1) = u(k− 1) − u0. Note that Equations (20) and (21) are the dynamics of the disturbance
observer (15) when it is applied to the system (13) with a constant input u(k) = u0.

3.2. Calculation of L Using LMI

In this section, an LMI formulation to compute a stabilizing gain L of Equation (15) is derived.
From Equations (20) and (21), we have:[

d̂L(k)
xe(k)

]
=

[
(I − L) L∆A

0 Â

][
d̂L(k− 1)
xe(k− 1)

]
+

[
L 0
0 B̂

][
dL

ue

]
. (22)

Let us now define a new state variable z(k) for (22) to check the stability of its homogeneous response:

z(k) = ψz(k− 1), (23)

where z(k) =
[

d̂l(k)
xe(k)

]
, ψ =

[
(I − L) L∆A

0 Â

]
.

To satisfy the asymptotic stability in Equation (23), L matrix should be properly chosen, such that
the ψ matrix is Hurwitz. The problem, now, is how to find the L. We drive herein an LMI to obtain
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a robust L in the presence of uncertainties. The stability of ψ is guaranteed if a positive definite matrix
Pobv satisfying

Pobv −ψ
TPobvψ > 0 (24)

exists. If we assume that Pobv is a block diagonal matrix, Pobv=

[
P1 0
0 P2

]
, then, Equation (24) can be

rewritten as: [
P1 0
0 P2

]
−

[[
(I − L) L∆A

0 Â

]]T[
P1 0
0 P2

][[
(I − L) L∆A

0 Â

]]
> 0 (25)

Relation (25) can be transformed into the following LMI using the Schur complement [19]:
[

P1 0
0 Q2

] [
(P1 −Y) Y∆A

0 ÂQ2

]T

[
(P1 −Y) Y∆A

0 ÂQ2

] [
P1 0
0 Q2

]
 > 0, (26)

where Y = P1L. (26) should be checked for all uncertain matrices; hence, the system matrices can be any
pair of matrices defined in the uncertain polytopic class. In the UPS system, there are 2np=3 = 8 possible(
Â, B̂

)
pairs, which are vertices of P. The LMI problem defined in Equation (26) can be rewritten as:


[

P1 0
0 Q2

] [
(P1 −Y) Y∆Ai

0 ÂiQ2

]T

[
(P1 −Y) Y∆Ai

0 ÂiQ2

] [
P1 0
0 Q2

]
 > 0, (27)

where i = 1, 2, . . . , 8. Note that the solution of Equation (27) is not unique. An optimization criterion is
defined to find an optimal solution of Equation (27) that can be calculated by reducing the Lyapunov
function V(k) = z(k)TGz(k) as fast as possible if G0 is reduced for a given G.

Suppose that
G < εG0, (28)

where G0 and G are positive definite symmetric matrices, and 0 < ε < 1, ε can be considered as settling
time. A small ε would yield a fast convergence rate of V(k) [7]. Finally, the following problem can be
solved to find an optimal G0, G, L by minimizing ε.

min
G, G0 > 0
ε, L

γ subject to Equations (27) and (28). (29)

4. Controller Design

4.1. CCS-MPC

In this section, CCS-MPC is derived for the reference voltage tracking problem based on the
proposed DOB. The control objective can be represented as a state tracking problem:

lim
k→∞

x(k) = x∗(k), (30)

where x(k) =
[
i f d i f q Vd Vq

]T
∈ R4×1 is the state vector, and x∗(k) =

[
i∗f d i∗f d V∗d V∗q

]T
∈ R4×1 is the

reference state vector (Super script ∗ denotes the reference values.). Note that the voltage references are
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given as V∗d and V∗q = 0. Corresponding to these voltage references, consider the following steady-state
condition to derive the current references and nominal control inputs:

x∗(k) = Anx∗(k) + Bnu0(k) + dL(k), (31)

and Equation (31) can be rewritten based on the estimated disturbance vector d̂L(k) as:

x∗(k) = Anx∗(k) + Bnu0(k) + d̂L(k) (32)

For the given voltage references, V∗d and V∗q = 0, reference filter currents, i∗f d and i∗f d, can be
computed as follows:

i∗f d(k) =
V∗d
R
−

C f

Ts
d̂L3(k), (33)

i∗f q(k) = ωC f V∗d −
C f

Ts
d̂L4(k), (34)

and the nominal input uo(k) =
[
uod(k) uoq(k)

]T
satisfying Equation (32) can be derived as:

uod(k) = V∗d −ωL f i∗f q −
L f

Ts
d̂L1(k), (35)

uoq(k) = ωL f i∗f d −
L f

Ts
d̂L2(k). (36)

The prediction model of the system can be defined using nominal system matrices and d̂L(k) as:

x(k + 1|k) = Anx(k) + Bnu(k) + d̂L(k), (37)

where x(k) ∈ R4×1 is the current state and x(k + 1|k) ∈ R4×1 is the predicted state calculated at time
instant k. The predicted error is defined as:

e(k + 1) = x(k + 1|k) − x∗(k). (38)

An optimization problem is defined in order to minimize the error system (38) and penalize the
control input as:

min
u(k)

J(x(k), u(k)), (39)

and the cost function is:

J(x(k), u(k)) = (e(k + 1))TPcost(e(k + 1)) + (u(k) − uo(k))
TR(u(k) − uo(k)) (40)

where R = rI2×2
u ; I2×2

u is the unity matrix; r is the design parameter for penalizing the control input;
and Pcost is a positive definite symmetric matrix with an optimal value that can be calculated using the
LMI method considering the polytopic uncertain class (11) to make J(k) of Equation (40) monotonically
decreases (i.e., (J(k) − J(k + 1) > 0) when u(k) = uo(k)). The following error dynamics can be obtained
by subtracting Equation (32) from Equation (37):

e(k + 1) = Ane(k) + Bn∆u(k), (41)

where e(k) = x(k)− x∗(k), ∆u(k) = u(k)− uo(k), and we obtain the following from Equations (40) and (41):

J(k) − J(k + 1) = e(k)T
(
Pcost −An

TPAn
)
e(k) > 0 (42)
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(42) is guaranteed to be satisfied if:
P0 −An

TPcostAn > 0, (43)

where Pcost and P0 (P0 < Pcost) are positive definite matrices. Schur complement [23] can be applied to
(43) to yield the following LMI: [

Q0 AT
i

Ai Q

]
> 0, Q0 > Q, (44)

where Q0 = P−1
0 and Q = Pcost

−1, and Equation (44) can be solved by following a similar method:
Equations (24)–(29). Note that the control input u(k) is constrained to belong to the following set:

Si
{
u(k) ∈ R2

∣∣∣ u(k) ≤ Umax
}

(45)

where Si is the boundary input set, which denotes the linear modulation range of the space vector
pulse width modulation (SVPWM) limited with Umax =

Vdc√
3

, which is the radius of the inner circle
represented in Figure 3. This constraint can be represented as:√

u2
d + u2

q ≤ Umax =
Vdc
√

3
. (46)

The optimal value of the control input u∗(k) for the unconstrained case is determined from the
first derivative of J(x(k), u(k)) as follows:

uuc
∗(k) = −

(
BT

n Pcost
)
(An(x(k) − x∗(k)))(

BT
n PcostBn + R

) + uo(k), (47)

where uuc
∗(k) is the optimal input for an unconstrained case, uo(k) is the corresponding steady-state

input satisfying Equation (32). Note that Equation (47) is composed of the uo(k) obtained as
Equations (35) and (36) and a correction term. However, this control input is only valid if u∗uc(k) ∈ Si.
If ‖u∗uc(k)‖ > Umax (i.e., u∗uc(k) < Si), then Equation (47) cannot be used.
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In this case, u∗uc should be modified, such that a feasible optimal solution can be obtained as [15]:

u∗(k) =
{

u∗uc, i f u∗ucSi
αu∗(k), i f u∗ucSi

, (48)
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where =
Vdc√

3‖u∗(k)‖
. Note that (48) is valid if Pcost is obtained, such that BTPcostB = βI for some positive

scalar β [15].
Figure 4 shows the general block diagram of the controlled system. The currents iabc

f (k) and output

voltages Vabc
o (k) are measured then converted to the d-q reference frame using Park transformation.

The disturbance observer (15) estimates dL(k), and the estimated disturbance vector, d̂L(k) is sent to the
prediction and reference blocks. The error prediction (38) is then performed, and the optimal control
input (48) is calculated and send to the SVPWM modulator.
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4.2. Compensation of the Input Time Delay

The use of an inverter will cause a one-step time delay (i.e., the control input u(k) will actually be
implemented at time step k + 1, and have an effect on x(k + 2)). Considering this input time delay,
the disturbance observer (15) and the prediction model (37) should be rewritten as:

d̂L(k) = d̂L(k− 1) + L(x(k) − x(k|k− 1)), (49)

x(k|k− 1) = Anx(k− 1) + Bnu(k− 2) + d̂L(k− 1). (50)

The cost index (40) should also be modified as

J(x(k), u(k)) = (e(k + 2|k))TPcost(e(k + 2|k)) + (u(k) − uo(k))
TR(u(k) − uo(k)), (51)

to yield the unconstrained control input

u∗(k) = −

(
BT

n Pcost
)
An(x(k + 1|k) − x∗(k))(
BT

n PcostBn + R
) + uo(k). (52)

4.3. Robust Controller Design with the DOB (RC-DOB) and the Luenberger Type Cbserver (RC-LOB)

A robust controller (RC) is designed for the comparison purpose following [7] as

w(k + 1) = w(k) +
(
Vdq
∗ −Vdq(k)

)
, (53)

u(k) = Kx̂(k + 1|k) + Zw(k + 1), (54)



Energies 2019, 12, 2871 11 of 22

where Vdq(k) =
[

Vd Vq
]T

and Vdq
∗ =

[
V∗d V∗q

]T
are the vectors of controlled output voltage and

the reference voltage, K and Z are the feedback gain matrices. The one-step-ahead prediction x̂(k + 1|k)
could be made using the prediction model (37) for the robust controller with the proposed disturbance
observer (RC-DOB) or using the robust controller with Luenberger type observer (RC-LOB) as in
Reference [7]. Thus, we designed two control system to compare with the proposed method (DOB with
CCS-MPC). The first control system is designed based on the proposed DOB, from Reference [7], and the
abbreviation RC-DOB (robust controller with the proposed observer) will be used for it. The second
one is a robust controller based on Luenberger type observer as in Reference [7], and the abbreviation
RC-LOB will be used for it.

4.4. Stability Analysis

In this section, the stability analysis of the uncertain system and close loop system are given.
It is assumed that the filter parameters stay in the boundary range as in Equation (11). Based on

this assumption, it can be said that the uncertain system (10) is stable for any parameter change within
the range, and if a positive definite symmetric matrix Q̂ = Q̂T > 0 exists that satisfies

Q̂−Ai
TQ̂Ai > 0, (55)

then, it is guaranteed that all uncertain system matrices (Ai) are stable. Q̂ ∈ R4×4, i = 1, 2, . . . , 8,
Ai ∈ P. P is the polytopic uncertainty class, which is defined in Equation (11). It means that, there are
8 number of Â matrices and all these matrices are stable, if the uncertain parameters (R, L f , C f ) stay in
the boundary range.

The close loop system matrix can be obtained using Equation (10) and observer dynamics (20)
and (21) as follows: 

d̂L(k)
xe(k)

x(k + 1)

 =

(I − L) L∆A 0

0 Â 0
0 0 Â




d̂L(k− 1)
xe(k− 1)

x(k)

, (56)

and Equation (56) can be rewritten as

xcl(k + 1) = Âclxcl(k). (57)

where xcl(k + 1) =
[

d̂L(k) xe(k) x(k + 1)
]T
∈ R12×1, xcl =

[
d̂L(k− 1) xe(k− 1) x(k)

]T
, Âcl ∈

R12×12.
It is assumed that the observer gain matrix L is chosen such that the observer matrix ψ (23) is

stable. Suppose that the weighting matrix Pcost of the cost function J(x(k), u(k)) satisfies the constraints
BTPcostB = βI (for some positive values of β, since BTPcostB > 0) and inequality (43) [15]. Based on the
assumption, the close loop matrix Âcl become stable, and therefore satisfies Pcl = Pcl

T > 0,

Pcl − Âcl
TPclÂcl > 0, (58)

then, the close loop system (58) is globally asymptotically stable, the system state vector x(k) and the
estimated lumped disturbance vector d̂L(k) converge to the reference state vector x∗(k) and the actual
disturbance vector dL(k) in the steady, which is

lim
k→∞

x(k) = x∗(k), lim
k→∞

d̂L(k) = dL(k), (59)

where k > 0 and ∀
(
x(k), d̂L(k)

)
∈ R4.
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5. Results

5.1. Simulation Results

In this section, the comparative results are given in terms of the output voltage THD and transient
response using the three different control methods (i.e., MPC-DOB, RC-DOB, and RC-LOB) in order to
evaluate the performance of the proposed method. The optimal observer gain matrix L, K, Z and the
gain matrix of the Luenberger type observer were calculated using MATLAB R2018a and YALMIP.
The simulation model of the system was obtained in PSIM. The control algorithm was written in C
programming language using Microsoft Visual Studio and implemented in PSIM using DLL block.
The sampling period was set to be 10 kHz. The nominal filter parameters in Table 1 were used in
the simulation.

Table 1. Nominal system parameters.

Parameter Value

DC link voltage Vdc 230 V
Reference voltage V∗d 110 V
Reference voltage V∗q 0
Output frequency fs 60 Hz
Sampling time Ts 100 µs
Filter inductance Lf 1.3 mH
Filter capacitance Cf 50 µF
Load resistance R 10 Ω

The effectiveness of the proposed method was verified under nonlinear, inductive and resistive
load model given in Figure 5a–c, respectively. A three-phase diode rectifier was used as a nonlinear
load and Rnl, Cnl, Lnl are the resistor, capacitor and inductor connected to the output of the nonlinear
load, RLL, LLL are the inductive load resistor and inductor, R is the resistive load.
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Firstly, the transient response of the CCS-MPC control input u∗(k) of Equation (48) is verified to
be better than that of the steady-state control input uo(k) of Equations (35) and (36), in case of a load
change. Figure 6 shows that the transient behavior of the d-axis load current is slower, and a high
oscillation exists with the control input uo(k) compared to u∗(k) (CCS-MPC) under the resistive load
(R = 10 Ω) change at time step 1 s. uo(k) can not stabilize the system for large η values. Moreover,
the THD values are reasonable (less than %3) for resistive load for both control inputs.
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Figure 6. Transient behavior of the load current for the steady-state control input uo(k) and MPC control
input u∗(k) with η = 3.5 during the load change at time step 1 s (THD = 1% with u∗(k), THD = 2.2%
with uo(k) , R = 10 Ω ).

Secondly, the transient response of the d-axis voltage is evaluated using the three control methods
for η = 7.5. This value is chosen for a fair comparison, since the performance of the control methods
are similar to each other for η = 7.5. Figure 7 indicates that a fast transient can be obtained using the
proposed method (MPC-DOB) under the nonlinear load. The parameters are chosen as Rnl = 200 Ω,
Lnl = 10 mH and Cnl = 2200 µF. The result shows that the transient response of the d-axis voltage is
faster when MPC-DOB is used, and slower, but more robust, when RC-DOB is used. Although a similar
steady-state performance is obtained with RC-LOB and MPC-DOB in the steady state, a higher
overshoot is obtained in the transient time with RC-LOB.
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The effectiveness of the proposed method is verified for different uncertainty norm (η) values using
the three methods under the nonlinear load. Table 2 shows the comparative results for output voltage
THD values. It is verified that the lower THD can be obtained with MPC-DOB for large uncertainties
(η = 7.8). The reasonable THD is obtained for 6.5 ≤ η ≤ 7.8 with MPC-DOB, for 3.5 ≤ η ≤ 7.5 with
RC-DOB and RC-LOB. For some values of η, the closed-loop system becomes unstable, and the THD
information is not available (NA in the tables).

Table 2. Comparison of the voltage THD values for different η under the nonlinear load (Rnl =

200 Ω, Lnl = 10 mH, Cnl = 2200 µF) with nominal filter parameters.

H Values 1 3.5 6.5 7 7.5 7.8

MPC-DOB (THD%) NA 8.3 5.9 4.5 3.7 3.2
RC-DOB (THD%) NA 6 5.1 4.8 4.4 7.7
RC-LOB (THD%) NA 6.1 5.5 4.3 4.5 4.8

5.2. Experimental Results

A 5 KVA three-phase inverter with an output LC filter was used in the experiment. The DC link
voltage for the inverter input was supplied by a three-phase diode rectifier. The control algorithm
was implemented at 10 kHz sampling frequency on the TMS320F28377D DSP. A multi CAN converter
and analyzer device was used to take the d-axis values from the DSP board to draw the d-axis figures
in MATLAB. The three-phase voltages and THD values were measured using an oscilloscope and
harmonic analyzer. The experimental setup of the system is given in Figure 8. The experiments were
performed for different η values using MPC-DOB, RC-DOB, and RC-LOB under resistive, inductive,
and nonlinear loads. For every η value, the observer gain matrices and the controller gain matrices
were computed separately offline using MATLAB then implemented in the DSP.
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The comparative results were given in terms of the voltage THD in Tables 3–6 to show the
performance of the proposed method under different load models for different uncertainty norm η.
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A 10 Ω resistive load was connected to the output of the UPS, and 1.2% THD was obtained for η = 7.8
when MPC-DOB was used, as seen in Table 3. The THD values were high when RC-DOB and RC-LOB
applied to the system under resistive load. The lowest THD was obtained 1.8% under the inductive
load for η = 7.8 with MPC-DOB, as seen in Table 4. Although the performance of the other two
methods was adequate, the proposed method (MPC-DOB) was better than that the other methods
under inductive load. Table 5 shows the THD values under nonlinear load. For the larger model
uncertainty (η = 7.8), lowest THD was obtained with the proposed method (3.1 % THD), RC-DOB
could not stabilize the system, as seen in Table 5. The lowest THD was obtained for η = 7.5 with
RC-DOB and RC-LOB. The control systems were evaluated under nonlinear load for different filter
parameters (L f = 1.03 mH, C f = 30 µF) to see the efficiencies in Table 6. The reasonable THD values
were obtained with MPC-DOB and RC-DOB, RC-LOB could not stabilize the system with these values.
Table 3-6 indicate that the design parameter η can be chosen as 7.8 for MPC-DOB and 7.5 for RC-DOB
and RC-LOB in the experiment. Note that the THD differences between the simulation (Table 2)
and experimental (Table 5) results can be caused by the measurement noise, variation in the filter
parameters, cable loses, etc.

Table 3. THD values for different η under the resistive load (R = 10 Ω).

H Values 1 3.5 6.5 7 7.5 7.8

MPC-DOB (THD%) NA 1.9 1.5 1.4 1.3 1.2
RC-DOB (THD%) NA 5.2 2.6 2.5 2.4 2.4
RC-LOB (THD%) NA 4.2 3 2.5 2.3 2.3

Table 4. THD values for different η under the inductive load (RL = 10 Ω, LL = 10 mH).

H Values 1 3.5 6.5 7 7.5 7.8

MPC-DOB (THD%) NA 9.1 2.9 2.3 2.3 1.8
RC-DOB (THD%) NA 6.1 2.6 2.4 2.4 2.4
RC-LOB (THD%) NA 4.6 3.9 2.5 2.4 2.6

Table 5. THD values for different η under the nonlinear load (Rnl = 200 Ω, Lnl = 10 mH, Cnl = 2200 µF)
with the nominal filter parameters.

η Values 1 3.5 6.5 7 7.5 7.8

MPC-DOB (THD%) NA 10.2 7.7 5.4 4.1 3.1
RC-DOB (THD%) NA 7.6 3.1 2.8 2.7 NA
RC-LOB (THD%) NA 7.5 6 4.8 4.2 4.2

Table 6. THD values for different η under the nonlinear load (Rnl = 200 Ω, Lnl = 2.6 mH, Cnl = 2200 µF)
with different filter parameters (L f = 1.03 mH, C f = 30 µF).

η Values 4.5 5 6.5 7 7.5 7.8

MPC-DOB (THD%) 10 8.2 6.4 5.8 4.6 4.1
RC-DOB (THD%) 3.5 3.5 3.7 3.5 3.4 3.7

The performances of the steady-state control input uo(k) and the MPC-DOB control input u∗(k)
were compared in the experiment. Figure 9 shows the transient behavior of the resistive load current
with uo(k) and u(k) for η = 7.8. A fast and robust transient response is obtained with u∗(k) similar to
the simulation result given in Figure 6.
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Figure 9. Transient response of the resistive load current with the control input MPC-DOB (u(k)) and
the steady-state control input uo(k) for η = 7.8.

The transient response of the system was evaluated with MPC-DOB for different η values (η =

4.5, 7.5 and 7.8) under the step resistive load change. Figure 10 shows that a small η yields a fast
transient, whereas a large η yields a slow transient. The d-axis voltage ripple in steady state comes
from the measurement noise of the DSP board.
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Figure 10. Experimental result of step load change from no load to R load step (R = 10 Ω) for different
η with MPC-DOB controller.

The steady state three-phase voltages are given in Figure 11 under resistive load (R = 10 Ω).
The uncertainty norm η was chosen as 7.8. It is showed that low voltage THD (in this experiment:
THD = 1.2%, acceptable value according to IEEE standards) could be obtained with MPC-DOB.
Figure 12 shows the steady state three-phase voltages with MPC-DOB under nonlinear load (Rnl =

200 Ω, Lnl = 10 mH, Cnl = 2200 µF, THD = 3.1%) for the design parameter η = 7.8. The transient
performance of the method was evaluated under the load change from no load to nonlinear load.
Figure 13 illustrates that a fast and smooth transient can be obtained with a small oscillation. The reason
for the voltage rise during the load step could be a circuit breaker or the capacitor connected to the
output of the diode rectifier.
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Figure 13. Transient response of the d-axis output voltage with MPC-DOB from no load to nonlinear
load step (THD = 3.1%, η = 7.8).

The transient response of the controllers was evaluated for the inductive and nonlinear loads,
as seen in Figures 14 and 15, respectively. For a fair comparison, η was chosen as 7.5 for RC-DOB
and RC-LOB and 7.8 for MPC-DOB based on the small THD values (chosen design parameters
from Tables 3–6). For the inductive load, RL = 10 Ω, LL = 10 mH. and for the nonlinear load,
Rnl = 200 Ω, Lnl = 10 mH, Cnl = 2200 µF were chosen. MPC-DOB provided a faster transient response
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in both load cases compared to the other two control methods. The simulation result given in Figure 7
showed a similar response with Figure 15.Energies 2019, 12, x FOR PEER REVIEW 18 of 22 
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Figure 15. Transient response of MPC-DOB, RC-DOB, and RC-LOB under the nonlinear load.

The robustness of the proposed method was evaluated for different filter and nonlinear load
parameters (L f = 1.03 mH, C f = 30 µF, Cnl = 2200 µF, Lnl = 2.6 mH, Rnl = 200 Ω). The capacitance
of the filter was changed as 30 µF, and the same inductance value was used 1.03 mH. The nominal
filter parameters (L f = 1.03 mH, C f = 50 µF) were used in the computation of the η values to evaluate
the robustness of the proposed method under parameter change. Figure 16 shows that MPC-DOB
and RC-DOB are robust against parameter change, and the transient response is faster with MP-DOB.
RC-LOB was not included in the comparison, since it could not stabilize the system under the selected
parameters. In Figures 14–16, we can see that MPC-DOB shows faster tracking performance than
RC-DOB. The better tracking performance of MPC-DOB comes from minimizing the cost index of
Equation (40), which penalizes the predicted tracking error.
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6. Conclusions

This study proposed a robust disturbance observer-based CCS-MPC to control the output voltage
of a three-phase inverter with an output LC filter for UPS applications. The lumped disturbances
(parameter uncertainties and the disturbance effect of the load current) were considered in the controller
design to obtain a robust performance. A discrete time robust disturbance observer was proposed to
compensate for the effect of the lumped disturbances. An LMI matrix was defined to obtain an optimal
observer gain matrix, and an optimization problem was given for the computation of the gain matrix
taken into account the model uncertainties. A two-step ahead prediction was used to compensate for
the time delay caused by the computation and the SVPWM.

The use of the proposed DOB with CCS-MPC enabled the precise prediction of the system states
in the steady state and the offset-free tracking control of a UPS system. The DOB can compensate
for the effect of the model uncertainties and the disturbance load current without any additional
observer. The efficacy of the proposed method was proven through simulation and experimental
studies. The comparative results were given for MPC-DOB, RC-DOB, and RC-LOB. The proposed
method was applied a 5-KVA three-phase inverter with an output LC filter using TMS320F28377D DSP
at 10 kHz sampling frequency. The experimental results show that the proposed DOB with CCS-MPC
yields a good voltage tracking performance with proper calculation of the DOB gain matrix. The use
of the proposed method improved transient performance during the load change in a UPS system.
The experimental results show that the method can be used with the chosen design parameter in the
practical applications.
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Abbreviations

FCS-MPC finite control set model predictive control
CCS-MPC continuous control set model predictive control
DOB disturbance observer
MPC-DOB model predictive control with the disturbance observer
RC robust control
RC-DOB robust control with the disturbance observer
RC-LOB robust control with Luenberger type observer
UPS uninterruptible power supply
THD total harmonic distortion
LMI linear matrix inequality
SVPWM space vector pulse width modulation
KVA kilo volt ampere
LC inductor-capacitor
DSP digital signal processor
Notations
R nominal value of resistor
L f nominal value of filter inductor
C f nominal values of filter capacitor
R1 lower value of resistor
R2 upper value of resistor
L1 lower value of filter inductor
L2 upper value of filter inductor
C1 lower value of filter capacitor
C2 upper value of filter capacitor
u control input
u0 Steady-state control input
u∗ optimal control input
Uh switching function
x system state
x∗ reference system state
x(k + 1|k) predicted system state
An nominal system matrix
Bn nominal input matrix
Wn nominal disturbance matrix
Â uncertain system matrix
B̂ uncertain input matrix
dL actual lumped disturbance
d̂L estimated lumped disturbance
L disturbance observer gain matrix
J cost function
P polytopic uncertainty class
p number of uncertain parameter
γ increment of parameter
η uncertainty norm
Pcl positive definite matrix for the close loop system
Q̂ positive definite matrix for the uncertain system
Pcost weight matrix for the cost function
Pobv positive definite matrix for the observer system
G positive definite matrix for the observer system
G0 positive definite matrix for the observer system
ε design parameter for the optimization problem
R weight matrix for control input
K state feedback gain
Z integrator gain
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