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Abstract: This paper proposes a novel approach toward solving the optimal energy dispatch of
cogeneration systems under a liberty market in consideration of power transfer, cost of exhausted
carbon, and the operation condition restrictions required to attain maximal profit. This paper
investigates the cogeneration systems of industrial users and collects fuel consumption data and
data concerning the steam output of boilers. On the basis of the relation between the fuel enthalpy
and steam output, the Least Squares Support Vector Machine (LSSVM) is used to derive boiler and
turbine Input/Output (I/O) operation models to provide fuel cost functions. The CO2 emission of
pollutants generated by various types of units is also calculated. The objective function is formulated
as a maximal profit model that includes profit from steam sold, profit from electricity sold, fuel costs,
costs of exhausting carbon, wheeling costs, and water costs. By considering Time-of-Use (TOU)
and carbon trading prices, the profits of a cogeneration system in different scenarios are evaluated.
By integrating the Ant Colony Optimization (ACO) and Genetic Algorithm (GA), an Enhanced ACO
(EACO) is proposed to come up with the most efficient model. The EACO uses a crossover and
mutation mechanism to alleviate the local optimal solution problem, and to seek a system that offers
an overall global solution using competition and selection procedures. Results show that these
mechanisms provide a good direction for the energy trading operations of a cogeneration system.
This approach also provides a better guide for operation dispatch to use in determining the benefits
accounting for both cost and the environment in a liberty market.

Keywords: cogeneration systems; Time-of-Use (TOU); CO2 emission; Ant Colony Optimization

1. Introduction

Cogeneration systems, which combine heat and power (CHP) systems, have previously been
extensively applied in industry. They offer an economic strategy providing both heat and power,
which can then be passed on to buyers. Cogeneration systems offer a significant advantage when
it comes to consideration of environmental issues. They are used as a distributed energy source,
which can simultaneously sell both thermal steam and electricity to other industries. They can also be
constructed in urban areas and used as distributed energy resources in microgrids [1–3]. In recent
decades, consolidated cogeneration solutions have been used in industrial applications [4], while
cogeneration system applications continue to grow. However, more experience is required in order to
achieve the most efficient and energy-saving operation of these systems. To improve the competiveness
of cogeneration systems in a liberalized market, an efficient tool for achieving the optimal operation of
these systems must be developed.
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To date, several efficiency strategies have been developed to achieve this optimal operation [5–19].
Ref. [5] presented a generalized network programming (GNP) to perform the economic dispatch
of electricity and steam in a cogeneration plant. Ref. [6] presented an dispatching scheme which
economically transfers energy between facilities and utilities. An optimal operation of the cogeneration
system is proposed, which will integrate energy into the electricity grid by using the decision-making
technique [7]. Ref. [8] is used to assess the potential process of using micro-cogeneration systems
based on Stirling engines. The results demonstrate that a numerical analysis of the Stirling engine
can accurately indicate the operation of the actual machine. Ref. [9] used a non-linear programming
with Time-of-Use (TOU) rates considered during operation. Ref. [10] presented the operation
of steam turbines experiencing blades failures during peak load times of the summer months at
a cogeneration plant. The author of [11] applied some possible technologies to integrate pulp and paper
production within the context of a high-efficiency cogeneration system. Grey wolf optimization [12]
and cuckoo search algorithms [13] are proposed to simultaneously solve the economic logistics of
using a combined heat and power system. Ref. [14,15] presented the suggested economical operation
of a cogeneration system under control, with resultant multi-pollutants from a fossil-fuels-based
thermal energy generation. The author of [16] introduced an original framework based on identifying
the characteristics of small-scale and large-scale uncertainties, whereby a comprehensive approach
based on multiple time frames was formulated. Ref. [17] developed a tool for long-term optimization
of cogeneration systems based on mixed integer linear-programming and a Lagrangian relation.
Ref. [18] proposed an enhanced immune algorithm to solve the scheduling of cogeneration plants
in a deregulated market. Ref. [19] addressed an optimal strategy for the daily energy exchange of
a 22-MW combined-cycle cogeneration plant in a liberty market.

One of the key issues of a cogeneration operation is heat and power modeling. In the papers
described above, pure power dispatch was a major objective. Inevitably, though, more design
objectives coupled with higher constraints will have to be incorporated. The energy trading dispatch
of cogeneration systems is a complicated process, especially when the solution is being sought in
a world of uncertainty. Conventional methods have thus become more difficult to solve. Recently,
artificial intelligence (AI) has been applied in the economic dispatch of cogeneration systems [20–23].
The strategies proposed by AI algorithms must consider computer execution efficiency and a large
computing space. Conventional algorithms may be faster, but are very often limited by the problem
structure, and may diverge, or lead to a local minimum. This paper therefore proposes an Enhanced
Ant Colony Optimization (EACO) to solve the energy trading dispatch of cogeneration systems.

Ant Colony Optimization (ACO) applies the activity characteristics of biotic populations to search
optimization problems [24,25]. When ants are foraging, they not only refer to their own information
but also learn from the most efficient ants in order to correct their route. They learn and exchange
their information to search for the shortest route between their colony and food sources, and pass
this information on until the whole ant colony reaches optimal status. The advantages of the ACO
algorithm are that individual solutions within a range of possible solutions can converge to discover
the optimal solution through a small number of evolution iterations. ACO has previously been applied
to the economic dispatch of power systems [26–30]; however, while ACO is good at global searches,
the populations produced are still a dilemma. In this paper, an EACO algorithm is proposed to improve
this search ability. In the EACO, the crossover and mutation mechanisms [31] are used to generate
offspring equipped to escape the local optimum. This paper proposes the use of EACO to solve the
energy trading dispatch of the cogeneration systems by considering the TOU rate [32]. The different
carbon prices of CO2 emissions are also simulated and analyzed in the energy trading dispatch of these
cogeneration systems. It can show the performance of the energy trading dispatch of the cogeneration
systems to obtain the maximal profit.
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2. Problem Formulation

Figure 1 shows M back pressure steam turbines, N extraction condensing steam turbines, and K
high pressure steam boilers, where the high and medium pressure steam systems are connected by
a common pipeline. Part of the generated electricity is supplied to the service power, and the excess
electricity is sold to the power company. Input/Output (I/O) models of the boiler and turbine are
described as follows.

Energies 2019, 12, x FOR PEER REVIEW 3 of 15 

 

common pipeline. Part of the generated electricity is supplied to the service power, and the excess 

electricity is sold to the power company. Input/Output (I/O) models of the boiler and turbine are 

described as follows. 

 

Common Pipeline for High Pressure Steam  115Kg/cm
2

 500
o
C

Common Pipeline for Medium Pressure Steam  20Kg/cm
2
, 300

o
C

G

Back-presure 

steam turbine
NO. 1~M

Fuels

ultrapure 

Water

Boiler
NO. 1

Sh,1~M

Boiler
NO. 2

S b,1

Boiler
NO. K

PRV1
PRV2G

extraction condensing 

steam turbines
NO. 1~N

Cooling 

water

 

Pg,1 Pg,M+N

Electricity Utility

S b,2 S b,K

Sh, 1~N

Sm,1~M

Sm, 1~N

High-pressure 

steam demand
Dh

Dm

Medium-pressure 

steam demand

Common power line

Steam 

valve

Steam 

valve

Power demand 

P Load

…… ……

Sw, 1~N
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2.1. Operation Models of Boilers

By using the Least-Square Support Vector Machine (LSSVM) [33], the operation models of boilers
can be calculated from boiler operational records as shown in Figure 2. The temperature, pressure, fuel
consumption, and steam generation for a real cogeneration system are measured from the operational
data of boilers. The LSSVM is used for model training, and the input layer data are transferred to the
output layer through the LSSVM. In general, using the Radial Basis Function Network (RBFN) kernel
function, K(x, y) = e(−σ

2
|x−y|2), can yield a good prediction of the LSSVM model. Therefore, we adopt

the RBFN kernel function as the kernel function of the LSSVM model. The error is calculated by using
Mean Absolute Percentage Error (MAPE) as shown in Equation (1):

MAPE =
1
T

∑T

t=1

∣∣∣SA
t − SF

t

∣∣∣
SA

t

× 100% (1)
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where SA
t is t actual operation data to be predicted SF

t is the t operation data constructed with LSSVM,
and T is total training time.Energies 2019, 12, x FOR PEER REVIEW 4 of 15 
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Figure 2. Operation model of boilers using the LSSVM.

2.2. Operation Model of Steam Turbines

The steam from back-pressure steam turbines flows to the single inlet. After the high temperature
and high pressure steam enters the steam turbine, the pressure reduces, the volume expands, and the
temperature reduces. The steam in the outlet end is the 20 kg/300 ◦C medium pressure steam required
for the process. The operation of the back-pressure steam turbine relies on the relationship between
steam flow at the outlet and the generated electricity; the operation model of the back-pressure steam
turbine is constructed by LSSVM, as shown in Figure 3.
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Extraction condensing turbines are different from the backpressure turbines, meaning the extraction
condensing turbines have a single steam inlet. In the multi sections, after extraction of the middle/low
pressure steam and exhaust of the steam at the final section, the condensing turbines are shown as in
Figure 1. LSSVM is used to construct the generated electricity functions between the process steam
outlet flow and the steam flow at the condensing section. The operation model constructed by LSSVM
is shown in Figure 4.
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Figure 4. Operation model of the extraction condensing steam turbines using LSSVM.
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2.3. Emission Model

CO2 emission models may be defined based upon the amount of fuel consumed. The model of
emission for CO2 is formulated by the IPCC [34] as:

Eco2,i(t) = H
(
Pgi(t)

)
× 4.1868×

44
12
×CEPi ×CORi (2)

H
(
Pg,i(t)

)
= di + eiPgi(t) + fiP2

gi(t) + giP3
gi(t), approximated by the three order function gives the

thermal conductivity of each kind of unit. di, ei, fi, gi are the coefficients of the emission of unit i.
CEPi is the carbon emission parameter of unit i (21.1 kg-C/GJ for oil, 25.8 kg-C/GJ for coal, 15.3 kg-C/GJ
for natural gas) and CORi is the carbon oxidizing rate of unit i (0.99 for oil, 0.98 for coal, 0.995 for
natural gas).

2.4. Objective Function and Constraints

The purpose of the proposed scheme is to maximize profit while satisfying operational constraints.
The objective function, including profit from steam sold, profit from electricity sold, fuel costs, emissions
costs, wheeling costs, and water costs, is formulated in Equation (3):

maxTC(·) =
T∑

t=1

[
TCsteam(t) + TCelect(t) − TC f uel(t) − TCemiss(t) − TCtran(t) − TCwater(t)

]
(3)

(1) The profit from thermal steam sold:

TCsteam(t) = Sout(t) × Steamcost (4)

(2) The profit from electricity sold:

TCelect(t) = TOU(t) × Ptie(t) (5)

(3) The cost of fuel:

TC f uel(t) =
∑K

i=1
Fbi(Sbi(t)) × Fuel_cos t (6)

(4) Emission costs:

TCemiss(t) = CC ×

K∑
i=1

ECO2,i(t) (7)

(5) Wheeling costs:
TCtran(t) = WUC× Ptie(t) (8)

(6) The cost of pure water:
TCwater(t) = WC×Wb(t) (9)

Cc: The charged emission price for CO2.(NT$235/ton) [35]; Fbi(Sbi(t)): consumed enthalpy of the i
steam boiler at t hour; Fuel_cost: The fuel cost(NT$/MBTU) for coal, gas, and oil; Sout(t): The thermal
steam sold at time t (ton/h); Steamcost: The price of thermal steam sold (NT$/ton); Ptie(t): The electricity
sold to utility at time t; TOU(t): Time-of-Use rate (NT$/KWH), as shown in Table 1 [32]; Wb(t): The
water used by boilers at time t (ton/h); WC: The cost of water (NT$/ton); WUC: the wheeling cost
(NT$/MWH).
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Table 1. The time-of-use rates of Taipower Company.

Electricity Sale Rate (NT$/KWH) Utility Buy-Back Rate
NT$/KWHLevel 1 Level 2

Peak Period 3.04 2.7480 3.04
Semi-peak Period 1.83 1.5767 1.83
Off-peak Period 0.69 0.4729 0.69

Level 1: power exported at under 20% rated capacity; Level 2: power exported at over 20% rated capacity.

The operation constraints are considered as follows:
(1) Power balance in the power system:

M+N∑
i=1

Pgi(t) − Pite(t) − Pload(t) = 0 (10)

(2) Steam balance for boilers, turbines, sold, and industrial processes:∑K

i=1
Sbi(t) −Dh(t) −

∑M+N

i=1
Shi(t) = 0 (11)

∑M+N

i=1
Shi(t) −

∑M+N

i=1
Smi(t) −

∑N

i=1
Swi(t) = 0 (12)∑M+N

i=1
Smi(t) −Dm(t) − Sout(t) = 0 (13)

(3) Operation constraints for boilers, steam turbines and power generation:

Smin
bi ≤ Sbi(t) ≤ Smax

bi , i = 1, 2, 3, . . . , K (14)

Smin
hi ≤ Shi(t) ≤ Smax

hi , i = 1, 2, 3, . . . , M + N (15)

Smin
mi ≤ Smi(t) ≤ Smax

mi , i = 1, 2, 3, . . . , M + N (16)

Smin
wi ≤ Swi(t) ≤ Smax

wi , i = 1, 2, 3, . . . , N (17)

Pmin
gi ≤ Pgi(t) ≤ Pmax

gi , i = 1, 2, 3, . . . , M + N (18)

Dh(t), Dm(t): The high/medium pressure steam demands of industry at time t (T/h); Pload(t): The
load of cogeneration system at time t; Smin

bi , Smax
bi : Minimal/maximal limits of steam for boiler i; Smin

hi ,
Smax

hi : Minimal/maximal limits of high pressure steam for turbine i; Smin
mi , Smax

mi : Minimal/maximal limits
of medium pressure extraction steam for turbine i; Smin

wi , Smax
wi : Minimal/maximal limits of medium

pressure exhausted steam for turbine i; Pmin
gi , Pmax

gi : Minimal/maximal limits of the generated power for
turbine i.

3. Solution Algorithm

This study proposes an EACO, which combines the ACO and Genetic Algorithm (GA), in order
to achieve the optimal energy trading dispatch of a cogeneration system. Crossover and mutation
mechanisms are integrated into the ACO procedure, and serve to generate offspring in order to escape
from the local optimum. The EACO procedure applied in the energy trading dispatch of a cogeneration
system is described as follows.

(1) Input Data

Input data includes high/medium steam demand, internal load, plant type, plant capacity, and
number of plants.
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(2) Set EACO Parameters

EACO parameters include the population of ants (k), the number of generations (G), initial
pheromone (τ0 = 0.1), the relative influence of the pheromone trail (α = 1), the relative influence of
the heuristic information (β = 2), and the pheromone evaporation rate (ρ = 0.5).

(3) Initialized Individuals

R
i
s =

{
Si

b, Si
m, Si

w

}
is an individual, i = 1, 2, . . . , k. k, which is the number of ants, is set to 30 in

our study. s is the number of parameters. All individuals are set between the minimal and maximal
limits with a uniform distribution as shown in Equation (19). The fitness score of each Ri

s is obtained
by calculating the objective function (TC(·)) by considering Equations (10)~(18). The fitness values
were arranged in descending order from the maximum (TC(Ri

s)max) to the minimum (TC(Ri
s)min).

R
i
s = R

i
smin + Rand×

(
R

i
smax −R

i
smin

)
(19)

Rand: The uniform random number in (0,1).

(4) The State Transition Rule

The state-based ants are generated according to the level of pheromone and constrained conditions.
The transition probability for the k− ant from one state s to the next j is at the t− th interval, as given in
Equation (20):

Pk
t,sj(g) =


[τt,sj(g)]

α
×[ηt,sj(g)]

β∑
l∈Nk

t (s)
[τt,sl(g)]

α
×[ηt,sl(g)]

β , i f j ∈ Nk
t (s)

0 , others

(20)

where ηt,sj(g) and ηt,sl(g) are the inverse of the edge distance at the g− th generation, which are defined
as Equations (21) and (22):

ηt,sl(g) =
1∣∣∣∣∣TC

(
Rt,s

)
− TC

(
Rt,optimal

)∣∣∣∣∣ (21)

ηt,sl(g) =
1∣∣∣∣TC

(
Rt,s

)
− TC

(
Rt,l

)∣∣∣∣ , l ∈ Nk
t (s) (22)

TC(·) is the objective function as given in Equation (3). TC
(
Rt,s

)
and TC

(
Rt,l

)
are the score of the

s− th and l− th individuals at the t− th interval, and TC
(
Rt,optimal

)
is the optimal fitness score at the

t− th interval. Nk
t (s) is the number of feasible individuals at the t− th interval.

τt,sj(g) and τt,sl(g) are the pheromone intensity on edge (s, j) and edge (s, l) at the g− th generation.
Ant k positioned on state s chooses to move to the next state by taking account of τt,sl and ηt,sl. When
the value of τt,sl increases, this indicates there has been a lot of traffic on this path and it is therefore
more desirable in order to reach the optimal solution. When the value of ηt,sl increases, it indicates that
the current state should have a higher probability. Each stage contains several states, while the order of
states selected at each stage can be combined as an achievable path deemed to be a feasible solution to
the problem.

(5) Ant Reproduction

New ants are generated by the scheme of crossover and mutation. Crossover is a structured
recombination operation that exchanges two individual ants. Mutation is the occasional random
alteration of an individual. The crossover and mutation scheme is described as follows:
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(i) Randomly select two parents, and generate offspring by assigning a Control Variable (CV(g))

(a) If rang > CV(g) : Mutation is used;
(b) If rang > CV(g) : Crossover is used. Rand: the uniform random in [0, 1]; CV(g): the control

variable between 0.1 to 0.9. The initial value set to 0.5; g: the current iteration number.

(ii) If TC
(
<t,optimal

)
comes from crossover used, the control variable CV(g + 1) will be decreased as

shown in Equation (23):
CV(g + 1) = CV(g) − RP (23)

where RP =
|CV(g)−CV(g−1)|

2 is the regulated parameter. When RP is added in the crossover
process, the higher probability for crossover operation will produce the next offspring.

(iii) If TC
(
<t,optimal

)
comes from mutation, the control parameter CV(g + 1) will be increased as

shown in Equation (24):
CV(g + 1) = CV(g) + D (24)

Similarly, when RP is added in the mutation process, the higher probability for mutation operation
will produce the next offspring.

(iv) If TCmin(g− 1) = TCmin(g), the control variable needs to hold back. If CV(g) > CV(g− 1),
we have:

CV(g + 1) = CV(g) − D (25)

otherwise,
CV(g + 1) = CV(g) + D (26)

The crossover operator proceeds to exchange two individual ants by random. Rt,s and Rt,l, which
are the s− th and l− th individual ants at the t− th interval, are exchanged by the crossover operator.
The mutation operation is carried out to produce another individual ant. Each individual ant is
mutated and created to a new individual ant by using (27).

R
j+1
t,s = R

j
t,s + N

(
0, σ2

)
(27)

N
(
0, σ2

)
represents a Gaussian random variable with mean 0 and variable σ2. σ2 can be

calculated by:

σ = β×
(
R

j
t,s, max −R

j
t,s, min

)
×

TC(·)k

TC(·)k
max

(28)

β, which is a mutation factor at the j-th generation, is set within [0, 1].

(6) Update the Pheromone

While building a solution to the problem, the pheromone of a visited route can be dynamically
adjusted by Equation (29). This process is called the “local pheromone-updating rule”:

τk+1
t,sj = (1− ρ)τk

t,sj + ∆τk
t,sj (29)

ρ is the constant of pheromone intensity (0 ≤ ρ ≤ 1) and ∆τk
t,sj is the deviation of pheromone intensity

on edge (s, j) at the t − th interval, as shown in Equation (30):

∆τk
t,st =


Q/ek

t,sj , the path(s, j) f or k− th ant

0 , other

 (30)

Q is the release rate of pheromone (0 ≤ Q ≤ 1) and ∆ek
t,sj is the path error (s, j) for the k-th ant.
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(7) Stopping Rule

If a pre-specified stopping condition is satisfied, the run must be stopped and the results outputted;
otherwise, return to step 4. In this study, the stopping rule is set at 300 generations.

4. Case Study

The proposed algorithm was tested with three back-pressure steam turbines, four extraction
condenser steam turbines and seven steam boilers using gas, oil, and coal as fuel. Steam generation
was measured in the field. All facilities including generators, boilers, and steam turbines have their
capacity limitation. The limits of all facilities are introduced in Tables 2 and 3.

Table 2. Maximal and minimal limits of boiler flows and generators.

Unit No. Fuel Type Min. (ton) Max. (ton) Unit No. Min. (MW) Max. (MW)

Boiler1 Gas 68 137.5 Gen1 4.1 10
Boiler2 Gas 52 120 Gen2 4.9 10
Boiler3 Gas 60 137.5 Gen3 4.4 10
Boiler4 Oil 52 100 Gen4 15.6 50
Boiler5 Coal 127 250 Gen5 20 100
Boiler6 Coal 84 280 Gen6 20 100
Boiler7 Coal 90 300 Gen7 20 100

Table 3. Steam output limits.

Unit No. Unit Type Min. (ton/h) Max. (ton/h)

Mm1 Back-pressure 75 120
Mm2 Back-pressure 55 140
Mm3 Back-pressure 50 80
Mm4 Extraction condenser steam 30 150
Mm5 Extraction condenser steam 30 150
Mm6 Extraction condenser steam 30 150
Mm7 Extraction condenser steam 30 150
Mw4 Extraction condenser steam 20 200
Mw5 Extraction condenser steam 25 300
Mw6 Extraction condenser steam 25 300
Mw7 Extraction condenser steam 25 300

4.1. Modeling Tests for Boilers and Steam Turbines

In this paper, the operation data of the boilers in the cogeneration system are recorded during the
periods of each normal working day. The number of operation data samples for each boiler is 60; these
are used to establish the operational models of boilers 1–7. The error results are shown in Table 4, and
the example for operation models of boilers 1–2 are shown in Figure 5.

Table 4. The error results for the operation model of boilers.

Unit No. Number. of Operation Data LS Error (%) LSSVM Error (%)

Boiler1 60 4.0999 3.1537
Boiler2 60 3.0520 2.0379
Boiler3 60 3.1001 1.6948
Boiler4 60 2.9621 1.8252
Boiler5 60 2.6386 1.7779
Boiler6 60 2.6326 1.7169
Boiler7 60 2.7150 1.5325
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In this paper, the operation data of the backpressure steam turbines (ST1~3) and extraction
condensing steam turbines (ST4~7) in the cogeneration system are recorded and used by LS and
LSSVM to establish the operation models of the steam turbines (ST1~7). The error results are shown
in Table 5, and the example for the operation curves of steam turbines ST1 and ST6 are shown in
Figure 6. The error results for the operation model of steam turbines is from 1.3916% to 2.1475%. It can
be proved that the accuracy is reliable.

Table 5. The error results for the operation model of steam turbines.

Unit No. Number. of Operation Data LS Error (%) LSSVM Error (%)

ST1 54 2.2081 1.5324
ST2 54 2.1404 1.4494
ST3 90 2.1960 1.7109
ST4 90 2.2494 1.9637
ST5 90 2.6757 2.1475
ST6 135 2.0326 1.5379
ST7 135 7.4892 1.3916

Energies 2019, 12, x FOR PEER REVIEW 11 of 15 

 

  

Figure 6. Example for the operation models of steam turbines (ST1/ST6). 

4.2. Results at Different TOU Intervals 

EACO was used to solve the energy dispatch of the cogeneration systems under a liberalized 

market. In the study system, the internal load was 30 MW and the steam demands of the industry for 

high- and medium-pressure were 60 T/H and 600 T/H, respectively. Table 6 shows the simulation 

results at the different TOU intervals. Table 6 indicates that all constraints were met. Since the 

electricity price is higher at the peak period, the operation strategy of cogeneration systems sold 

more power to the utility in order to achieve greater benefit. During off-peak periods, the 

cogeneration systems sell more thermal steam power to attain further benefits. It can be shown that 

the operation dispatch of the cogeneration systems during the peak period generated 273.321 MW 

and sold about 243.321 MW to the utility. During the peak period, all generators produced their 

highest outputs, while tending to sell the thermal steam to industries during semi-peak and off-peak 

periods. The TOU rate plays an important role in the economic dispatch of a cogeneration system. 

Table 6. Dispatch results at different TOU intervals. 

TOU Peak Period Semi-Peak Period Off-Peak Period 

1gP  (MW) 5.322  4.100  6.235  

2gP  (MW) 6.704  5.182  5.061  

3gP  (MW) 5.355  6.175  6.362  

4gP  (MW) 50.000  50.000  50.000  

5gP  (MW) 70.212  33.103  32.389  

6gP  (MW) 49.873  33.967  21.210  

7gP  (MW) 85.856 31.445 31.445  

Total Generation (MW) 273.321 163.972 152.703 

tieP  (MW) 243.321 133.972 122.703 

wS  (ton/h)
 521.944  129.219  98.716 

outS  (ton/h)
 0.000  535.781  566.284 

Table 7 gives a profit analysis of cogeneration systems at different TOU intervals. The profits 

during peak period, semi-peak period, and off-peak peroid are 267,678.05, 13,606.32, and 

−121,047.33, respectively. The profit is lost during the off-peak period. As the cogeneration systems 

sell more power to utilities during the peak period, greater profits are realized. In the off-peak 

period, cogeneration systems sell more thermal steam to industries, thereby optimizing the energy 

trading dispatch. From Table 7, it is noted that the TOU rate influences the profits of the 

cogeneration system. 

Figure 6. Example for the operation models of steam turbines (ST1/ST6).

4.2. Results at Different TOU Intervals

EACO was used to solve the energy dispatch of the cogeneration systems under a liberalized
market. In the study system, the internal load was 30 MW and the steam demands of the industry
for high- and medium-pressure were 60 T/H and 600 T/H, respectively. Table 6 shows the simulation
results at the different TOU intervals. Table 6 indicates that all constraints were met. Since the electricity
price is higher at the peak period, the operation strategy of cogeneration systems sold more power to
the utility in order to achieve greater benefit. During off-peak periods, the cogeneration systems sell
more thermal steam power to attain further benefits. It can be shown that the operation dispatch of the
cogeneration systems during the peak period generated 273.321 MW and sold about 243.321 MW to



Energies 2019, 12, 2868 11 of 15

the utility. During the peak period, all generators produced their highest outputs, while tending to
sell the thermal steam to industries during semi-peak and off-peak periods. The TOU rate plays an
important role in the economic dispatch of a cogeneration system.

Table 6. Dispatch results at different TOU intervals.

TOU Peak Period Semi-Peak Period Off-Peak Period

Pg1 (MW) 5.322 4.100 6.235
Pg2 (MW) 6.704 5.182 5.061
Pg3 (MW) 5.355 6.175 6.362
Pg4 (MW) 50.000 50.000 50.000
Pg5 (MW) 70.212 33.103 32.389
Pg6 (MW) 49.873 33.967 21.210
Pg7 (MW) 85.856 31.445 31.445

Total Generation (MW) 273.321 163.972 152.703

Ptie (MW) 243.321 133.972 122.703
Sw (ton/h) 521.944 129.219 98.716
Sout (ton/h) 0.000 535.781 566.284

Table 7 gives a profit analysis of cogeneration systems at different TOU intervals. The profits
during peak period, semi-peak period, and off-peak peroid are 267,678.05, 13,606.32, and −121,047.33,
respectively. The profit is lost during the off-peak period. As the cogeneration systems sell more power
to utilities during the peak period, greater profits are realized. In the off-peak period, cogeneration
systems sell more thermal steam to industries, thereby optimizing the energy trading dispatch. From
Table 7, it is noted that the TOU rate influences the profits of the cogeneration system.

Table 7. Profit analysis of cogeneration systems at different TOU intervals. Unit: NT$/H.

TOU Item Peak Period Semi-Peak Period Off-Peak Period

The profit for thermal steam sold 0.00 364,331.01 385,073.34
The profit from electricity sold 690,837.19 230,485.22 74,525.76

The cost of fuel 350,910.68 512,287.60 512,287.60
Emissions cost 199,499.69 208,611.45 208,611.45
Wheeling cost 12,166.03 6698.62 6135.14

The cost for pure water 13,200.00 13,200.00 13,200.00
Profit 267,678.05 13,606.32 −121,047.33

4.3. Convergence Test

Table 8 shows the comparisons of EP, GA, PSO, ACO, and EACO during different periods. An IBM
PC with a P-IV2.0 GHz CPU and 512 MB SDRAM was used for this test. From this, the improvement
of the EACO over other algorithms is clear. Figure 7 shows the convergent characteristics of EP, GA,
PSO, ACO, and EACO during the peak period. The average execution times for EACO and ACO were
only 1.85 s and 1.67 s, respectively. Although the executed performance of EACO was subtle, it showed
the capacity of EACO to explore a solution more likely to offer maximum benefit.

Table 8. Comparison of EP, GA, PSO, ACO, and EACO algorithms. Unit: NT$/H.

Algorithm Peak Period Semi-Peak Period Off-Peak Period

EP 263,849.60 12,813.87 −123,289.77
GA 265,247.33 13,104.46 −122,999.72
PSO 266,904.29 13,489.53 −122,030.83
ACO 266,151.07 13,104.46 −122,192.54

EACO 267,678.05 13,606.32 −121,047.33
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4.4. Robustness Test

Four algorithms including EP, GA, PSO, and ACO, were also tested at the peak period; the
results are shown in Table 9. Each algorithm was executed using 100 trials during the robustness test.
The number of optimum and average converged profit for EACO are 87 and NT$261,618.29. It is seen
that EACO offers a greater ability to attain maximum profits and a higher probability of finding the
best solution.

Table 9. Robustness test for EP, GA, PSO, ACO, and EACO algorithms in a peak period.

Algorithm
Maximal

Converged
Profit (NT$)

Minimal
Converged
Profit (NT$)

Average
Converged
Profit (NT$)

Average Number
of Generations to

Converge

No. of Trials
Reaching
Optimum

Average
Execution
Time (s)

EP 263,849.60 243,046.09 257,971.45 196 48 1.5341
GA 265,247.33 245,041.34 260,068.28 237 54 2.2153
PSO 266,904.29 254,865.39 262,555.59 173 57 1.6124
ACO 266,151.07 252,420.70 261,618.29 213 66 1.6741

EACO 267,678.05 259,030.88 264,500.37 184 87 1.8476

4.5. The Influence of Carbon Price

Table 10 shows the impact of various carbon prices experienced during the peak period. Table 10
suggests that if carbon prices are higher, CO2 emissions will decrease. Similarly, due to the fuel type
for extraction-condenser turbines being oil or coal, power generation will be reduced depending upon
the carbon price. The purpose of various carbon prices here is to illustrate the tradoff between profit
and emission costs, and also to show that generators may more economically dispatch trade electricity
or CO2 emission to find better profit.

Table 10. The impact of various carbon prices during the peak period.

Carbon Price
(NT$)

Back-Pressure Turbine
Generation (MW)

Extraction-Condenser
Turbine Generation (MW) Profit (NT$) Emission Cost

(NT$)

0 18.12 254.55 322,925.81 0.00
400 18.00 249.85 241,469.31 74,714.14
800 18.11 212.03 188,316.27 96,104.88

1200 17.52 172.72 142,085.10 99,394.94
1600 17.01 154.71 111,351.34 100,419.06
2000 15.36 149.44 94,250.70 105,522.53
2400 18.17 135.76 74,312.66 108,103.17
2800 18.11 135.76 56,215.64 123,906.39
3200 15.36 138.73 39,297.50 138,744.85
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Figure 8 shows the profit-emission tradeoff curves during the peak period. Figure 8 provides
diversified alternatives for decision makers, showing the effects of various carbon prices. Replaced
with the maximal allowable emission as a constraint, an appropriate decision can be chosen to satisfy
the desired level of profit and emission costs.
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5. Conclusions

In this paper, an EACO is proposed to maximize the profit of energy trading using a cogeneration
system. The objective function is formulated based upon a maximal profit model, which includes
profit from steam sold, profit from electricity sold, fuel costs, CO2 emission costs, wheeling costs, and
water costs. By considering the various carbon prices, the profits of the energy trading dispatches
are evaluated while considering three different TOU scenarios. The effectiveness of the EACO is
demonstrated and simulated on a real cogeneration system. Our analysis points to expectations of the
TOU rate or carbon price for the energy trading dispatch. With the advantages of both heuristic ideals
and ACO, EACO has threefold conventional ideals: the complicated problem is solvable, with a better
performance than ACO, and the more likelihood to get a global optimum than heuristic methods. The
results indicate that both provide good tools for determining the optimum energy trading operation
of a cogeneration system. This shows that the tradeoff between investment cost and environmental
protection can be clearly predetermined in the liberty market. EACO also has great potential to be
further applied to many ill-conditioned problems in power system planning and operations.
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