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Abstract: Recently, wind energy conversion systems (WECSs) have attracted attention due to their
effective application in renewable energy sources. It is a complex system with multi-variables, strong
coupling, non-linearity, and variable parameters; however, traditional control systems are inadequate
in answering the demands of complex systems. In order to solve the complexity and improve the
transient stability during grid faults and power fluctuations, this paper proposes a fuzzy logic system
with the linear extended state observer (FLS-LESO) applied to WECSs based on a permanent magnet
synchronous generator (PMSG). The FLS-LESO consists of a fuzzy logic controller, a conventional PD
controller, and the linear extended state observer (LESO). This paper analyzes the mathematical model
of a wind power system and combines it with LESO to improve the estimation accuracy of the observer
and further improve the control performance. In the simulation study, the control performance of
the FLS-LESO was also tested under various operating conditions using the MATLAB/Simulink
simulation platform to verify the correctness and effectiveness of the control system.

Keywords: wind energy conversion system; grid faults; power fluctuations; transient stability;
fuzzy logic system; linear extended state observer

1. Introduction

Because of the abundant necessity of energy harvest and continuous depletion of fossil fuels,
demands of renewable energy sources are gaining more attention [1,2]. There are many methods of
generating electricity from renewable sources, such as the wind turbine and solar panel. Wind turbines,
which convert wind energy into electrical energy, are the most important of these methods. Many types
of generator are used in wind turbines [3,4]. A permanent magnet synchronous generator (PMSG)
has recently begun to attract the attention of wind turbine manufacturers due to its superior features.
The PMSG is supplied to the electrical grid system by means of the grid-side converter (GSC),
machine-side converter (MSC), and control systems [5,6]. The fault ride-through (FRT) capability
is one of the important issues for the operation system of the wind power system [7–10]. The grid
connection requirements (GCRs) involve the operational condition control of the distributed power
system [11]. The GCRs have to provide efficiency and reliability to the electrical grid system. The wind
turbine (WT) must remain connected to the electrical grid system during grid faults [12]. The fault
ride-through is depicted in three stages [13]:

• In the first stage, a WT constantly supplies an electrical power grid system during grid fault time
or machine-side power fluctuates during grid normal time;
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• In the second stage, the machine-side power and the network side power cannot maintain the
balance, the surplus energy accumulates in the DC bus and causes its voltage fluctuation;

• In the third stage, through the output of the control system, the power of both sides of the converter
is rebalanced.

All these requirements must be considered in the design of the controller and power converter of
the WECS. This design increases the stability of the WECS during a grid fault [14]. Therefore, it is of
great practical significance to further study the control strategy to enhance the operation performance
of wind power systems when grid-side voltage changes and machine-side power fluctuates.

Many methods are proposed in the literature for the FRT capability enhancement. The peak
current limitation for a high-power PMSG was realized in Reference [15]. Maximum power point
tracking (MPPT) was implemented in the GSC and MSC. An active crowbar is kept the DC link voltage
value by using this method [16]. A superconducting fault current limiter (SFCL) was implemented for
the FRT enhancement of a PMSG in Reference [17]. However, this requires additional circuit links,
which not only increases the design difficulty of WECS, but also increases the upfront investment and
maintenance cost. The static synchronous compensator (STATCOM) has been implemented to analyze
a dynamic mechanism for a wind farm [18]. A coordinating control system for wind turbines was
presented in Reference [18]. However, STATCOM has disadvantages, such as high cost and additional
hardware needs. A braking chopper (BC) system was implemented for the FRT enhancement of
a PMSG in Reference [19–21]. The presented method achieved reductions in the fault currents in DC
systems. This method has some advantages, such as low cost and a simple control structure.

Recently, soft computing methods have started to develop rapidly with the development of
computer technology. Soft computing methods are applied in real-world applications, such as renewable
energy and automotive and motor control. Soft computing methods are widely implemented in
wind power applications, such as for maximum power point tracking (MPPT) control, pitch control,
fault diagnosis, wind power integration, wind turbine power control, and prediction of wind speed
and power. Soft computing methods consist of four computing algorithms such as predictive method,
genetic algorithm, artificial neural networks, and fuzzy logic controllers.

The fuzzy logic controller has a number of distinguishing advantages over conventional controllers.
It is not so sensitive to variations of system structure, parameters and operation points and can be
easily implemented in a large-scale nonlinear system. Furthermore, the fuzzy logic controller is
a sophisticated technique that is easy to design and implement. In the past decade, many researchers
have attempted to combine conventional proportional plus integral plus derivative (PID) controllers
with fuzzy logic to improve controller performance [22–24]. The fuzzy logic controller has two input
signals, and the output signal of the fuzzy logic controller is the input signal of the conventional
PID controller. Through fuzzy reasoning, the parameters are adjusted adaptively, and the transient
process of the system is improved. But in the actual system, the derivative element is usually not used
because of the noise signal. The sampling time of fuzzy controller determines the control precision.
Too huge sample interval worsens the transition process, and too short sample time greatly increase
the computation and input cost. In addition, the fuzzy logic control is a type of soft computing method
that overcomes the uncertainties of some systems [25]. Uncertainty is a natural part of intelligent
systems in many applications. However, fuzzy logic control does not fully deal with the uncertainties
of intelligent systems.

The LESO can be used to solve the core problem of the uncertainties of the model and disturbance
observation in reference [26]. Using the idea of state observer, the disturbance which affects the
output of the controlled object is expanded into a new state variable, and a state observer which can
observe the extended disturbance is established by using a special feedback mechanism. This LESO
can observe disturbances and obtain estimates without relying on the perturbation generating model
or direct measurement.

This paper designs a fuzzy logic system with linear extended state observer (FLS-LESO) to
improve the control performance of the WECS. On the one hand, by introducing LESO to observe and
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compensate the disturbance, the negative effects such as slow response, easy oscillation and saturation
of control quantity caused by the use of integral element are avoided. Moreover, the derivative element
can be used in the system to further improve the tracking performance of the system. On the other hand,
the adjustment burden of fuzzy controller is reduced by integrating some known system information
into LESO. The sampling time of fuzzy controller can be increased appropriately to reduce the input
cost of microcomputer. All simulation results proved that the presented a FLS-LESO has the capability
to improve the FRT capability of a PMSG.

2. Wind Energy Conversion System

A WECS consists of a blade generator, control system, transformer, and power electronics
components [27], as shown in Figure 1. Wind turbines convert wind energy into electrical energy.
The direct-drive permanent magnet synchronous wind turbine is connected to the power grid through
full power back-to-back converters. The machine-side converter controls the motor speed or torque to
realize the maximum power tracking of wind energy [28,29]. The grid-side converter mainly stabilizes
the DC bus voltage and controls the grid-connected power factor and power quality.
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Figure 1. Schematic diagram of the direct-drive permanent-magnet wind generator.

The topological structure of WECS is shown in Figure 2. The inverter circuit adopts full bridge
AC/DC converter. Bidirectional switching devices use six common emitter insulated-gate bipolar
transistor (IGBT) switch sequences. Rg, Lg and Cg respectively represent the internal resistance,
filter inductance and capacitance of the grid-side filter. The idc is DC current and udc is DC voltage.
This system adopts the space vector modulation strategy. In order to improve disturbance immunity
and meet the power quality requirements of smart grid, it is necessary to control the grid-connected
inverter of wind power.

According to the topology shown in Figure 2, KVL three-phase voltage equation can be
obtained [30–32]: 
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where Uga, Ugb and Ugc are the inverter voltages of three-phase network side. ULa, ULb and ULc

represent three-phase grid voltages. Iga, Igb and Igc depict three-phase grid-side inverter currents.
The transformation matrix from the three-phase static coordinate system to the two-phase static

coordinate system is:
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The transformation matrix from the two-phase static coordinate system to the two-phase rotating
coordinate system is:

C2s/2r =
2
3

[
cosθ sinθ
− sinθ cosθ

]
(3)
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After conversion:[
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]
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[
−ωIgq
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]
(4)

where Ugd and Ugq are the voltages of the q and d loops in the inverter on the grid-side, respectively.
The ULd and ULq depict the voltages of the d and q loops in the three-phase grid voltage, respectively.
Igd and Igq represent d and q loops currents of the grid-side inverter, and ω is the electric angular of the
grid. The Equation (4) shows that Igd and Igq are controlled by Ugd and Ugq, and are influenced by
ωLgIgq and ωLgIgd, voltage drop RgIgd and RgIgq, and grid voltage ULd and ULq.Energies 2019, 12, x FOR PEER REVIEW 4 of 20 
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Figure 2. Topology and control structure of wind energy conversion system.

The PMSG adopts a full power converter structure to completely isolate the direct drive permanent
magnet motor from the power grid. In the case of low voltage fault, it is more conducive to the stable
operation of the protection system. This topology makes its FRT capability much higher than that
of the doubly fed induction generator (DFIG) system. However, there are still some problems such
as high DC side voltage and converter overcurrent. Grid faults will have a great impact on direct
drive WECS. From the perspective of energy transmission, the transient characteristics of PMSG wind
energy conversion system under the fault of instantaneous grid voltage drop are analyzed, as shown
in Figure 3.
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Figure 3. Schematic diagram of energy flow.

Through the machine-side converter, the permanent magnet synchronous generator (PMSG) input
active power Ps to the DC bus. Ignoring the machine-side converter loss, the output power of the
converter is equal to that of the generator:

Ps = usdisd + usqisq = udcis (5)

where usq and usd are the voltages of the q and d loops in the stator, respectively. The voltages of the
usq and usd are utilized to generate the reference three-phase sinusoidal voltage, and the isd and isq

depict the currents of the d and q loops in the stator, respectively. The is is the DC bus current of the
machine-side converter, and usd is the DC bus voltage of the DC side.

Then, the capacitive current id at the DC side is as follows:

id = C
dudc
dt

= is − ig (6)

where C is the DC bus capacitance, and ig is the DC bus current of the grid-side converter.
Ignoring the power loss of the power device, the input power of the grid-side converter is

consistent with the input power of the power grid, as follows:

Pg = udcig = udgidg + uqgiqg (7)

where udg and uqg are the voltages of the q and d loops in the grid-side, respectively. The igd and igq

depict the currents of the d and q loops in the grid ride, respectively.
During normal operation, the power on both sides of the converter keeps balance (Ps = Pg).

The udc is stable at a certain value, as follows:

Cudc
dudc
dt

= udcis − udcig (8)

Cudc
dudc
dt

= Ps − Pg = ∆P (9)

According to the electrical theory, the storage energy of bus capacitor C in the intermediate DC
link can is illustrated in the Equation (10), as follows:

W =
1
2

Cu2
dc (10)

Therefore, from the Equation (8), during normal operation of the power grid, ∆P is 0 and udc
is a constant value. From the Equation (7), the active power Pg sent by the converter to the power
grid decreases when the power grid voltage falls in fault sags. During this period, assuming that the
wind speed is constant, then the active power Ps emitted by the machine-side is constant. The active
power generated on the machine-side cannot be transmitted to the grid in time, resulting in ∆P > 0.
From Equations (5), (7), (9) and (10), the excess energy will build up on the DC side capacitor, causing
the voltage to rise and the current flowing through the bus capacitor and the grid-side converter to
increase rapidly. Excessive voltage and current can damage capacitors and other devices if not handled



Energies 2019, 12, 2862 6 of 19

properly. In order to avoid losses and meet the requirements of smart grid on power quality, it is
necessary to control the grid-connected inverter of wind power.

3. Structures of Fuzzy Logic System with Linear Extended State Observer

3.1. Fuzzy Controller

With the complexity of the control system and the controlled object, it is manifested by strong
coupling, time-varying parameters and nonlinear characteristic of the control system. The more
prominent problem is that the information quantity obtained from the system object is relatively
reduced, while the requirement for control performance is increasingly higher. Many times, it is difficult
or impossible to establish an accurate mathematical model of the controlled object. The experience
of manual control is described in language and a series of conditional statements are formed, that is,
control rules. Using fuzzy theory, fuzzy language variables and fuzzy logic reasoning, the fuzzy
control rules are upgraded to numerical operations, and the computer USES programs to realize these
control rules. In this way, computer simulation can be used to automatically control the controlled
object [22,23].

The composition of the fuzzy logic controller is shown in Figure 4, which is comprised of four main
components: the fuzzification, the fuzzy inference, the knowledge base and the defuzzification [24].
In the step of input expansion and transfer, discrete input can be scaled appropriately. Fuzzification
converts the exact amount of input into a fuzzy value. After fuzzy reasoning according to certain fuzzy
rules, the appropriate control action is determined by querying the previously established rule table,
and finally the fuzzy control quantity is transformed into the precise quantity.Energies 2019, 12, x FOR PEER REVIEW 7 of 20 
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The fuzzy controller can be divided into single variable fuzzy controller and multi-variable fuzzy
controller. We usually use univariate fuzzy controller, which has one-dimensional, two-dimensional
and multidimensional fuzzy controller. The dimension here refers to the number of input variables for
the controller, as shown in Figure 5.
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The one-dimensional controller is the simplest, but not widely applicable. The control rules of
multidimensional controller are complex, and the algorithm is difficult to implement in engineering
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applications. So a two-dimensional fuzzy controller is widely used in a large number of fuzzy
control systems.

In this study, a fuzzy PID controller with double input was proposed to improve the control
performance of the WECS. This fuzzy PID controller is composed of a traditional PID controller and
a fuzzy logic controller, connected in series, as presented in Figure 6. The fuzzy logic controller has
two input signals, namely, DC bus voltage error (e) and its derivative (e′), and then the output signal
(KP, KI, KD) of the fuzzy logic controller is the input signal of the conventional PID controller. Finally,
the output signal from the traditional PID controller, called the control signal (u), is used for stabilizing
the WECS.
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In order to improve the response speed of the control system, an improved fuzzy controller is used
in the WECS. The controller originally controlled the three parameters KP, KI and KD. The improved
controller controls the increment of KP, KI and KD, namely ∆KP, ∆KI and ∆KD. The incremental
change is relatively small, requiring significantly less computation than KP, KI and KD. After the fuzzy
controller, there is a retainer, which preserves the values of KP, KI and KD last time, namely K′P, K′I and
K′D. Then, they add the output value of the fuzzy controller and apply it to the control object [33],
as follows (11). The initial value of the retainer is set according to experience.

KP = K′P + ∆KP

KI = K′I + ∆KI

KD = K′D + ∆KD

(11)

3.2. The Introduction of Linear Extended State Observer

Fuzzy PID control strategy can realize adaptive adjustment of controller parameters to system
model changes through fuzzy reasoning process; however, it does not fully deal with the uncertainties
of wind energy conversion systems. In addition, there are usually noise signals in the actual system,
and the derivative element amplifies the noise. Therefore, the traditional closed-loop control generally
eliminates the derivative element and adopts the proportional—integral control strategy. The removal
of the derivative element will increase the overshoot and shocks of the system, which will affect the
system performance. Both the traditional PID controller and the fuzzy PID controller are a control
strategy based on error elimination. The method to eliminate the static error of the system is to make
the error zero after the system enters the steady state through integral action. However, the integral
effect often makes the system stability decline and the dynamic response slow down.

The LESO expands the disturbance which affects the output of the controlled object into a new
state variable. A special feedback mechanism is used to establish an observer which can observe
the extended state, that is, the extended state observer of perturbation. This LESO can observe,
estimate and compensate disturbances without relying on the perturbation generating model or direct
measurement. Under the disturbance compensation effect of LESO, the noise signal is effectively
suppressed, and the static difference is effectively compensated. Therefore, the derivative element can
be added to the controller and the integral element eliminating static error can be replaced by LESO.
The introduction of LESO not only avoids problems such as slow response, easy oscillation and control
quantity saturation caused by the integration link, but also inhibits the oscillation and overshoot in the
transient process. The controller structure is shown in Figure 7.
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Without relying on the precise mathematical model of the system, LESO is able to estimate the
various order state variables and generalized disturbance real time values of the controlled object
and make compensation to simplify the controlled object. Express n-order system with differential
equation, as follows:

y(n) = f (t, y,
.
y, . . . , y(n−1), u,

.
u, . . . , u(n−1), w) + bu (12)

where u and y depict the input and output of the controlled object; w represents the unknown
disturbance. The f is the generalized disturbance of the unmodeled part of the WECS, the external
disturbance and the estimation error, including all the uncertain terms in the WECS. The b is the input
control gain, and b can be estimated, assuming that the estimated value is b0.

Suppose x1 = y, x2 =
.
y, . . . , x(n) = y(n−1), x(n+1) = f , X = [ x1 x2 · · · x(n+1) ]

T
, the f is

differentiable. The dynamic model of LESO is [34–36]:


.

X = AX + Bu + E
.
f
′

y = CX

A =



0
0

1
0

0
1

· · · 0
· · · 0

...
...

... . . .
...

0 0 0 · · · 1
0 0 0 · · · 0


(n+1)×(n+1)

, B =



0
0
...

b0

0


(n+1)×1

, C =
[

1 0 0 · · · 0
]
1×(n+1)

, E =



0
...
0
0
1


(n+1)×1

(13)

The generalized disturbance term f in the WECS, namely the state variable xn+1, can be estimated
by the extended state observer, as follows: .

Z = AX + Bu + L(y− ŷ)
ŷ = CZ

(14)

where Z is the state variable matrix of the extended state observer, and
.
Z depicts the state variable

derivative matrix. L represents the state observer gain matrix to be designed, as follows:

L =
[

l1 l2 · · · ln ln+1
]T

(15)

The observer bandwidth is introduced to set the parameter L. In the equation, l1, l2, . . . , ln, ln+1 are
the parameter of matrix L, which can be parameterized to make the observer characteristic polynomial be:

sn+1 + l1sn + · · ·+ lns + ln+1 = (s +ω0)
n+1 (16)

When the system is asymptotically stable, the observer’s state variable zi(i = 1, 2, 3, . . . , n + 1)
will track the system state variable x1, that is: z1 → y, z2 →

.
y, z3 →

..
y , . . . , zn+1 → f .
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4. Design of a Controller for a Wind Energy Conversion System

The fuzzy control algorithm is used to design the wind turbine grid connection control strategy
with parameter adaptive ability, and LESO is introduced into the wind power grid connection
technology to solve the problem of voltage and power instability. The control diagram of output
voltage and output current of the converter is shown in Figure 8.
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Under the traditional single closed-loop control strategy, feed-forward decoupling is often used
to deal with the coupling term. Because this decoupling method increases the difficulty of controller
design and the uncertainty of parameters, it is hindered in practical application. When inputs and
outputs are in one-to-one correspondence, cross-effects (coupling) between channels are estimated
by the LESO and eliminated as disturbances in each single input single output loop. In other words,
the cross coupling is naturally decoupled, so the FLS-LESO has naturally decoupling characteristic.
Due to the complexity and uncertainty of transient process dynamics, it is impossible for the process
model to be completely accurate and reliable. Due to its natural decoupling capability, the FLS-LESO
far outperforms PID and other model-based methods in controlling coupled systems, and its controller
structure is shown in Figure 9.
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where z1 is the observed value of output, z2 is the observed value of the first derivative of output,
and z3 is the observed value of the total disturbance.

For this WECS, we can obtain partial model information of wind power system. Integrating some
of the known information into LESO can reduce the bandwidth of LESO or improve the estimation
accuracy of disturbance without reducing the bandwidth of LESO. The LESO integrated system
information has its particularity and uniqueness.
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Where T f is the equivalent time constant of sampling and filtering links, the 2T represents the
equivalent time constant of current inner ring, and Kc is the conversion link coefficient (0.75). The C
depicts the capacitance parameter of DC bus. From the Figure 10, The open-loop transfer function
without control can be obtained, as follows:

G(s) =
KC

Cs(T f s + 1)(2Ts + 1)
(17)
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Since T f and T are both small, small inertial element can be combined to simplify, as follows:

G(s) =
KC

Cs[(T f + 2T)s + 1]
(18)

Carry out inverse Laplace transform to get the equivalent differential equation of the system.
Assuming that w is unknown and b0 is a known part of b, as follows:

..
y = −a1

.
y− a0y + (b− b0)u + w + b0u (19)

with a0 = 0, a1 = 1/(2T + T f ) and b0 = KC/C(2T + T f ) used as substitutions.
Suppose the total disturbance of actual unknown, as follows:

f ′ = (b− b0)u + w (20)

where f ′ is the sum of the unknown total disturbance.
The sum of the unknown total disturbance and the known object information is regarded as the

expansion of the disturbance and denoted as f, as follows:

f = −a1
.
y− a0y + f ′ (21)

Select the state variable: x1 = y, x2 =
.
y, x3 = f , then x = [ y

.
y f ]

T
is the expansion state

including disturbance, which is transformed into the continuous state space description, as follows:
.
x1
.
x2
.
x3

︸︷︷︸
.

X

=


0 1 0
0 0 1
0 −a0 −a1

︸               ︷︷               ︸
A


x1

x2

x3

︸︷︷︸
X

+


0
b0

−a1b0

︸     ︷︷     ︸
B

u +


0
0
1

︸︷︷︸
E

.
f
′

y =
[

1 0 0
]

︸         ︷︷         ︸
C


x1

x2

x3

︸︷︷︸
X

(22)

where A ∈ R3×3, B ∈ R3×1, C ∈ R1×3, E ∈ R3×1 are LESO matrices.
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Corresponding continuous LESO is, as follows: .
Z = AX + Bu + L(y− ŷ)
ŷ = CZ

(23)

where, Z→X, Z is the state vector of the observer, and L represents the observer gain matrix to be

designed. Since
.
f
′

1 is unknown and can be estimated by correction,
.
f
′

1 is omitted. Rewrite the observer
equation, as follows: 

.
Z = [A− LC]Z +

[
B L

]
Uc

Yc = CZ
(24)

where Uc =
[

u y
]T

depicts the combined input, and Yc is the output.
After parameterization, all the observer poles are configured at −ω0, as follows:

λ(s) =
∣∣∣sI − (A− LC)

∣∣∣ = (s +ω0)
3 (25)

where ω0 is the observer bandwidth. The observer gain matrix is calculated, as follows:

L =


l1
l2
l3

 =


3ω0 − a1

3ω2
0 − 3a1ω0 − a0 + a2

1
ω3

0 − 3a1ω2
0 + 3(a2

1 − a0) + 2a0a1 − a3
1

 (26)

The FLS-LESO replaces the traditional control strategy to improve the output of the system in the
outer ring of the converter. The two inputs of the fuzzy PD controller are the error (e(t) = u∗dc − udc(t))
of the DC bus voltage, and the error derivative (∆e(t) = e(t + 1)− e(t)) of the DC bus voltage. ∆KP and
∆KD are the output language variable, and the range of variation is defined as the basic domain on
fuzzy set. The basic domain of the two inputs e and

.
e is [−6,6], and their fuzzy sets are {NB, NM,

NS, ZO, PS, PM, PB}. The basic domain of the two outputs ∆KP and ∆KD is [−0.6,0.6] and [−12,12],
respectively. Their fuzzy sets are {NB, NM, NS, ZO, PS, PM, PB}. The elements in the subset represent
negative big, negative middle, negative small, zero, positive small, positive middle and positive big.
The quantity of continuous change in the basic domain is discretized and fuzzy processing is carried
out. Set the range of variation of DC bus voltage deviation e and deviation derivative

.
e as [−6,6]. If not

within this range, a continuous quantity with a value between [a,b] can be converted to [−6,6] by
linear transformation.

y =
12

b− a

(
x−

a + b
2

)
(27)

In this paper, the control rules and membership functions are determined based on the trial and error
and the designer experience. the membership functions are composed of three memberships functions
(two-inputs and one-output) and each membership function has seven triangular memberships. For this
case, controller rules are used as shown in Table 1.

Table 1. Fuzzy rules.

∆KP/∆KD
e

NB NM NS ZO PS PM PB

.
e

NB PB/PS PB/NS PM/NB PM/NB PS/NM ZO/PS ZO/PS
NM PB/PS PB/NS PM/NB PS/NM PS/NS ZO/ZO NS/PB
NS PM/ZO PM/NS PM/NM PS/NS ZO/NS NS/ZO NS/PB
ZO PM/ZO PM/NS PS/NS ZO/NS NS/NS NM/ZO NM/PB
PS PS/ZO PS/ZO ZO/ZO NS/ZO NS/ZO NM/ZO NM/PS
PM PS/PB ZO/NS NS/PS NM/PS NM/PS NM/PB NB/PS
PB ZO/PB ZO/PM NM/PM NS/PS NM/PS NM/PB NS/PB
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From the Equation (19), the general expression of the state space of the system can be obtained,
as follows: { ..

x = −a1
.
x− a0x + u

y = x
(28)

PD control, as follows: {
e = r0 − x
u = KPe + KD

.
e

(29)

From Equations (28) and (29), the closed-loop system is obtained:{ .
e0 = e, e0(0) = 0
.
e = −(KP + a0)e− (KD + a1)

.
e, e(0) = r0

(30)

After Laplace transform, the following relations are obtained according to Routh criterion:{
KP + a0 > 0
KD + a1 > 0

(31)

From Equation (31), the range of PD parameters can be obtained, and the upper and lower limits
of the fuzzy PD controller can be designed to ensure the stability of the system operation. The output
surface of fuzzy controller is shown in Figure 11.Energies 2019, 12, x FOR PEER REVIEW 13 of 20 
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5. Simulation Study

The simulations in this study were realized in Matlab/Simulink to verify the effectiveness and
analysis of the presented method. The sampling time of the presented Simulink system was modeled
at 1 × 10−6 s. The parameters of the PMSG and power converter systems are given in Table A1,
respectively. An open source FLCWR toolbox in Matlab/Simulink was used in this study. The rules
of the FLS-LESO system were designed to maximize the wind energy conversion system. The fuzzy
rules were adjusted to generate the optimized gains for the power performance of the wind system
based on the PMSG. An FLS-LESO control system was implemented for the analysis of four different
cases of grid-side and machine-side fault. The different types of symmetrical and asymmetrical faults
were implemented separately at the proper time on the grid-side of the PMSG. The simulated fault
conditions were as follows:

(i) The 50% symmetrical fault was implemented at t = 2.0 s and was cleared at t = 2.5 s;
(ii) The asymmetrical fault was implemented at t = 2.0 s and was cleared at t = 2.5 s;
(iii) The 30% increase in wind turbine power at t = 2.0 s and was cleared at t = 2.5 s;
(iv) The 30% decrease in wind turbine power at t = 2.0 s and was cleared at t = 2.5 s.

The generator with the proposed control method was connected to the grid during all grid fault
types. The simulation results illustrate that the FLS-LESO gives an appropriate performance for the
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power generation of the wind system using a PMSG for different scenarios. The rated value of the DC
link was 1070 V, the rated value of voltage was 1 p.u., and the rated value of the current was 1 p.u. in
the study.

Scenario 1
The 50% symmetrical fault was implemented at t = 2.0 s, and then it was cleared at t = 2.5 s,

as shown in Figure 12a. The 50% symmetrical fault was the severer fault type used. Therefore,
the control of this fault type is vital. The FLS-LESO and PI controller were separately implemented in
the WECS. The parameters of the WECS that were measured were the DC link (udc), grid voltage (Uabc),
and grid current (Iabc). The maximum value of the current at the point of common coupling (PCC) with
the PI controller was 2.09 p.u., and it fluctuates around 1.98 p.u., as shown in Figure 12b. However,
the maximum value of the current at the PCC with the FLS-LESO was 2.21 p.u., and it also fluctuates
around 1.98 p.u., as shown in Figure 12c. The DC link voltage of the system is given in Figure 12d.
The DC link peak voltage value using a PI controller was 1.06 p.u. during the grid fault, while the
DC link peak voltage value with the FLS-LESO was 1.03 p.u. The oscillation of the DC link voltage
value with the PI controller was higher than the proposed control system even after the grid fault time.
The oscillation of the DC link voltage value with the PI controller was higher than the proposed control
system even after the grid fault time.Energies 2019, 12, x FOR PEER REVIEW 14 of 20 
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Figure 12. (a–d). Dynamic response of a 1.5 MW permanent magnet synchronous generator (PMSG)
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during a 50% symmetrical fault; (a) Voltage at PCC; (b) Current at PCC with the PI controller; (c) Current
at PCC with the FLS-LESO; (d) DC link voltage.

Scenario 2
The asymmetrical fault was implemented at t = 2.0 s, and then it was cleared at t = 2.5 s, as shown

in Figure 13a. The asymmetrical fault was also severer fault type. The FLS-LESO and traditional PI
controller were separately implemented in the system during the asymmetrical fault, as shown in
Figure 13a. The DC link, grid voltage, and grid current of the system with the FLS-LESO are given in
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Figure 13b–d, respectively. The current at the PCC with the traditional PI controller system increased to
1.91 p.u., and it fluctuates around 1.90 p.u., as shown in Figure 13b. However, the maximum value of
the current at the PCC with the FLS-LESO was 1.90 p.u., and it fluctuates around 1.55 p.u., as shown in
Figure 13c. The overshoot value of the DC link with the traditional PI controller system was 1.057 p.u.,
as shown in Figure 13d. The overshoot value of the DC link voltage with the FLS-LESO was 1.031 p.u.,
and the overshoot in the DC link voltage was greatly reduced by the FLS-LESO. The ripples in the
DC link voltage value with the traditional PI controller system were higher than the proposed control
system even after the grid fault time.
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Scenario 3
The 30% increase in wind turbine power at t = 2.0 s and was cleared at t = 2.5 s, as shown in

Figure 14a. The wind turbine power fluctuation was lighter than the other fault types. However,
the power fluctuation is the most common type of turbine side disturbance. Therefore, the control of
this fault type is vital. The parameters of the WECS that were measured were the DC link, grid voltage,
and grid current. The maximum value of the current at the point of common coupling (PCC) with
the PI controller was 1.69 p.u., and it fluctuates around 1.26 p.u., as shown in Figure 14b. However,
the maximum value of the current at the PCC with the FLS-LESO was 1.33 p.u., and it also fluctuates
around 1.26 p.u., as shown in Figure 14c. The DC link voltage of the system is given in Figure 14d.
The DC link peak voltage value using a PI controller was 1.044 p.u., and the DC link peak voltage
value with the FLS-LESO was 1.027 p.u. The overshoot value of the current at PCC and the DC link
were greatly reduced by the FLS-LESO.



Energies 2019, 12, 2862 15 of 19

Energies 2019, 12, x FOR PEER REVIEW 15 of 20 

 

(a) (b) 

  
(c) (d) 

Figure 13. (a–d). Dynamic response of a 1.5 MW permanent magnet synchronous generator (PMSG) 
with the traditional PI controller and fuzzy logic system with linear extended state observer (FLS-
LESO) during an unsymmetrical fault; (a) Voltage at PCC; (b) Current at PCC with the PI controller; 
(c) Current at PCC with the FLS-LESO; (d) DC link voltage. 

Scenario 3 
The 30% increase in wind turbine power at t = 2.0 s and was cleared at t = 2.5 s, as shown in 

Figure 14a. The wind turbine power fluctuation was lighter than the other fault types. However, the 
power fluctuation is the most common type of turbine side disturbance. Therefore, the control of this 
fault type is vital. The parameters of the WECS that were measured were the DC link, grid voltage, 
and grid current. The maximum value of the current at the point of common coupling (PCC) with the 
PI controller was 1.69 p.u., and it fluctuates around 1.26 p.u., as shown in Figure 14b. However, the 
maximum value of the current at the PCC with the FLS-LESO was 1.33 p.u., and it also fluctuates 
around 1.26 p.u., as shown in Figure 14c. The DC link voltage of the system is given in Figure 14d. 
The DC link peak voltage value using a PI controller was 1.044 p.u., and the DC link peak voltage 
value with the FLS-LESO was 1.027 p.u. The overshoot value of the current at PCC and the DC link 
were greatly reduced by the FLS-LESO. 

  

(a) (b) 

  
(c) (d) 

1.55 1.90 
1.057 

1.26 
1.69 

1.33 1.26 
1.044 
1.027 

1.054 

1.018 
1.031 

Figure 14. (a–d). Dynamic response of a 1.5 MW permanent magnet synchronous generator (PMSG)
with the traditional PI controller and fuzzy logic system with linear extended state observer (FLS-LESO)
during the 30% increase in wind turbine power; (a) Voltage at PCC; (b) Current at PCC with the PI
controller; (c) Current at PCC with the FLS-LESO; (d) DC link voltage.

Scenario 4
The 30% decrease in wind turbine power at t = 2.0 s and was cleared at t = 2.5 s. The grid voltage

remains constant during this period, as shown in Figure 15a. The parameters of the WECS that were
measured were the DC link, grid voltage, and grid current. The current at the PCC with the traditional
PI controller system increased to 1.336 p.u., and it fluctuates around 0.7 p.u., as shown in Figure 15b.
However, the maximum value of the current at the PCC with the FLS-LESO was 1.205 p.u., and it also
fluctuates around 0.7 p.u., as shown in Figure 15c. The DC link peak voltage value using a PI controller
was 1.040 p.u. during the grid fault, while the DC link peak voltage value with the FLS-LESO was
1.017 p.u., as shown in Figure 15d The overshoot value of the current at PCC and the DC link were
greatly reduced by the FLS-LESO.
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The parameters with the proposed control system settled to the rated value within comparatively
less time than with the traditional PI controller. The proposed control system reduced the ripples of all
the parameters in the system due to the appropriate selection of FLS-LESO parameters.

6. Conclusions

The FRT capability of wind turbines is a vital issue for the electrical energy generated from wind
energy and contributes to reliable grid integration. This paper proposes a new control approach
using the FLS-LESO method that is implemented in the WECS based on a PMSG to improve the
transient stability during grid faults and wind turbine power fluctuation. The main contributions of
this work are:

(i) The FLS-LESO was designed to enhance the fault ride-through performance of the WECS in order
to obtain effective results during grid faults;

(ii) The proposed control system was applied to control the GSC of the PMSG;
(iii) It was observed by measurements that the proposed control system protects the power of

electronic devices from the harmful effect of overvoltage during grid faults;
(iv) The simulation results have confirmed that the proposed control system can effectively reduce

the ripples of the parameters in the system.

The parameters of the system that were observed were the DC link, grid voltage, and grid current.
The DC link of the system with the FLS-LESO had near nominal values. All the parameters of the
system with the FLS-LESO closely tracked the rated values during and after the grid faults. All the
parameters with the proposed control system settled to the rated value within comparatively less time
than the traditional PI system. All the simulation results proved that the presented FLS-LESO scheme
has the capability to improve the FRT capability of the WECS and performs better than the traditional
PI system in all aspects.

In the future, the other rule evaluation method should be applied to the system. In addition,
different fuzzy logic control systems, such as the interval fuzzy logic control with LESO, can be adapted
to improve the FRT performance of WECSs, and the results can be compared with the results in
this paper.
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Nomenclature

Pg Rated generator power
ωe electric angular of the PMSG
ψ f flux linkage in the permanent magnets
isd, isq generator dq frame currents
Ld, Lq stator inductances in the dq frame
Igq, Igd grid dq frame currents
Lg Filter grid-side inductance
ω electric angular of the grid
Abbreviations
Acronym Definition
FLS-LESO Fuzzy logic system with the linear extended state observer
WECS Wind energy conversion system
LESO Linear extended state observer
PMSG Permanent magnet synchronous generator
BC Braking chopper
FRT Fault ride-through
GSC Grid-side converter
MSC Machine-side converter
GCR Grid connection requirement
STATCOM Static synchronous compensator
SFCL Superconducting fault current limiter
MPP Maximum power point tracking
DFIG Doubly fed induction generator
WT Wind turbine

Appendix A

Table A1. Main parameters of the wind energy conversion system.

Parameter Symbol Value Unit

Base power Pb 1.5 MW
Base voltage Vb 690 V
Base frequency fb 50 Hz
Rated generator power Pg 1 pu
Pole pairs of PMSG np 12
Stator phase resistance Rs 0.0009 Ω
Flux linkage φ 1.49 V.s
Stator inductance Ld, Lq 0.573, 0.874 mH
Machine-side filter resistance Rls 0.0002 Ω
DC capacitance C 0.024 F
DC link voltage udc 1070 V
Grid-side filter resistance Rg 0.0009 Ω
Grid-side filter inductance Lg 0.12 mH
Grid-side filter capacitance Cg 0.0015 F
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