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Abstract: The world has witnessed a rapid transformation in the field of electrical generation,
transmission and distribution. We have been constantly developing and upgrading our technology
to make the system more economically efficient. Currently, the industry faces an acute shortage of
energy resources due to overconsumption by industries worldwide. This has compelled experts
to look for alternatives to fossil fuels and other conventional sources of energy to produce energy
in a more sustainable manner. The microgrid concept has gained popularity over the years and
has become a common sight all over the world because of the ability of a microgrid to provide
power to a localized section without being dependent on conventional resources. This paper focuses
on development of such an AC hybrid microgrid, which receives power from distributed energy
resources (DERs) such as a PV array alongside a battery storage system, and also uses an emergency
diesel generator system and an online uninterruptible power supply (UPS) system to provide power
to predefined loads under different conditions. This paper also addresses on the power flow to the
loads under two main modes of operation—on grid and off grid—and investigates the microgrid in
different states and sub-states. The final objective is to design an efficient microgrid model such that
it can sustain the multiple loads simultaneously under all operating conditions.

Keywords: microgrid; PV inverter; BESS; power flow study; DG

1. Introduction

Photovoltaic-based microgrids have gained immense popularity over the past years. They have
been hailed as a sustainable and efficient alternative to using fossil fuels and other conventional
sources of energy to transmit energy to cities for commercial and domestic use [1–5]. An AC microgrid,
alongside the utility grid, would consist of distributed energy resources (DERs). It can consist of
a PV array, which could produce power and transmit it to the local loads [6–10]. In addition, it
might contain a battery storage system (BSS) that can supply to the loads in case the PV output is not
sufficient [11,12]. Emergency diesel generator sets and uninterruptible power supply (UPS) systems
can be installed to supply power to the critical loads in an off-grid situation. The power flow in the
microgrid is also dependent on the type and number of loads connected to it [13–16]. Different type of
loads such as lighting loads and motor loads may be connected to the microgrid that can affect the
voltage distribution in several ways [15,16]. Energy management schemes for microgrids are discussed
in [17,18]. The microgrid should be designed in such a way that it can sustain all the necessary loads at
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different stages even in the absence of the main utility grid. The loads, thus, should receive the required
voltage supply for their safe and normal operation [19,20]. This article is organized as follows, Section 1
presents an introduction to the microgrid concept, and also discusses the proposed microgrid system
architecture that is analyzed in the following sections. Section 2 discusses the system specifications
used in this analysis for simulation and hardware implementation. Sections 3 and 4 explain different
modes of operation of microgrid systems with states and sub-states and the controller response for
various operating conditions, and simulation waveforms are presented along with hardware results.
Section 5 summarizes the findings as conclusion.

Figure 1 shows a single line diagram representation of the AC microgrid which is designed and
studied. The loads mentioned in the diagram have different priority in such a way that the secure
loads, are supplied with power under all conditions. The critical loads are also important and supplied
accordingly. The sources and loads present in the diagram are discussed in the next section of the paper.
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2. System Configuration

2.1. Grid

The utility grid is the main power distribution network that supplies to the consumers in all
areas by receiving power from the main generator, where it is generated, and transmitting it over
long distances to supply it to the faraway consumers. The grid model taken in this paper is given in
Figure 1. This grid with infinite power supplies a single-phase RMS voltage of 230 V to the microgrid.
It is connected to the microgrid through a breaker C1 which disconnects the grid from the rest of the
network in the case of an islanding situation.

2.2. PV System

The PV system consists of the PV module which supplies a constant DC voltage of 23.5 V to the
system. This DC voltage is stepped up to a higher voltage value with the help of a boost converter
which is then fed to the voltage source inverter which would give an AC output of 230 V to be fed
to the microgrid. The PV module has varying irradiation which can be pre-defined. The parameters
of the PV module are explained in [1]. The Simulink model for the PV module is given in Figure 2.
The PV module has been developed using its equivalent circuit as a constant current source to estimate
current and voltage characteristics for different irradiation and temperature conditions [21].
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Figure 2. Simulink model of the PV module.

2.3. Energy Storage System

The energy storage system is responsible for supporting the microgrid by supplying power when
the PV module is not able to support the loads independently. The ESS consists of a battery and the
bi-directional converter. The operation of a bi-directional converter to timely charge and discharge
the battery has been explained in [2]. The Simulink model for the ESS is given in Figure 3. The ESS
is primarily a current source and its Simulink model has been developed using a voltage source
inverter (VSI). In this article, we considered the ESS batteries are in fully charged condition, so the
input to VSI is directly from a DC source which depicts the battery storage unit of the ESS. The VSI
has been operated as a current source by controlling the current using a hysteresis current controller.
The reference current for ESS and actual current signals are compared using a suitable comparator
and switching pulses for respective phase’s solid-state switches in the VSI. The battery parameters are
given in Table 1 and are explained in [2].
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Table 1. Parameters of the battery in the ESS.

Parameter Value

Nominal Voltage 100 V

Rated Capacity 6.5 Ah

Fully Charged Voltage 108.8816 V

Nominal Discharge Current 1.3 A

2.4. Online UPS

The online UPS is used in the microgrid to play the role of a standby power supply in the
network in case of an islanding situation to supply power to the critical loads. The UPS also takes the
responsibility of providing the voltage-frequency reference to the network in the absence of the grid.

The UPS is connected to the main line so that it can begin to supply power as soon as the main
grid is disconnected from the network. The Simulink model for the UPS model is given in Figure 4.
The UPS model consists of a diode rectifier with an active power factor correction circuit, where to
maintain a stable dc link voltage, a boost converter has been used and for the inverter stage, a universal
block has been considered. LC filters are used at the output. The boost module switching is controlled
by the battery state of charge, and battery voltage, while the inverter module switching is done using
PWM controller using a standard block.
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2.5. Loads

The microgrid model includes a few realistic load models which we encounter in everyday
commercial usage. Some of these loads include RL lighting loads, single phase motor loads, and three
phase EV motor loads. In this paper, we deal with the Simulink models of the below mentioned type
of loads and their configuration. The lighting loads are simulated as series RL load and the resistor
and inductor power values are pre-defined in the parameters.

The voltage and current values across the load are fed to the power measurement which gives the
active and reactive power waveform being supplied to the load. A single phase asynchronous motor
has been used as a motor load. The design employs a single phase asynchronous motor of split phase
type which is fed with some initial torque to obtain the output. We can measure the rotor speed and
electromagnetic torque of the motor at the output end. A three phase electric vehicle (EV) motor load
is a realistic load model which takes a single phase voltage input from the microgrid and is converted
into a three phase voltage output, which is then fed to a three phase synchronous machine (the EV
motor). The model for the same is shown in Figure 5. The parameters of the EV motor are configured
such that the three phase machine operates on a three phase voltage supply of 440 V. The single phase
to three phase conversion takes place using a three level bridge converter available in MATLAB.
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3. Principle States: Simulation Results

The microgrid model obtained after the incorporation of all the above discussed sources and loads
is given in Figure 6. The complete system simulation is done using the integration of all sub- systems.
The states to be tested for the principle states are discussed in Table 2.
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Table 2. Principle states defined in the microgrid system.

Environment State Name Grid PV UPS VS ESS Genset
(DG)

Secure
Loads

D
(Critical) E A EV C1 C2 C3 C4

ON-GRID

On-Grid storage Full To
grid/ESS Online Charging Charging Off Grid Grid Grid Grid Grid Close Open Open Close

Auto-consumption Partial To Grid +
Load Online Off Supplying Off Grid Grid + ESS Grid + ESS Grid + ESS Grid + ESS Close Open Open Close

On-Grid Quality Full To Load Online Supplying Supplying/
Consuming Off Grid Grid + ESS Grid + ESS Grid + ESS Grid + ESS Close Open Open Close

Erasing Partial To Grid +
Load Supplying Off Supplying Off UPS ESS Shed Shed No sale Close Open Open Open

OFF-GRID

Transient-Islaneded Nil To Load Supplying Off Off Off UPS Shed Shed Shed Idle Open Open Open Close

Vital-Islanded Nil To ESS +
Load Supplying Supplying Charging

from PV Off UPS VS Shed Shed Idle Open Open Open Close

Power-Islanded
(No DG) Nil To Load Supplying Supplying Supplying Off UPS ESS ESS/CurtailedESS/Curtailed Sell or Buy Open Open Open Close

Power-Islanded
(No ESS) Nil To ESS +

Load Supplying Supplying Charging
from PV Supplying UPS DG DG/Curtailed DG/Curtailed Sell or Buy Open Close Open Close

ON-GRID/
OFF-GRID Isolated Off Off Off Off Off Off Shed Shed Shed Shed Idle Open Open Open Open
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3.1. Mode I

The on-grid storage mode operates from time t = 0 till t = 0.25 s simulation time. In this mode,
the grid supplies the voltage to all the loads. The PV also supplies to the grid and at the same time,
it charges the ESS battery. As a result, the ESS of the battery slowly begins to increase in the beginning.
The initial SOC is kept as 50%. The UPS is online but is not supplying to the secure loads as they are
receiving the supply from the grid as shown in Figure 7.
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3.2. Mode II

The auto consumption mode runs from t = 0.25 s till t = 0.50 s simulation time. In this mode,
the PV module irradiation falls below 800 W/m2, so the ESS begins to supply to the loads alongside the
grid. As a result, the SOC of the battery falls. The grid is still supplying to all loads along with the ESS.
The voltage supply to the loads is given in Figure 7.

3.3. Mode III

The on-grid quality mode runs from t = 0.50 s to t = 0.75 s simulation time. During this mode,
the irradiation of the PV module is still below 800 W/m2, so the ESS continues to supply as its SOC falls
further. The PV and the grid collectively supply to all the loads. The UPS remains online as the grid is
on. The output voltage and current graph for the loads is shown in Figures 8 and 9, respectively.
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3.4. Mode IV

The erasing mode runs from t = 0.75 s to t = 1 s simulation time. In this mode, the grid provides
partial supply to the loads. As a result, the ESS and UPS take up the responsibility to provide power to
the secure and critical loads. The UPS supplies to the secure loads and the ESS continues to supply
to the critical load. The low priority loads A and E are completely shaded in this case. The voltage
supply by the UPS to the secure load B is shown in Figure 8.

3.5. Mode V

The transient islanded mode runs from t = 1 s to t = 1.25 s simulation time. In this mode, the system
goes off-grid and faces an islanding situation. This mode is activated by default. All the loads and
sources except for the secure loads are disconnected from the network. The UPS continues to supply
power to the secure loads which is shown in Figure 10 and the output voltage of the loads is shown in
Figure 8.
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3.6. Mode VI

The vital islanded mode runs from t = 1.25 s to t = 1.50 s simulation time. In this mode, the UPS
continues to supply to the secure loads. The PV synchronizes to the grid voltage and takes the
responsibility to supply power to the critical loads as shown in Figure 10. The ESS is also charged by
the PV as shown in 10. The output current of the loads is shown in Figure 9.
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3.7. Mode VII

The power islanded mode runs from t = 1.50 s to t = 1.75 s simulation time. In this mode, the ESS
and the UPS both supply to the critical and secure loads, respectively. The output voltage and current
of the loads is shown in Figures 11 and 12, respectively. The ESS SOC drops again as shown in Figure 7.
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3.8. Mode VIII

The power islanded mode (No ESS) runs from t = 1.75 s to t = 2 s simulation time. In this mode,
the PV module is able to supply to the ESS so it charges as shown in Figure 9. The critical load and the
remaining loads are supplied by DG which turns on at t = 1.75 s. The output voltage and current of the
loads is shown in Figures 8 and 9, respectively.

4. Sub-States—Simulation Results

The states tested for sub-state conditions are given in Table 3.
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Table 3. Sub-states of defined in the microgrid system.

Environment State Name Grid PV UPS VS ESS DG Secure
Loads

D
(Critical) E A EV C1 C2 C3 C4

ON-GRID

On-Grid Storage
(UPS Fault) Full To

grid/ESS Off Charging Charging Off Grid Grid Grid Grid Grid Close Open Open Close

Auto-consumption
(No ESS) Partial To Load Online Off Off Off Grid Grid Grid Shed Shed Close Open Open Close

On-Grid Quality
(No ESS) Full Supplying

to ESS Online Supplying Charging
from PV Off Grid Grid Shed Shed Shed Open Open Open Open

OFF-GRID

Power-Islanded
(VS SOC Low,
ESS On)

Nil Supplying
to VS

Supplying and
V-f reference
to ESS

Charging
from PV Supplying Off UPS ESS ESS Shed Shed Open Open

Close for V-f
reference
from UPS

Close

Power-Islanded
(VS fault,
ESS On)

Nil Supplying
to Load

Supplying and
V-f reference
to ESS

Off Supplying Off UPS ESS ESS Shed Shed Open Open
Close for V-f
reference
from UPS

Close

Power-Islanded
(VS SOC Low,
DG On)

Nil To VS
Supplying and
V-f reference
to DG

Charging
from PV Off On UPS DG DG Shed Shed Open Close

Close for V-f
reference
from UPS

Close

Power-Islanded
(VS fault,
DG On)

Nil Supplying
to ESS

Supplying and
V-f reference
to DG

Off
Charging
from PV On UPS DG DG Completely

Shedded
Completely
Shedded Open Close

Close for V-f
reference
from UPS

Close
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4.1. Mode I

The on-grid storage mode (UPS fault) operates from time t = 0 till t = 0.50 s simulation time. In this
mode, the grid independently supplies power to all the loads without any external source. The PV also
supplies to the grid and at the same time, it charges the ESS battery. As a result, the ESS of the battery
slowly begins to increase in the beginning. The initial SOC is kept as 50%. The UPS is off and is not
supplying to the load or charging at this point. The output voltage and current of loads is shown in
Figures 11 and 12, respectively.

4.2. Mode II

The auto consumption mode (no ESS) runs from t = 0.50 s till t = 0.75 s simulation time. In this
mode, the PV module supplies only to the load and the ESS is disconnected from the network as shown
in Figure 10. The UPS is not supplying power. The grid is still supplying independently to all loads
and the loads A and EV are disconnected from the network as shown in Figure 11.

4.3. Mode III

The power islanded mode (Vs SOC low, ESS on) runs from t = 1.00 s to t = 1.25 s simulation
time. In this mode, the UPS begins to supply to the secure loads as the system enters off grid mode.
The switch C3 turns on as UPS also provides the V-f reference to the ESS. The ESS starts supplying the
critical load and load E as its SOC falls as is shown in Figure 12. The output voltage and current of
secure load B due to the UPS is shown in Figures 11 and 12, respectively.

4.4. Mode IV

The power islanded mode (Vs fault, ESS on) runs from t = 1.25 s to t = 1.50 s simulation time.
In this mode, the system goes off-grid and faces islanding situation. This mode is activated by default.
All the loads and sources except for the secure loads are disconnected from the network. The UPS
continues to supply to the secure loads which is shown in Figure 11.

4.5. Mode V

The power islanded mode (Vs SOC low, DG on) runs from t = 1.50 s to t = 1.75 s simulation time.
In this mode, the UPS continues to supply to the secure loads and provides V-f reference to the DG.
The ESS turns off and the DG takes the responsibility to supply power to the critical loads.

The PV synchronizes to the grid voltage and takes the responsibility to supply to the critical loads
as shown in Figure 11. The ESS is also charged by the PV as shown in Figure 10.

4.6. Mode VI

The power islanded mode (Vs fault DG on) runs from t = 1.75 s to t = 2.00 s simulation time.
In this mode, the UPS continues to supply to secure loads as shown in Figure 12. The DG supplies to
the critical and load E. The loads A and EV continue to remain disconnected as shown in Figure 11.
The ESS is connected to the supply again and charged by the PV as shown in Figure 10.

Figure 13 depicts the hardware set up of the microgrid under consideration. The experimental
setup was developed with grid tied solar inverter of 25 kW size, energy storage system of 10 kW
size, uninterrupted power supply of 8 kW size and suitable digital signal processors, circuit breakers,
programmable logic controllers and communication protocol converters for serial to TCP/IP conversion
along with loads.
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Figure 13. Experimental setup of the microgrid under consideration.

In addition to the above devices, for performing system configuration a human machine interface
has been used. The above discussed energy management scheme has been developed in a programmable
logic controller, and the controller sends command to the various sources and loads based on the
pre-defined operating scenario. The local embedded controller in respective device receives the
command and performs necessary control actions. The developed microgrid system has been tested
for various operating conditions from grid connected mode to islanded mode of operation. The system
operation stability is achieved through fine tuning of controllers. The simulation results are verified
and compared with experimental set up for performance as well as response time.

Figure 14 presents the response from experimental set up for sudden reduction in frequency to
below threshold limit under islanded mode of operation. The results confirm the controller is able to
activate the command to disconnect the system quickly to ensure no damage to sources and loads.
The waveform shows there is a low frequency event occurs at instant ‘a’ and immediately the controller
sends command to disconnect the sources and loads, less than 130 ms the disconnection happens at
instant ‘b’, the same can be observed in the oscilloscope view in the Figure 14.
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5. Conclusions

Microgrids form an essential part of our plans for sustainable development. Through this paper,
an attempt has been made to demonstrate the ability of such grid networks to provide adequate power
to multiple loads. Such a concept would not only provide clean energy to the targeted consumers,
but would also make the community independent of external sources of energy. Naturally, such a
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concept has its own drawbacks which need to be analyzed but it can become a large scale phenomenon.
The power quality issues such as harmonics and the high initial costs of such a Microgrid cause the
main hindrance in its further development. These issues need to be addressed immediately and
suitable solutions need to be devised before we can implement a practical model for the same. Needless
to say, the future of clean energy lies in its utilization by the consumers. Such AC/DC microgrid
ideas need to be researched and developed further to achieve the ideal state of global sustainability.
From the analysis it is evident that the proposed system level architecture can be apt for remote
locations where the utility grid is unreliable or not present, thus saving huge capital investments from
a utility infrastructure perspective. By having more renewable energy penetration, the operating cost
of the system can be very minimal.
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