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Abstract: Three-dimensional images of fractured rocks can be acquired by an X-ray micro-CT
scanning technique, which allows researchers to investigate the ‘true’ inner void structure of a natural
fracture without destroying the core. The 3D fractures in images can be characterised by measuring
morphological properties on both fracture apertures and its trend surface, like the medial surface, that
reveals the undulation of fracture planes. In a previous paper, we have proposed a novel method to
generate fracture models stochastically. Based on a large number of such fracture models, in this work
a modified factor was proposed for improving the performance of the cubic law by incorporating the
flow-dominant characteristics, including two parameters (aperture roughness and spatial correlation
length) for fracture apertures and two (surface undulation coefficient and spatial correlation length)
for fracture trend-surface. We assess and validate the modified cubic law by applying it to natural
fractures in images that have varying apertures and extremely bended trend-surfaces, with the
permeabilities calculated by a Lattice Boltzmann Method as ‘ground truths’.
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1. Introduction

Natural fractures are common features in many rocks, occurring at various length scales and
at different intensities. Understanding the fluid flow characteristics in natural fractured rock is
of importance for petroleum reservoirs [1], geothermal energy development [2,3], nuclear waste
disposal [4] and the geologic storage of carbon dioxide [5]. Since intact rocks are often low in
permeability, and the fracture network forms the main channels of flow, the effective permeability of a
fractured rock is dictated by the permeability of the fracture network, which consists of numerous
individual fractures. Therefore, the fluid flow through a single fracture could form a basic building
block for understanding the mechanical-hydraulic interactions of natural fractured rock, which has
been extensively studied in recent years [6–11].

For steady laminar flow between smooth parallel plates, separated by a constant aperture, fracture
transmissivity is proportional to the cubic power of fracture aperture, which is well known as the
‘cubic law’ [12]. However, the fractures in natural rocks have complex geometry and widely deviate
from the parallel plate model. The cubic law should, therefore, be tuned to incorporate more factors
that influence fluid flow [7,13,14].

Earlier theoretical works [15–20] usually use two-dimensional aperture fields to represent
rough-walled fractures, and many efforts [15,17,19] have been made to assess the effect of variable
fracture apertures on fluid flow. For example, Zimmerman [19] modified the cubic law with additional
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fracture roughness, which is defined as the ratio of aperture standard deviation over mean aperture.
Tsang [17] and Moreno [15] analyzed the effect of aperture anisotropy on fracture fluid flow by taking
account of the ratio of the spatial correlation length in different directions of aperture field. In addition,
the fractal characteristics of fracture void space, consisting of variable apertures at different locations,
was considered by Pyrak-Nolte [14] and it was subsequently incorporated into the study of fluid flow
through rough-walled fractures. Although these literatures have thoroughly investigated the influence
of fracture variable apertures on fluid flow in rough-walled fracture, using aperture field only to
characterize a rough-walled fracture over-simplifies the fracture void space to a big extent. It assumes
the void space to be perfectly planar, ignoring the natural undulation [20] or waviness in the alignment
of the fracture voids. Therefore, in order to analyze the influence of rough fracture characteristics on
fluid flow, it is constructive to consider the morphological features of the trend-surface (i.e., medial
surface) of fracture profile, which realistically describes the undulation of fracture planes. Similarly,
the morphological analysis can also be applied to the pores of rock matrix [21,22].

Advances in imaging technology make it possible to obtain 3D images of fractured rocks.
One example of the imaging technology is X-ray computed tomography (CT) [1,23–26] that can detect
the inner structure of nontransparent objects without destroying rock samples. The principle of CT is
that different rock components (e.g., minerals, pores, fracture voids, fluids) have different densities,
resulting in different X-ray absorption coefficients, which are then converted into different gray values
in resultant 2D images that can be used to distinguish the solid and pore space (fracture void) [25] in
this work. Simply, they are both precise and direct methods for developing digital fractured rocks,
providing a basis for quantitating the geometric features of the fracture void space [27,28].

With 3D digital rocks, there are two major numerical approaches to simulate single- and multi-phase
flow processes: direct simulation and pore-network modelling (PNM) [29–36]. Examples of the
direct simulation method includes finite difference/element/volume methods [37–39] and the Lattice
Boltzmann method (LBM) [40–45]. However, for the finite difference/element/volume methods, it is
a challenging and time consuming issue to deal with the expensive mesh generation and irregular
geometries. With regards to those limitations, the LBM has been widely applied to simulate the
flow behaviors in 3D digital rock. The advantages of the LBM include simple algorithms, efficient
parallelization, and flexibility in implementing complex flow geometries, which makes the LBM
profoundly powerful in the simulation of single- and multi-phase fluid flow through porous media.
As for the PNM, it is designed to simulate fluid flow on a simplified structure described by a network
of pore bodies (nodes) connected by pore throats (bonds). Each network element (i.e., node or bond) is
associated with a regular (e.g., a star, triangle, square, or circle) cross section and assigned with a set
of geometrical properties (e.g., radii, volume, shape factor, and length), which makes the numerical
simulation based on PNM more complex than LBM. Therefore, in this work, we use the LBM simulations
of fluid transport with X-ray topographies to estimate fracture permeability.

The objective of this work is to quantitatively determine the collective effects of both fracture
apertures and the trend-surfaces on fluid flow in single fractures. To address this, their characteristic
parameters are firstly extracted from digital fractured rocks. Fracture structural models are then
generated with various parameters about fracture apertures and trend-surfaces. Subsequently, the
LBM is applied to simulate fracture flows for predicting fracture permeability, and further a modified
version of the cubic law, which incorporates geometric fracture undulation, is proposed and validated
by applying it to natural fractured cropped out from 3D µCT images.

2. Methodology

2.1. Fracture Morphology

2.1.1. Natural Fracture in CT Images

A 3D digitized rock, which reveals the pore structure in the rock matrix and fracture opening/void,
is made up of a series of 2D images which are obtained by X-ray computed tomography (CT).
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Figure 1 shows an example of a stack of cross-sectional slice CT images of a shale core, which
includes fracture structure (e.g., red box in Figure 1a) and were provided by iRock Technologies
(http://www.irocktech.cn/). These 1024 successive 2D shale images in Figure 1a were aligned and
stacked to form a 3D image (see Figure 1b), with 1024 × 1024 × 1024 voxels and 12.9 µm/voxel.
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Figure 1. An example of a 3D digital rock. (a) a stack of slice images of a fractured shale core; (b) the
integrated 3D image of the shale core.

2.1.2. Fracture Characterization

Prior to discussing how to represent the fracture geometries, we must first introduce the approaches
in measuring fracture morphological properties regarding fracture apertures and fracture trend-surface.

Figure 2a shows a 2D slice of a cropped grayscale sub-image of 300 × 300 × 100 voxels from the
shale CT-image (red box) shown in Figure 1a. A binary image in Figure 2b, consisting of only solid and
fracture void, can be obtained by segmenting the grayscale image using the threshold segmentation
method [46]. Thus the fracture volume fraction (or porosity) of the 3D shale sub-image can be calculated
as 9%, which is the ratio between the fracture void and rock volume. Meanwhile, based on the binary
image, three structural components of a fracture, as shown in Figure 2c, can be extracted by the edge
detection operator [46]. Defining the plane of height Z = 0 as a reference, the spatial relative positions
of the upper and lower fracture-wall surfaces at a coordinate ζ = (x, y) on the plane can be determined,
denoted by zU(ζ) and zL(ζ), or zU and zL for short. The fracture local aperture b(ζ) at a point ζ, which is
described as the length of the two-way arrows in Figure 2c, can be simply calculated by:

b = zU
− zL (1)

Energies 2019, 12, x FOR PEER REVIEW 3 of 17 

 

tomography (CT). Figure 1 shows an example of a stack of cross-sectional slice CT images of a shale 
core, which includes fracture structure (e.g., red box in Figure 1a) and were provided by iRock 
Technologies (http://www.irocktech.cn/). These 1024 successive 2D shale images in Figure 1a were 
aligned and stacked to form a 3D image (see Figure 1b), with 1024 × 1024 × 1024 voxels and 12.9 
μm/voxel.  

 

Figure 1. An example of a 3D digital rock. (a) a stack of slice images of a fractured shale core; (b) the 
integrated 3D image of the shale core. 

2.1.2. Fracture Characterization 

Prior to discussing how to represent the fracture geometries, we must first introduce the 
approaches in measuring fracture morphological properties regarding fracture apertures and 
fracture trend-surface.  

Figure 2a shows a 2D slice of a cropped grayscale sub-image of 300 × 300 × 100 voxels from the 
shale CT-image (red box) shown in Figure 1a. A binary image in Figure 2b, consisting of only solid 
and fracture void, can be obtained by segmenting the grayscale image using the threshold 
segmentation method [46]. Thus the fracture volume fraction (or porosity) of the 3D shale sub-image 
can be calculated as 9%, which is the ratio between the fracture void and rock volume. Meanwhile, 
based on the binary image, three structural components of a fracture, as shown in Figure 2c, can be 
extracted by the edge detection operator [46]. Defining the plane of height Z = 0 as a reference, the 
spatial relative positions of the upper and lower fracture-wall surfaces at a coordinate ζ = (x, y) on 
the plane can be determined, denoted by zU(ζ) and zL(ζ), or zU and zL for short. The fracture local 
aperture b(ζ) at a point ζ, which is described as the length of the two-way arrows in Figure 2c, can 
be simply calculated by: 𝒃 =  𝒛𝑼 − 𝒛𝑳 (1) 

 
Figure 2. 2D view of a 3D fracture and its key components. A 2D CT slice image (a), its segmented 
fracture (b), its three identified components (c): upper, lower, and trend-surfaces (or curves in red), 
where the trend-surface describes fracture undulation (d) and the upper and lower surfaces together 
are used to determine fracture apertures (e). 

It is worth noting that if the fracture profile in the rock extends horizontally at the XY plane, the 
fracture aperture can be approximated by the height difference between the upper and lower fracture 
surfaces, as referred to in [8]. If the fracture is placed non-horizontally at the XY plane, the fracture 

Figure 2. 2D view of a 3D fracture and its key components. A 2D CT slice image (a), its segmented
fracture (b), its three identified components (c): upper, lower, and trend-surfaces (or curves in red),
where the trend-surface describes fracture undulation (d) and the upper and lower surfaces together
are used to determine fracture apertures (e).

It is worth noting that if the fracture profile in the rock extends horizontally at the XY plane,
the fracture aperture can be approximated by the height difference between the upper and lower
fracture surfaces, as referred to in [8]. If the fracture is placed non-horizontally at the XY plane,
the fracture aperture, i.e., the shortest distance between fracture two surfaces, can be calculated with
the help of the fracture medial surface, which the calculation details can be referred to [47,48]. In our

http://www.irocktech.cn/
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work, all fractures are assumed horizontal extending at the XY plane, and the height difference between
the upper and lower fracture surfaces is choose as the fracture aperture (see Equation (1)).

The red curve in Figure 2c was obtained by smoothing the mid-surface, zM (see Equation (2)), using
the image filter operator [46], and denoted as zT (see Equation (3)). The heights of the trend-surface
quantifies the spatial fluctuation of a fracture.

zM =
(
zU + zL

)
/2 (2)

zT = g
(
zM

)
(3)

where g(.) is a moving average smoothing operator.
Therefore, fracture void space can be equivalently characterized by two elements: apertures

and trend-surface.
With respect to fracture apertures that vary in a range, mean aperture, µb, and standard deviation,

σb, can be estimated from the aperture density distribution, and then we have the ratio of the standard
deviation and the mean aperture, σb/µb, to quantify fracture roughness [19]. In addition, the spatial
correlation between apertures at different locations can be described by a scalar, i.e., aperture spatial
correlation length, which can be described by the semi-variogram function [49]. Let ϕ be a stochastic
variable defined on a discrete domain Ω ⊂ R and h = (x, y) be a (direction) vector, the semi-variogram
γϕ(h) between variables ϕ(ζ) and ϕ(ζ + h) is defined as:

γϕ(h) =
1
2

E
[
(ϕ(ζ) −ϕ(ζ+ h))2

]
(4)

where E[] denotes the mathematical expectations, ζ is evaluated over all positions in Ω, and the variable
ϕ can be the fracture apertures (Equation (1)) or surface heights (Equation (3)). Note that the closer
two locations (i.e., ζ and ζ + h) are, the smaller the semi-variogram value γϕ becomes.

Similarly, for the fracture trend surface (Figure 2d), zT, the corresponding standard deviation, σT,
and spatial correlation length, λT, can be estimated using the height density distribution of zT and the
surface semi-variogram, respectively. It is noticed that σT can also be considered as a coefficient to
characterize fracture undulation, which reveals the undulation strength on fracture plane.

In summary, in this work the key properties influencing fracture morphology are µb, σb, λb for
fracture apertures (fields) and σT, λT for fracture trend surface.

2.2. Modified Cubic Law

A single fracture is usually modelled by two smooth parallel plates separated by a constant width
(i.e., aperture), b, which is approximated by the arithmetic average of apertures for a rough-walled
fracture [50], i.e., b ≈ µb. Many researchers [13,20,43] have shown that for the steady state, isothermal,
laminar flow between parallel plates, the absolute permeability, KCL, of a fracture is a function of
fracture spacing (i.e., aperture), and estimated by the following equation (i.e., the cubic law):

KCL =
b

2

12
(5)

However, neglecting the morphological complexity of the void/opening space of natural fractures
results in the failure using the cubic law to predict the permeability accurately due to –that b in
Equation (5) is not able to sufficiently represent aperture variation, thus commonly a modified
factor [43], f is introduced in Equation (5) to take into account of the fracture complex morphology as:

K =
b

2

12(1 + f )
(6)
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To determine f we can use the following formula:

f =
b

2

12K
− 1 (7)

where K is assumed to be true permeability, which is actually approximated by the LBM calculation in
this work.

2.3. Fracture Modelling

In this work, each model of a rough-walled fracture is generated by combining two random
two-dimensional fields into a fracture aperture map b(x, y) and a trend surface zT(x, y). Assuming that
these two fields are defined on the XY plane, and both the aperture field and the trend surface are
suggested to be normally distributed and are spatially correlated. In our previous work [51], an image
mean-filter method has been proposed to generate such fields independently and then to assembly
into a 3D fracture, as shown in Figure 3, subject to five pre-measured morphological parameters, µb,
σb

2, λb, σT
2 and λT. Note that the actual position of the trend surface has no impact on the aperture

distribution of a resultant fracture, so µT can be randomly chosen in modelling.
The method includes three major steps: (1) sampling data from a uniform distribution and then

filtering the data with a pre-defined mean mask to obtain a trend surface field that has the required
distribution and the pre-specified correlated feature, associated with two input parameters: σT

2 and λT.
The data field is used as fracture trend surface, illustrated in Figure 3, denoted as zT; (2) Generating two
more fields independently in the exact same means as the first step for the two fracture walls with three
specified aperture parameters: µb/2, σb

2/2 and λb. The resulting two data fields, denoted as dU and dL,
are the relative heights in relation to the trend surface in two opposite directions, as demonstrated
in Figure 3; (3) Positing the two wall fields above or below the trend surface in horizontal direction
into an upper surface, zT + dU, and a lower surface, zT

− dL, respectively. Let b be dU + dL, i.e., a local
aperture at a location on XY plane. Over the whole XY plane the resultant fracture is determined by
five statistical parameters: mean aperture µb, aperture variance σb

2, aperture correlation length λb,
trend surface variance σT

2 and trend surface correlation length λT.
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Figure 3. A fracture model of 300 × 300 × 100 voxels with a trend surface surrounded by two
fracture wall surfaces, where the three surfaces are generated in the same means with five pre-defined
parameters: µb = 10 voxels, σb

2 = 10, λb = 20 voxels, σT
2 = 90, and λT = 120 voxels.

As an example, Figure 4 shows three 3D fracture models generated using our mean-filter method
with five input morphological parameters. Note that the fracture shapes are different from each other
even though with the same input morphological parameters, which gives a certain amount of freedom
in fracture shape but capture the controlling morphology.
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2.4. Fracture Permeability Calculation

On 3D fracture models, single-phase can be simulated using Palabos [52], Lattice-Botlzmann
method (LBM) software, which is an open-source code for computational fluid dynamics. As the
LBM is highly flexible and parallel implemented, it can handle a wide variety of fluid dynamics
problems [40–43]. In this study, the Palabos LBM software is utilized to compute absolute permeabilities
only for a large number of fracture models under an assumption of the bounce-back boundary condition
for fracture walls. The fracture walls, as shown in Figure 5, parallel to the flow direction, are padded
to eliminate the need for periodic boundaries. The standard Bhatnagar-Gross-Krook (BGK) collision
operator is applied with a D3Q19 model. Initially, the fluid macroscopic density in the inlet is set to
one and the fluid velocity is set to zero everywhere and fluid movement is induced by maintaining a
constant pressure gradient between the inlet and outlet, which is set as 5 × 10−5 Pa in addition to a
lattice viscosity of 0.167 for all models. Steady state will be reached when the standard deviation of the
average energy, measured over a fixed number of time steps, fall below a given threshold value (e.g.,
3000 time steps, or a threshold value of 10−4). Steady-state results of the model are then analyzed to
simulate absolute permeability. Given the velocity distribution throughout a 3D domain, the “true”
permeability K in Equations (6) and (7) of a fractured rock model is calculated by the Darcy’s law:

−
dP
dx

=
µ

K
U (8)

where dP/dx is the pressure gradient along X-direction, µ is the fluid viscosity, and U is the average
velocity through a cross-section.

Actually, the fractured rock permeability, calculated by Palabos code, is in dimensionless lattice
(or image voxel) units and marked as Kl hereafter. This value is easily converted to physical units Kr

by Equation (9) [45]:
Kr = Kl·l2 (9)

where l is the physical side-length of a voxel, as shown in Figure 5.
Considering that the rock models studied in our work contain a single fracture only, the fracture

permeability Kf is computed instead by [53]:

K f =
Kr

∅ (10)

where ϕ is the volume fraction of fracture void in the rock models.
Since the computation of permeability using the LBM has been evaluated as a reliable

approximation to the real permeability, which have been validated by comparing simulated results
with experimental data in reference [45]. In our work we also denote the permeability calculated by
the LBM as KLB, i.e., Kf = KLB.
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3. Results and Discussion

3.1. Robustness of Fracture Modelling

Regarding the fracture models generated by our mean-filter method, the fracture shapes
demonstrate a certain amount of randomness between individual models for the same input
morphological parameters, i.e., µb, σb, λb, σT

2, λT, see Figure 4. Further, it is worthwhile investigating
the robustness of these models in terms of their permeabilities before we carry out studying the
effect of fracture morphology on single-phase flow. In other words, we need to assess how robust the
fracture models are that have the same input parameters on fracture permeability rather than fracture
shapes. For instance, µb = 8.7 voxels, σb

2 = 3, λb = 6 voxels, σT
2 = 61, and λT = 200 voxels are the five

morphological properties measured from the fracture illustrated in Figure 2, and can be used as input
parameters to generate any number of fracture models (realizations). Figure 6 shows the relative errors
in the LBM permeability between such 15 realizations and a nature fracture in Figure 2, in which the
relative error ε, is defined as |k − ko|/ko, where ko and k are two permeabilities of the natural fracture and
one of the realizations, respectively. It is evident that different fracture realizations for the same input
parameters differ only within a narrow range (ε < 15%), which indicates that our modelling method
captures the essential morphology that dominates single-phase flow. Although the numerical fractures
are not identical entirely to the actual fracture in shape, their corresponding permeability is sufficiently
close, therefore the method is robust in this sense.
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3.2. Influence of Fracture Trend Surface

The morphological parameters (i.e., σT
2, λT) are introduced in Section 2 to characterize the fracture

trend surface. In order to study the impact of the trend surface on petro-physical properties (especially
the permeability) associated with fractures, three groups of single fracture models of 300 × 300 × 100
voxels are generated using the algorithm briefly introduced in Section 2.3, within each group every
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fracture has the same mean aperture: 5, 9, 13 (in voxels) for group 1, 2, 3, respectively. In each group,
there are 25 fracture models which generated by pairing these two sets of trend surface parameters:
σT

2 = 10, 50, 90, 130, 170; λT = 120, 160, 200, 240, 280 (in voxels), meanwhile, to eliminate the influence
of fracture aperture field, we fix σb

2 = 0 and λb =∞ (i.e., constant apertures at everywhere). Only six
fracture models are shown in Figure 7 to demonstrate the different morphology with respect to σT

2 and
λT. Using the LBM, 25 fracture permeabilities can be calculated for each group, followed by calculating
25 modified factors (fT) according to Equation (7).
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Figure 7. With fixed σb
2 = 0 and λ =∞, (a–c) demonstrate the influence of the trend surface of various

σT
2 but the same λT; (d–f) show the influence of the trend surface of various λT but the same σT

2.
The modelling trend surfaces are in red.

With the correlation lengths (λT) and the undulation coefficients (σT
2) about the fracture trend

surfaces in each group, we relate the corresponding modified factors, as shown in Figure 8a,d,
Figure 8b,e, and Figure 8c,f for group 1, 2 and 3 of mean apertures of 5, 9 and 13 voxels, respectively.
It is observed that with fixed undulation coefficient and mean apertures, the modified factor is a
power-law function of the correlation length as the dotted curves shown in Figure 8a–c. As the longer
the correlation length is, the gentler the bending of the trend surface is, consequently the fracture
wall is smoother and therefore the modified factor is smaller. This means that the flow path in
the fracture is shorter, thereby increasing the fracture permeability. However, when the undulation
coefficient decreases, the fracture models are more plate-like. In this circumstance, for instance σT

2 = 10
(see Figure 8a–c), changing the correlation length of the fracture trend surface hardly affects the fluid
flow path in the fracture, thus the modified factor tends to be zero.

With fixed correlation lengths and mean apertures, Figure 8d–f reveals the relationship between
the modified factor and the undulation coefficient for the three groups. It can be seen that when
correlation length remains constant, the modified factor increases linearly as the undulation coefficient
increases. The undulation coefficient reflects fracture tortuosity, and so the greater the tortuosity is, the
longer the flow path is, therefore the fracture permeability decreases. In addition, in Figure 8d, we
found that there are some crosses existing. In Figure 8d, the curves with different colors represent
different correlation lengths (λT) of trend surface, and the distance between curves decreases with the
increase of correlation length (λT). When the correlation length is 240 (blue curve) and 280 (purple
curve) in Figure 8d, the two curves are closest to each other. Therefore, the crossing of curves in
Figure 8d may be caused by numerical errors.
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undulation coefficients (σT

2) of (d–f) for three groups of fracture models of respective mean apertures
of 5, 9, and 13 (in voxels), in which model parameters σb

2 = 0, λb =∞ are fixed. Where L presents the
size (in voxels) of fracture models in X or Y direction. The black dotted lines are the fitting curves for
the data lines for models of σT

2 = 170 or λT/L = 120/300. The symbol R2 denotes the extent of the curves
fitting the data.

Depicting a triple of fT, σT
2 and (dimensionless) λT/L as a dot in Figure 9 for every fracture in

the three groups, a 3D surface can be fitted by the least square fitting method. The fitted function
(Equation (11), R2 = 0.86) for the surface can be obtained as:

fT = 0.064·
(
λT

L

)−1.39
+ 0.0012·σ2

T − 0.084 (11)
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2 and λT/L for 75 fractures in the three groups and a fitted surface.

This reflects that the modified factor increases linearly with the undulation coefficient, and
decreases with the correlation length as a power function. In addition, we found that the power in
Equation (11) is −1.39 and the power of the dotted lines in Figure 8b,c are closed to −1.39, while the
value in Figure 8a is −0.99 and quite larger than −1.39. The reason of this phenomenon is that the dotted
lines in Figure 8a–c are the optimal fitting of the power formula for the black solid lines. Although, the
power in Figure 8a differs greatly from that in Figure 8b,c, the coefficient of power function in Figure 8a
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is much smaller than that in Figure 8b,c, which make up for the difference between the formulas in
Figure 8a–c.

3.3. Influence of Fracture Aperture Variation

Regarding to the morphological parameters (i.e., µb, σb, λb) for fracture apertures, similarly, three
groups of fracture models of 300 × 300 × 100 voxels are also generated, having the mean aperture
(µb) of 5, 9, 13 voxels for Group 1, 2 and 3, respectively. Differently the two trend surface parameters
are fixed as σT

2 = 0 and λT = ∞ to eliminate the impact of trend surfaces, while only the aperture
smoothness and aperture correlation length are allowed to pair between σb/µb = 0.1, 0.2, 0.3, 0.4, 0.5,
and λb = 6, 10, 14, 18, 22. As a result we have 25 fracture models in each group and 75 models in total,
of which six fracture models are shown in Figure 10.
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various σb/µb but the same λb; and (d–f) show the influence of fracture apertures with various λb but
the same σb/µb. The modelling trend surfaces are in red.

Figure 11a–c presents the relationship between the modified factor (Equation (7)) and aperture
correlation length based on the generated fracture models in Group 1, 2 and 3, respectively. It is evident
that the modified factor seems to be a power function of the correlation length when σb/µb is constant.
This is because the longer the correlation length the stronger the continuity between local apertures.
Consequently, the obstruction of fluid flow in the fracture is reduced and increasing the degree of
flow movability.

Similarly, Figure 11d–f describes the relationship between the modified factor and aperture
roughness when λb/L is constant. It can be concluded that under the same correlation length of aperture
fields, the modified factor is linearly related with the aperture roughness. This is because the roughness
determines the range of variation between local apertures. The larger the roughness the greater the
undulation of apertures, which hinder fluid flow and so reduces the fracture permeability.
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Figure 11. Relationships between the modified factor (fb) and aperture correlation length (λb) of (a–c)
and fracture wall roughness (σb/µb) of (d–f) for three groups of fracture models with the respective
mean apertures of 5, 9, and 13 (in voxels), in which two trend surface parameters are set as to σT

2 = 0,
λT =∞. Where L presents the fracture size in X or Y direction, and the black dotted lines are the fitted
curves for three corresponding black solid lines for fracture models of σb/µb = 0.5 or λb/L = 6/300.

Depicting a triple of fb, σb/µb and λb/L as a dot in Figure 12 for every fracture in the three groups, a
3D surface can be fitted in the same way as above. The fitted function (R2 = 0.83) for the surfaces can
be obtained as:

fb = 1.18·
(
100·

λb
L

)−0.7
+ 2.73·

σb
µb
− 0.49 (12)

It shows that the modified factor is a linear function of aperture roughness, but a power function
of the aperture correlation length.
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3.4. Accumulated Influence of Fracture Morphology

Quantitative studies on how the variation in both fracture trend surface and fracture apertures
effects the modified factor in the cubic law (Equation (6)) have been discussed above separately.
The accumulated influence may be complicated and has no systematical way to study, however it
is necessary to investigate the function relationship between the two factors, fT and fb, and the total
modified factor f in Equation (7).

In the same way as described in above sections, three groups of fracture models of 300 × 300 × 100
voxels can be generated, within each group every fracture has the same mean aperture: 5, 9, or 13
(in voxels), respectively. In each group there are 50 fracture models, of which 25 fracture models were
generated by altering the trend surface parameters: σT

2 = 10, 50, 90, 130, 170, λT = 120, 160, 200, 240,
280, where the fracture aperture parameters were fixed as σb/µb = 0.5 and λb = 22; meanwhile the other
25 fracture models were generated by changing the aperture parameters: σb/µb = 0.1, 0.2, 0.3, 0.4, 0.5;
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λb = 6, 10, 14, 18, 22, but the fracture trend surface parameters were fixed as σT
2 = 100 and λT = 120.

As a result, we have 150 models in total, of which eight fracture cross-sections are shown in Figure 13
to demonstrate the different morphology with respect to (σT

2, λT) or (σb/µb, λb). Using the LBM, we
have 150 fracture permeabilities and the corresponding modified factors f, furthermore we have the
corresponding fT and fb for each fracture model according to Equation (11) and Equation (12).
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with the same (µb, σT
2, λT) = (13, 100, 120). The red curve represents the trend surfaces.

Depicting a triple of f, fT and fb as a dot in Figure 14 for every fracture in the three groups, a
3D surface can be fitted for the data by the least square fitting method. The corresponding function
(R2 = 0.85) for the fitted surface can be estimated by:

f = 0.77· fT + 0.93· fb (13)

It is shown that the slope of the modified factor caused by the aperture parameters (fb) is larger
than the slope of the trend surface parameters (fT) because more weight is assigned, which indicates
that the morphological characteristics of fractures described by (µb, σb and λb) are the predominant
factor that effect the fluid flow more significantly. Therefore, the modified factor in Equation (13) is
used to refine the cubic law as given in Equation (6). Next, we will use natural fractures in CT images
to validate the calculation of the modified factor by Equation (13).
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4. Verification with Natural Fractures

Figure 15 shows seven slice images of a CT image acquired by scanning seven fractured rock
cores, all the images have the same dimensions of 10243 voxels, and the voxel resolution is assumed
to be 1 µm/voxel without loss of generality. The first five are shales and the last two are sandstones.
Instead of using the whole original images, a small sub-image (see Figure 15 is cropped out from each
CT image to reveal a natural fracture. All fractures in Figure 15 can be considered to be horizontally
placed. Using the measurement method described in Section 2.1.2, we can measure all the geometrical
parameters of the trend surface and fracture aperture fields in the CT images, as listed in Table 1.
Three types of fracture permeabilities for each fracture sample were calculated using LBM, cubic law,
and our modified cubic law, KLB, Kcl, Kmcl, respectively. Let KLB be the permeability calculated by
the LBM, and Kcl and Kmcl be the permeabilities estimated by the original cubic law of Equation (6)
and our modified cubic law (Equations (7) and (13)), respectively. The relative errors are εcl = (Kcl −

KLB)/KLB and εmcl = (Kmcl − KLB)/KLB. Note that from the table that the relative errors calculated by
the modified cubic law are far less than that of the original cubic law: Most of them, remain below
20%, and the average relative error is ~8.57%, which are acceptable in practical applications. Therefore,
based on the combination of fracture trend surface and variable apertures, the modified cubic law
((Equations (7) and (13)) proposed in this work effectively calculates the permeability of rough fractures,
greatly reducing the computational complexity.
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Figure 15. Seven slice images of CT images of 10243 voxels scanned on 5 shale and 2 sandstone cores,
a sub-image that contains a single fracture is cropped out from each CT image, having a smaller
dimension of 300 × 300 × 100 voxels.

Table 1. The characteristic parameters of eight different fracture samples presented in the green box of
Figure 15 and the sample permeabilities calculated from LBM, cubic law and modified cubic law.

Samples µb
(µm) σb/µb

λb
(µm) σT

2 λT
(µm)

KLB
(mD)

Kcl
(mD)

Kmcl
(mD)

εcl
(%)

εmcl
(%)

SA1A 5.03 0.26 6 160.75 150 1110.49 2108.41 982.76 89.86 −11.5

SA1B 5.28 0.19 6 90.60 150 1443.05 2323.20 1232.62 60.99 −14.58

SA1C 5.52 0.25 10 231.2 200 1157.60 2539.20 1297.74 119.35 12.11

SA2 10.45 0.20 20 14.40 150 6166.89 9100.21 6372.08 47.57 3.33

SA3 11.75 0.16 10 161.14 200 6705.99 11,505.21 7434.62 71.57 10.87
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Table 1. Cont.

Samples µb
(µm) σb/µb

λb
(µm) σT

2 λT
(µm)

KLB
(mD)

Kcl
(mD)

Kmcl
(mD)

εcl
(%)

εmcl
(%)

SA4 6.74 0.18 10 45.99 150 2665.43 3785.63 2389.23 42.03 −10.36

SA5 11.45 0.14 10 18.6 150 8102.42 10,925.21 8551.35 34.84 5.54

SB1 5.25 0.18 7 94.25 150 1468.85 2296.88 1271.76 56.37 −13.4

SB2 10.81 0.30 20 70.5 140 5689.30 9738.01 5599.80 71.16 −1.57

5. Conclusions

Advances in 3D imaging technology allow the fracture structure in fractured rocks to be revealed
truly and faithfully without destroying the core. In this study, the rough-walled fracture was
investigated by combining fracture variable apertures and the fracture trend surface topography, which
quantifies undulation about the fracture undulation. Using the computer laboratory, the geometric
characteristics of variable aperture and fracture trend surface were quantitatively represented, in which
the aperture roughness and aperture correlation length used to describe variable apertures, and the
trend surface fluctuation coefficient and the trend surface correlation length used to represent the
fracture trend surface. In addition, the influences of these representation parameters on the fracture
permeability of fluid flow through rough-walled fracture were investigated. Lastly, a corrector factor is
proposed for improving the performance of the cubic law by incorporating the characteristic parameters
of fracture trend surface and variable apertures. For all the 3D digital fracture samples present in this
work, the modified cubic law was determined to be an acceptable approximation to the numerical
simulation (LBM).

Because single fracture is the basic element of fracture network, the methodology has the potential
application in characterizing the geometric structure of fracture network in which the interaction
between fractures can be take into account. Meanwhile, the flow properties of the fracture network can
be evaluated by the modified cubic law proposed in this work. These tasks will be processed in our
next work. Apart from this extension, the applicability of our methods proposed in this work may
be limited within a narrow range of length-scale (fracture opening in µm, mm or cm, plus the model
dimensions), we will explore both in the near future, however the inertial effect and surface contact are
neglected in our work and will be investigated in the future.
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