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Abstract: Accurately forecasting a battery’s remaining useful life (RUL) plays an important role in the
prognostics and health management of rechargeable batteries. An effective forecast is reported using
a particle filter (PF), but it currently suffers from particle degeneracy and impoverishment deficiencies
in RUL evaluations. In this paper, an inheritance PF is developed to predict lithium-ion battery RUL
for the first time. A battery degradation model is first mapped onto a PF problem using the genetic
algorithm (GA) framework. Then, a Lamarckian inheritance operator is designed to improve the
light-weight particles by heavy-weight ones and thus to tackle particle degeneracy. In addition, the
inheritance mechanism retains certain existing information to tackle particle impoverishment. The
performance of the inheritance PF is compared with an elitism GA-based PF. The former has fewer
tuning parameters than the latter and is less sensitive to tuning parameters. Both PFs are applied to
the prediction of lithium-ion battery RUL, which is validated using capacity degradation data from
the NASA Ames Research Center. The experimental results show that the inheritance PF method
offers improved RUL prediction and wider applications. Further improvement is obtained with
one-step ahead prediction when the charging and discharging cycles move along.
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1. Introduction

Optimized lithium-ion batteries play an important role in daily applications, from mobile phones,
through microgrids, to satellites [1,2]. Despite the fact that they offer many advantages over other types
of batteries, such as a low weight, high power density, and long lifespan [3], their performance degrades
with repeated charging and discharging. Hence, their degradation identification, state estimation and
prediction, and maintenance optimization have become a focus of attention in engineering research [4].
To optimize the energy deployment of a battery, avoid its premature failure, and improve its reliability
and durability, it is important to monitor its degradation process accurately. This involves evaluating
the state of health (SOH) [5] and predicting the state of charging (SOC) and remaining useful life
(RUL) [6] in a battery management system (BMS) [7], which can be used for automated and optimized
scheduling of maintenance actions that, in turn, ensure safe operation and use of lithium-ion batteries.
Capacity is a direct indicator of SOH, where the end of life (EOL) is defined as the state in which the
capacity reaches 70–80% of the nominal value [8] at the same SOC and operating conditions.

In recent years, a number of RUL prediction methods have been developed. For instance, neural
networks [9] and relevance vector machines (RVMs) [10] have been utilized to learn the battery SOH,
using test data to estimate the parameters of a battery degradation model. However, these methods
are dependent on the training datasets and their models lose accuracy under complex conditions [11].
A more adaptive method is a parameter estimation approach, using a filter such as the extended
Kalman filter (EKF) [12], unscented Kalman filter [13], or their improved versions [14–16], which
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can adjust the model parameters to track battery degradation. Despite this improvement, however,
these Kalman filters cannot be well adjusted since battery life generally demonstrates a nonlinear and
non-Gaussian property.

To realize further improvements, the particle filter (PF) widely adopted in sequential importance
resampling (SIR) [17,18] has been used to provide better estimation and prediction for battery SOH [19].
For example, a PF framework for prognostics of lithium-ion battery systems is presented in [20].
However, it is known that the estimation error for PF can be large for several instances during the
model parameter training stage due to the degeneracy and impoverishment of particles [21]. To solve
these problems, improved particle filtering methods have been developed recently. These have led
to improved RUL estimation for lithium-ion batteries in evaluating SOH. For instance, an empirical
degradation model and unscented particle filtering have been applied to predicting the RUL [22].
Predicting the end-of-discharge of a lithium-ion battery has also been reported by combining a PF
and an artificial neural network [23]. In the state space, capacity degradation has been estimated
using a spherical cubature particle filter [24]. Markov-chain-based Monte Carlo simulation has also
been shown to be effective with an improved unscented PF for sample impoverishment in lithium-ion
battery RUL prediction [25].

The review in [6] has concluded that, because the battery modeling methods currently reported in
the literature are not accurate enough and impose several restrictions to continually update the models,
it is necessary to perform more research in this field. Recently, further improvements in overcoming
the particle diversity deficiency have been reported [26], as well as the use of an improved unscented
particle filter in optimizing combination resampling for RUL prediction [27] and the use of a heuristic
Kalman filter [28]. Despite the efforts undertaken so far, however, the issues of particle degradation
and particle impoverishment remain challenging for RUL estimation. The work reported in [27,28] has
particularly motivated the work reported in this paper. From the review in [6], it is clear that adaptive
filter-based algorithms are more suitable for electric vehicle (EV) applications, and algorithms based
on artificial intelligence (AI) are not suitable for this application due to its intensive computing and
learning requirements. For solving the optimization problem in filter-based techniques, however, the
trend is to use AI-based techniques owing to their simplicity, flexibility, derivation-free mechanism,
and local optima avoidance [6].

Hence, we propose an AI-based inheritance particle filtering approach to the prediction of
lithium-ion battery RUL with high accuracy, using the genetic algorithm (GA) framework. A
Lamarckian inheritance operator is developed to reduce particle degradation, enhance particle
diversity and simplify the filtering process. Thus, the optimized particle will tend to cluster around
the high likelihood region. Battery capacity degradation data provided by NASA Ames Research
Center will be used to validate the proposed prediction approach and to compare it with the GA-based
PF approach.

The rest of the paper is organized as follows. In Section 2, the empirical degradation model of a
lithium-ion battery solved in this paper is described. In Section 3, brief preliminaries regarding the
standard PF are presented and the inheritance PF algorithm is developed for building a prediction
model of the RUL. In Section 4, we first use one experimental example to demonstrate the effectiveness
of the inheritance PF. Then, the results of the standard PF and inheritance PF for RUL prediction are
compared and analyzed, using real lithium-ion battery data extracted from the NASA Ames Research
Center database. Finally, in Section 5, conclusions are summarized, and future work highlighted.

2. Empirical Degradation Model of Lithium-Ion Battery RUL

A lithium-ion battery and its degradation involve a complex electrochemical process. In
particular, self-charging during charge and discharge cycles makes it difficult to establish a suitable
first-principles-based clear- or grey-box model [29] to characterize the overall degradation process.
Hence, a black-box model such as the empirical model of the capacity degradation from He et al. [30]
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has been adopted. For example, RUL prediction of lithium-ion battery capacity is approximated by a
double-exponential degradation black-box model as [30]:

Q = a·exp(b·k) + c·exp(d·k) (1)

where a, b, c and d are the parameters of the double-exponential function, the amplitudes of which, a
and c, are related to the internal impedance of the battery and the degradation rates of which, b and d
are related to aging; k is the number of charging cycles, and Q the remaining capacity of the battery.

Here, the objective of modeling and hence predicting the RUL is to estimate these model parameters.
They can be estimated as transitional states and measurements of a stochastic dynamic system [30]:

xk = [ak bk ck dk µ σ]T, (2)
ak = ak−1 + wa wa ∼ N(µ, σa)

bk = bk−1 + wb wb ∼ N(µ, σb)

ck = ck−1 + wc wc ∼ N(µ, σc)

dk = dk−1 + wd wd ∼ N(µ, σd)

, (3)

Qk = ak·exp(bk·k) + ck·exp(dk·k) + nk, (4)

where Qk is the capacity of the battery at cycle index k and N(µ, σ) the Gaussian noise with mean µ and
standard deviation (SD) σ, which could be different for different parameters, but are usually constant
and hence not expressed as state variables to estimate. To determine the probabilistic characteristics of
the estimation, the state variables are estimated conditionally based on observation information, which
can be achieved via particle filtering.

3. Inheritance Particle Filtering Approach to RUL Prediction

Here, we propose an inheritance particle filtering approach to predicting battery RUL, using
the GA framework to develop an inheritance-based Lamarckian particle filter (LPF). A Lamarckian
operator is designed in the GA context to modify the light-weight particles by heavy-weight ones
and to retain the information of light-weight particles. This is to improve from the standard PF the
diversity of resampled particles, to mitigate the particle degeneracy and impoverishment problem. In
the following, the standard PF will be first outlined, followed by the LPF algorithm.

3.1. Particle Filter Algorithm

A particle filter is also known as a sequential Monte Carlo method in statistics. It combines
Bayesian learning with importance sampling to estimate a posterior probability density function with
a set of weighted particles representing sampled values from an unknown state space. Particle filtering
has thus found wide applications in stochastic processes of given noisy and/or partial observations,
such as the prediction of a battery’s remaining lifetime [22].

Many dynamic processes can be described by a state space model [31], including the state transition
and measurement equations written as:

xk = f (xk−1, uk−1), (5)

zk = h(xk, vk−1), (6)

where xk and zk are the state variables and observations at time k, respectively; xk ∈ Rnx , zk ∈ Rnz , nx

and nz are the dimensions of xk and zk, respectively; f (·) and h(·) are the known system and observation
functions, respectively; uk−1 ∈ Rnx and vk ∈ Rnz are the system and observation noises, respectively,
which are both random in terms of known distributions and vk likely independent of uk−1; and uk−1
and vk−1 are independent of the past and current states.
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A standard PF estimates the posterior distribution of the states using an observation measurement
process. The sequences of the states and observations are denoted as x0:k =

{
x0,··· ,xk

}
and z1:k =

{
z1,··· ,zk

}
,

respectively. The initial distribution of states p(x0) is known a priori. A PF consists of a mass of N
particles xi

k(i = 1, · · · , N), where the number of particles, N, remains a constant at each time step k.
Particle filtering is an approximation, but it can become more accurate with enough particles.

The objective of the aforementioned particle filtering is to estimate the posterior probability

density p(x0:k|z1:k) using a collection of particles
{
xi

k

}N

i=1
with associated weight vector

{
wi

k

}N

i=1
, based

on all available measurements z1:k. Hence, the posterior probability density p(xk|z1:k) can be written
as [31]:

p(xk|z1:k) ≈
∑

N
i=1w̃i

kδ
(
xk − xi

k

)
, (7)

where δ(·) is the Dirac delta function.
Actually, it is difficult to obtain the ideal particle distribution directly from the posterior probability

density distribution. Therefore, an “importance sampling” technique is used to sample the particles.
The “importance distribution” in the filtering process is given by [31]:

q(x0:k|z1:k) = q(x0:k−1|z1:k−1)q(xk|x0:k−1, z1:k), (8)

In the PF, a resampling procedure is used to solve the particle degeneracy problem. It is to
eliminate samples with a low importance weight and retain those with a high importance weight.
Following this resampling process, the weights are estimated as wi

k = 1/N, and the posterior density
p(xk

∣∣∣z1:k) is approximated by [31]:

p(xk|z1:k) ≈
1
N

∑
N
i=1δ

(
xk − xi

k

)
, (9)

While the resampling procedure of the PF reduces the particle degeneracy efficiently, particle
impoverishment remains to be solved, as the low-weight particles are eliminated, whereas offspring
particles share few distinct values. Therefore, the following section develops inheritance particle
filtering to tackle this problem.

3.2. Lamarckian Particle Filter

3.2.1. Genetic Algorithm Framework for Particle Filtering

A GA solves a significant number of complex optimization problems, including the PF
problem. The principle of a GA PF is based on Darwin’s theory of natural evolution through a
“survival-of-the-fittest” selection. Several candidate PF solutions to the PF problem are drawn from its
potential solution space. These solutions are optimized by mimicking a natural evolutionary process,
through selection, crossover and mutation operations. One example of work using the GA mechanism
to construct a PF for improved estimation performance is given in [31]. However, deficiencies such as
a low convergence speed, weak local search ability, and premature convergence are not overcome.

3.2.2. Lamarckian Particle Filter

Compared with the working mechanism of a standard GA or an elitism GA, the Lamarckian
mechanism of evolution is based on the theory that specific characteristics of an organism are directly
inheritable by its offspring and survives the given environment [32,33]. In evolutionary algorithms,
it has been shown that Lamarckian inheritance is an effective way to improve machine learning and
convergence characteristics [34].

Here, in place of the conventional selection and crossover operators of a GA, an overwriting
operator is implemented in the LPF on Lamarckian inheritance. This operator ensures that fitter
organisms are given the priority directly to pass on their characteristics to their offspring in evolution.
Suppose that each of the N particles at time k, xi

k, consists of six parameters of the RUL model as
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shown in Equation (2). Each parameter is termed a “phenotype” of “genes”. For simplicity of
illustration, we assume that each parameter is represented by one gene. A complete set of the genes
representing the parameter set is termed a “chromosome”. Consider two chromosomes at time k,
xi1

k = A = (A1, A2, A3, A4, A5, A6) and xi2
k = B = (B1, B2, B3, B4, B5, B6), where A is better than B, i.e.,

f itness(A) > f itness(B).
In an LPF, for chromosomes A and B to produce offspring, a certain percentage of the genes of

chromosome B will be overwritten by corresponding genes of chromosome A, forming chromosome B′

as a new candidate PF. The percentage of the overwriting genes transferred over to B′ is termed the
Lamarckian probability, which is denoted pt and is calculated as:

pt =

(
f itness(A)

f itness(B) + f itness(A)

)
%, (10)

The numbers of genes transferred, nt, is calculated by:

nt = nx·pt, (11)

where nx is the number of parameters (or genes in this simplified example) or the number of dimensions
of a particle in the PF. This overwriting operation is depicted in Figure 1.
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Hence, the number of genes passed on at crossover depends on the relative fitness of the two
parental chromosomes. In this way, even if the fitness of chromosome B is too low, it will retain a small
portion of its genes instead of being unselected as in a GA, thereby maintaining a degree of diversity in
the gene pool and thus mitigating the particle impoverishment problem.

Further, the overwriting operation saves the mutation operation of a GA. With elitism, the
overwriting operations will retain the best characteristics in the PF, while some lightweight particles
are still present in the population for particle diversity potentially useful for future explorations.

3.2.3. Implementation of the LPF Algorithm

The steps of the LPF for RUL are given below.

Step 1: Initialization

Generate an initialization particle set
{
xi

0

}
, i = 1, 2, · · · , N, by drawing from an assumed or a priori

probability density p(x0). In the population, each particle or chromosome can be encoded in binary if
necessary or if the number of parameters is relatively small, to explore finer estimation.
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Step 2: Importance Sampling to Form an Initial Population

Sample N particles with weights
{
xi

k, wi
k

}N

i=1
using the transition density q

(
xi

k

∣∣∣xi
k−1, zk

)
= p

(
xi

k

∣∣∣xi
k−1

)
as the importance density to estimate the weight of each particle:

w̃i
k ∝ w̃i

k−1

p(zk

∣∣∣∣Xi
k)p(X

i
k

∣∣∣∣(Xi
k−1

)
q(Xi

k

∣∣∣∣(Xi
k−1, Zk

) , (12)

for normalization to
wi

k = w̃i
k/

∑
N
i=1w̃i

k, (13)

The importance sampling particle set
{
xi

k

}N

i=1
at k = 0 forms the initial population of the PF.

The size of the population means the number of particles, which remains as N, constant to k in the
filtering process.

Step 3: Overwriting Operation

First, the overwriting chromosome is chosen according to the given inheritance probability. For
instance, suppose that particles i1 and i2 are chosen with wi1

k > wi2
k . Then, the probability of each gene

in i1 to overwrite its corresponding gene in i2 is calculated as:

pt =

 wi1
k

wi1
k + wi2

k

%, (14)

The numbers of genes transferred, nt, is calculated by (11).
In this way, the lower-weight particle is overwritten in part by the higher-weight one with

favorable genes, like gene editing in biochemistry. If the weight of one selected particle is zero,
overwriting will not be performed. Note that the overwriting operation will automatically retain the
elitist particle, as depicted in Figure 1. Hence, the LPF is always an elitism algorithm, as there is no
need to use a mutation operation in an LPF.

Step 4: Evolution Until Termination

The particle set evolves generation by generation until the process terminates when a fixed number
of iterations have been reached or no meaningful improvements may be obtained.

Step 5: Outputting the State Estimates

Then, the particle phenotypes are decoded back to real numbers of the optimal particles with

equal weights
{

~
x

i
k, 1/N

}N

i=1
. By Equation (9), the system state is thus estimated as:

xk =
1
N

∑
N
i=1

~
x

i
k, (15)

3.2.4. State Updating and Prediction in the LPF Algorithm

The accurate estimation of battery capacity not only depends on a degradation model, but also on
its parameters. According to [30], using the LPF, the estimated capacity for each particle at cycle k is
given by:

Qi
k = ai

k·exp
(
bi

k·k
)
+ ci

k·exp
(
di

k·k
)
, (16)

and hence the capacity is estimated as:

Qk =
∑

N
i=1wi

k·Q
i
k, (17)
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An L-step-ahead prediction at cycle k with present observations can be estimated as:

Qi
k+L = ai

k·exp
(
bi

k·(k + L)
)
+ ci

k·exp
(
di

k·(k + L)
)
, (18)

The estimated posterior PDF can be predicted at each trajectory with weights:

P(Qk+L|Q0:k) ≈
∑

N
i=1wi

kδ
(
Qk+L −Qi

k+L

)
, (19)

Hence, the expectation of the L-step-ahead prediction yields:

Qk+L =
∑

N
i=1wi

kQi
k+L, (20)

As the failure threshold is 70% of the rated capacity, the RUL estimation Li
k of the ith trajectory is

obtained by solving the equation:

ai
kexp

(
bi

k

(
k + Li

k

))
+ ci

kexp
(
di

k

(
k + Li

k

))
= 0.7Qrated, (21)

Then, the distribution of RUL is estimated as:

P(Lk|Q0:k) ≈
∑

N
i=1wi

kδ
(
Lk − Li

k

)
, (22)

The expectation of the RUL at the cycle k is thus predicted as:

Lk =
∑

N
i=1wi

kLi
k, (23)

4. Experiments and Validation

Here, the performances of LPF is demonstrated in a single-dimensional (1D) system against the
PF that is based on genetic algorithm with elitism (GAe), which is termed GAePF. The LPF is then
compared with the standard PF for lithium-ion RUL prediction.

4.1. Single-Dimension Experiment

A nonlinear 1D experiment widely used in PF testing is given by [35]:

xk = 1 + sin(απk) +∅1xk−1 + vk, (24)

zk =

∅2x2
k + rk k ≤ 30

∅3xk − 2 + rk k > 30
, (25)

where vk is a random variable modeling the process noise in Gamma(3,2); α = 4× 10−2, ∅1 = ∅3 = 0.5,
and ∅2 = 0.2 are scalar parameters in the output model; and the observation noise is rk, drawn from a
Gaussian distribution N(0, 0.00001). Different filters are used to estimate the state xk for k = 1, 2, . . . , T,
where the total observation time is T = 70. The maximum number of generations is G = 20. In the
LPF, the inheritance probability is ρ = 0.5. In the GAePF, the crossover probability and the mutation
probability are 0.5 and 0.1, respectively. All of the PFs have N = 100 particles. The experiment was
carried out on Monte Carlo simulations with M = 200.

To evaluate the performance of LPF and GAePF, three root-mean-squared errors are used:

rmse =

√
1
T

∑
T
k=1

(
xk −

^
xk

)2
, (26)

rmse =

√
1
M

∑
M
m=1

[
1
T

∑
T
k=1

(
xm

k −
^
x

m

k

)2]
, (27)
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rmse′ =

√
1
M

∑
M
m=1

(
xm

k −
^
x

m

k

)2
, (28)

where the mean of rmse is rmse, rmse′ is the rmse for M simulations, xm
k the real state at time k for the

mth simulation, and
^
x

m

k the estimated state.
The mean estimation rmse values of the generic PF, LPF, and GAePF for 200 simulations are

presented in Figures 2 and 3, respectively. As can be seen from the figures, the rmse of the LPF is lower
than that of the other two algorithms. The root mean square error (rmse) results of the three algorithms
with N = 100 and 200 are compared in Table 1. It can be seen that the estimation accuracy of the LPF
with just 100 particles is better than that of the other two filters with 200 particles. In other words, the
LPF not only improves the accuracy, but also has a higher utilization rate, while its runtime is close to
that of the GAePF.
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Table 1. Mean Root Mean Squared Error and Stop Time.

Algorithm Performance Metrics

Mean Root Mean Squared Error Stop Time N

PF 0.9604 0.2542
100GAePF 0.8019 1.5454

PF 0.7604 0.6692
200GAePF 0.6960 3.1651

LPF 0.2902 2.1539 100

4.2. RUL Prediction for Lithium-Ion Battery

4.2.1. Experimental Battery Datasets

In this subsection, the proposed LPF framework for RUL prediction is validated against lithium-ion
battery data provided by the NASA Ames Research Center Prognostics Center of Excellence [36]. The
data were obtained at room temperature (24 ◦C).

The dataset contains four cells, labeled as B05, B06, B07, and B18. Their nominal capacity is
2000 mAh, while the nominal voltage is 3.7 V. To estimate accelerated aging, multiple charge-discharge
cycles were undertaken. All of the test cells went through the same constant-current (CC) and
constant-voltage (CV) charging with current maintained at 1.5 A until the voltage reaches the upper
limit of 4.2 V and then maintained until the current dropped to 20 mA. Similarly, discharging went
through a constant current of 2 A until the voltages fell to 2.7 V, 2.5 V, 2.2 V, and 2.5 V for battery B05,
B06, B07, and B18, respectively. The failure threshold was 1400 mAh.

The capacity degradation trend is shown in Figure 4, where the degradation data were drawn
using MATLAB®®® (MathWorks, Natick, MA, USA) curve fitting. It can be seen that the empirical
model of Equation (4) fit the regression process. Figure 5 shows that if the parameters are accurately
estimated, the model fits the degradation trend.
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To test the prediction accuracy, the data of batteries labeled B05, B06 and B07 were used as the
training data. For validation, battery B18 was predicted using the LPF. For simplicity in this experiment,
µ was set to 0.6 and σa = 1× 10−4, σb = 1× 10−6, σc = 1× 10−6, σd = 1× 10−7, and σn = 1× 10−3 for
the Gaussian noise mode. Hence, only the four parameters a, b, c, and d must be estimated in a particle.
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The parameters of the three known batteries were produced by the fitting to obtain initial training data,
as shown in Table 2.
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Table 2. Model Parameters of Batteries and State Initialization.

Battery ID State Variables Initial Value Fitting Range

B05

a 1.983 (1.963, 2.004)
b −0.002746 (−0.002838, −0.002654)
c −0.1738 (−0.2006, −0.1469)
d −0.06751 (−0.09014, −0.04488)

B06

a 1.579 (−1.745, 4.903)
b −0.00549 (−0.01438, 0.003402)
c 0.4797 (−2.859, 3.819)
d 0.0008834 (−0.01656, 0.01833)

B07

a 1.942 (1.933, 1.951)
b −0.002052 (−0.002126, −0.001978)
c 1.572 × 10−7 (−2.198 × 10−6, 2.513 × 10−6)
d 0.07406 (−0.01613, 0.1643)

Mean

a 1.8347 -
b −0.003429 -
c 0.101967 -
d 0.0024778 -
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4.2.2. Results and Analysis

In this work, the initial parameters were set as their corresponding mean values of batteries B05,
B06, and B07 shown in Table 2. The number of particles N was set to 100. To test the robustness of the
LPF method, different numbers of training cycles were used to compare the prediction results, which
were the first 33 and 70 measurement cycles. To test the relative prediction performance, the results
were compared with those obtained using the standard PF. Furthermore, the model accuracy was
evaluated on the RUL absolute error (AE), the RUL relative prediction error (RPE), and the capacity
root-mean-square-error (RMSE). These are defined as:

AE =
∣∣∣RULtrue −RULprediction

∣∣∣, (29)

RPE = AE/RULtrue, (30)

RMSEestimate =

√
1
C

∑
C
k=1

(
Qk − Q́k

)
, (31)

RMSEprediction =

√
1

Cp

∑
C
k=start

(
Qk − Q̂k

)
, (32)

where C is the number of measurement cycles, Q́k is the estimate at cycle k, Cp is the number of cycles
that must be predicted, and Q̂k the prediction result at cycle k.

Prediction Performance Analysis

Figure 6 shows the RUL prediction results from the standard PF and the proposed LPF, where the
first 33 cycles were used to update the prediction. Compared with the dataset, it is apparent that the
LPF offers better predictions.
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Figure 6. Prediction comparison using 33 cycles for battery B18 of a remaining useful life (RUL) of
97 cycles.

Figure 7 compares the histograms of the RULs predicted by the PF and LPF. It can be seen from
Figure 7a that, using the PF method, more than 10% of the particles failed to predict the RUL from
existing measurements during the first 33 cycles, and the estimated predicted RULs of cycles were
within the range [50, 130], giving an average at 80 cycles, far away from the RUL data at 97 cycles.
In contrast, Figure 7b plots the performance of the LPF predicted RULs within the range [94, 100],
showing 90% of the particles predicting 95 cycles, which were very close to the true RUL of 97.
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When using the first 70 cycles as measurement data to predict the RULs, Figure 8 similarly shows
that the LPF offers better results. Figure 9a,b show the histograms of the RULs predicted by the PF and
LPF, respectively. The same conclusions as drawn from Figures 6 and 7 can be drawn from Figure 9,
confirming the robustness of the LPF method.
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Figure 8. Prediction comparison using 70 cycles for battery B18 of a RUL of 97 cycles.

Figure 10a,b show the capacity RMSEs for the predictions using the PF and LPF methods, in which
the first 33 and 70 cycles were used for the prediction, respectively. This confirms that the proposed
LPF method results in a smaller RMSE than the PF.

Table 3 shows prediction errors between the two methods. It can be seen from the table that
the predicted AEs, RPEs, and RMSEs obtained by the LPF are all smaller than those obtained with a
standard PF.
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Table 3. Prediction Results for Battery B18.

Cycles True RUL Algorithms Prediction RUL AE RPE RMSE

33
97

PF 87 10 10.3% 0.09084
LPF 95 2 2.1% 0.04408

70
PF 90 7 7.2% 0.07705

LPF 98 1 1% 0.04597

One-Step Ahead Prediction Analysis

As all of the measurements of the battery could not be obtained while it was working, one-step
prediction performance will also be considered as an on-line prediction reference. Figure 11a,b show
the one-step-ahead capacity estimates using the standard PF and proposed LPF, respectively. Again,
the LPF offers better results than the PF. To visualize the performance difference more clearly, the
capacity RMSEs of the estimates at every cycle are compared in Figure 12 and mean RMSEs of all cycles
are compared in Table 4. The results of these comparisons confirm that the LPF is a better method.
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Table 4. Mean RMSE of One-Step-Ahead Capacity Estimates.

Algorithms Mean RMSE (Ah)

PF 0.01098
LPF 0.00706

5. Conclusions

In this work, a novel approach to predicting lithium-ion battery’s remaining useful life has been
developed and evaluated. In the literature, effective forecast of remaining useful life has been reported
using a particle filter, but it suffers from particle degeneracy and impoverishment deficiencies. The
Lamarckian particle filter developed in this paper was to solve these problems for the first time to
improve and broaden prediction of lithium-ion battery RUL.

Since the standard PF is a widely used algorithm for RUL prediction, we have used the RUL
estimations from the traditional methods for comparison and have mapped a battery degradation
model onto a particle filter problem. The LPF method developed in this paper is based on the PF
estimates using the genetic algorithm framework with a Lamarckian inheritance mechanism. A
Lamarckian inheritance operator has been developed to reduce particle degradation, enhance particle
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diversity and simplify the filtering process. Thus, the optimized particle will tend to cluster around
the high likelihood region. The LPF has yielded better estimates of the RUL for cases considered
with different numbers of measurement data, which are from NASA lithium-ion battery capacity
degradation database, in terms of the average.

Moreover, according to histograms of the predicted RUL particle distribution using 33 and 70
observations, we draw the conclusion that more particles of the LPF when making a prediction were
concentrated on the true RUL. In other words, the LPF well overcomes the lack of the particle collapsing
problem, resulting in particle degeneracy and impoverishment. Further, better prediction results can
be obtained using one-step ahead LPF prediction when the charge and discharge cycles proceed. This
indicates that the proposed method has a good adaptability for lithium-ion battery degradation with
non-linear and non-Gaussian characteristics.

It is expected that the LPF method can cope with more complex RUL models. Hence, in planned
future research, the LPF method will be used to improve the underlying RUL model itself, and to make
the prediction self-adaptive.
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Nomenclature

The following abbreviations are used in this manuscript.

AE Absolute error
AI Artificial intelligence
BMS Battery management system
EKF Extend Kalman filter
EOL End of life
EV Electric vehicle
GA Genetic algorithm
GAePF Elitism GA-based particle filter
LPF Lamarckian particle filter
PF Particle Filter
RMSE Root mean square error
RPE Relative prediction error
RUL Remaining useful life
RVMs Relevance vector machines
SD Standard deviation
SOC State of charging
SOH State of health
SIR Sequential Importance Resampling
a, b, c, d Parameters of the double-exponential function
k Number of charging cycles
Q Remaining capacity of the battery
Qk Capacity of the battery at cycle index k
N(µ, σ) Gaussian noise with mean µ and standard deviation (SD) σ
xk State variables at time k
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zk Observations at time k
nx Dimensions of xk
nz Dimensions of zk
f (·) Known system function
h(·) known Observation function
uk−1 System noise
vk Observation noise
x0:k =

{
x0,··· ,xk

}
Sequences of the states

z1:k =
{
z1,··· ,zk

}
Sequences of the observations

p(x0) Known a priori
N Number of particles
xi

k(i = 1, · · · , N) Set of particles at time k{
wi

k

}N

i=1
Weight vector

p(x0:k
∣∣∣z1:k) Posterior probability density

z1:k All available measurements
δ(·) Dirac delta function
pt Lamarckian probability
nt Numbers of genes transferred
Qi

k Estimated capacity for each particle at cycle k
Qi

k+L L-step-ahead prediction at cycle k
Li

k ith trajectory is obtained
Qrated Rated capacity
ρ Inheritance probability
C Number of measurement cycles
Cp Number of cycles that must be predicted
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