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Abstract: Currently, in most European electricity markets, power bids are based on forecasts
performed 12 to 36 hours ahead. Actual wind power forecast systems still lead to large errors,
which may strongly impact electricity market outcomes. Accordingly, this article analyzes the impact
of the wind power forecast uncertainty and the change of the day-ahead market gate closure on
both the market-clearing prices and the outcomes of the balancing market. To this end, it presents a
simulation-based study conducted with the help of an agent-based tool, called MATREM. The results
support the following conclusion: a change in the gate closure to a time closer to real-time operation
is beneficial to market participants and the energy system generally.

Keywords: day-ahead market; balancing market; gate closure; forecast uncertainty; wind power
forecast; agent-based simulation; the MATREM system

1. Introduction

Electricity market (EMs) are a complex and continuously evolving reality—new players are
emerging and new strategic behaviors are gaining more active roles, meaning that researchers and
practitioners did not yet solve the problems associated with this new reality [1,2]. Chief among these
problems are the ones related to the increase in non-dispatchable renewable generation, or variable
renewable energy (VRE), such as solar and wind power. VRE is characterized by substantial investment
costs, but near-zero marginal costs, and great variability, thus increasing the uncertainty of the net
load. VRE is normally the marginal resource, since it is operated at maximum capacity (taking into
account the weather conditions). These characteristics have a strong influence on the outcomes of
energy markets, reducing market-clearing prices [3]. Accordingly, existing market designs should be
analyzed to determine if they are still efficient to deal with high levels of VRE (see, e.g., [4–6]).

The question of a suitable day ahead market design for a better integration of VRE has been
the subject of a great deal of research (see, e.g., [7–10]). For the particular case of an effective gate
closure, the potential solution discussed by the research community involves its adjustment to a time
closer to the first hour of delivery. The main reason behind this adjustment is related to the forecast
of renewable generation, which typically presents large errors for long time horizons, due to the
stochastic nature of the atmosphere. Since the day-ahead market (DAM) closes typically at 12:00 p.m.
(CET), the bids of wind power producers need to be performed through power forecasts computed at
least 12 to 36 h ahead. Consequently, the adjustment of the gate closure is very important to enable
a fair participation of VRE in EMs, since all energy producers (dispatchable and non-dispatachable)
participate in the day-ahead market under the same rules. In case the energy production differs from
the commitments resulting from the DAM, the differences should be balanced in the intraday market
and/or the balancing market.
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In 2014, the International Agency of Energy (IEA) presented a report about energy markets and
renewable generation [11], scoring key EM features according to eight dimensions: non-VRE dispatch,
VRE dispatch, dispatch interval, last schedule update, grid representation, interconnector management
and system services definition and market. Half of these dimensions are directly related to the
improvement of forecasts, namely dispatch interval, grid representation, interconnector management
and last schedule update. IEA considers that all physical transactions should be performed through
implicit auctions in a centralized pool without feed-in-tariffs (FiTs) or other incentives to renewable
energy sources (RES), with an interval up to 10 min using updates up to 30 min before real-time
operation. In addition, the reserve requirements should be computed stochastically, taking into
account different scenarios for the share of VRE, and be remunerated through marginal pricing.
Furthermore, dispatch intervals should be reduced—that is, should be as short as possible—to enable
VRE producers to perform high accurate forecasts. Such market modifications can contribute to a
new paradigm—a paradigm of VRE integration without FiTs, where VRE investors do not have a
guaranteed return, being remunerated by the market price, and subject to the payment of penalties for
their deviations.

In 2016, the European Union (EU) presented the “Clean Energy for all Europeans”, a package
of measures to promote the integration of renewable generation and to harmonize the European
markets. In 2017, the EU presented a new proposal for regulating the pan-European market [12].
Article 7 considers that market operators should trade as close as possible to real-time operation,
and no later than the gate closure of the intraday cross-zonal market. In [13], we presented an overview
of the potential effects of the new EU proposal on the integration of renewable generation. In [14–16],
we analyzed the impact of both high levels of renewable generation and significant forecast errors on
the outcomes of the DAM. As a preliminary result, we conclude that a gate-closure closer to real time
operation is beneficial to wind power producers.

This article builds on our previous work on market design. It considers a specific market design
element, namely the gate closure, and investigates how changes in this element can better accommodate
the increasing levels of renewable generation. Specifically, this article analyzes the impact of both
wind power forecast uncertainty and a change in the gate closure of the DAM, from 12:00 p.m. to
2:00 p.m. (CET), on the day-ahead market prices and also on the outcomes of the balancing market.
The proposed gate closure encompasses two perspectives. The first is related to technical requirements.
In a power system with a significant number of conventional power plants, there is a need of a certain
lead-time to adjust generation levels in a cost efficient manner [17]. The second perspective is related
to the most reliable meteorological information to feed the wind power forecast systems.

This article presents a simulation-based study conducted with the help of an agent-based tool.
Multi-agent systems (MAS) are a somewhat new area of study (see, e.g., [2,18]). MAS are fundamentally
coupled networks of computational agents that cooperate to resolve issues that are over their individual
competence. Theoretically, MAS are an optimal fit for the distributed structure of liberalized energy
markets. Accordingly, the work presented here makes use of a multi-agent simulator for competitive
energy markets, called MATREM [19,20] (MATREM stands for Multi-agent Trading in Electricity
Markets). The following aspects are examined in the paper, in order to assess the benefits of postponing
the gate closure of the day-ahead market:

• The influence of the forecast accuracy on the day-ahead market, namely on the level of prices,
and price volatility;

• The influence of the forecast accuracy on the balancing reserve requirements.

In addition, the following questions are addressed in the paper:

• How can forecast improvements possibly reduce the total balancing reserve requirements?
• Which parts of the system cause the need for a balancing demand? In addition, what is the

associated energy quantity?
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The remainder of the article is structured as follows. Section 2 discusses the role of wind power
forecasts in energy markets. Section 3 presents an overview of the MATREM system, focusing on the
day-ahead and the balancing markets. Section 4 describes the method considered in the experimental
work, highlighting the main tasks and the relationships between them. Section 5 presents the case
study and discusses the simulation results. Lastly, in Section 6, some conclusions are drawn.

2. The Role of Wind Power Forecast in Day-Ahead and Balancing Markets

In order to maintain high standards of service quality, in particular in what regards the security of
supply and the system robustness, the system operator must be aware of the current and future values
of wind power for each area and connection points of the grid [21]. Currently, an efficient and safe
operation of power systems [21,22] requires that wind power production be well forecasted, and, when
coupled with a load forecast system, both should enable the reduction of the need to balance the energy
in the reserve markets, usually at high costs. During the past few years, numerous approaches have
been developed for wind power forecast based on numerical weather prediction (NWP) models.
Comprehensive reviews are presented in the literature (see, e.g., [23,24]). NWP models, as the
Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) [25], resolve the formulations that
rule the state of the atmosphere using numerical methodologies.

Notwithstanding the advances on NWP, systematic errors still persist due to the inherent chaotic
behaviour of the atmosphere, in which minor errors, at an early stage, will increase in the deterministic
chaotic system. For a long time horizon, this situation could result in a large deviation of the
forecast when compared with the observation [26,27]. This drawback can be partly explained by
the physical formulation and parametrization of the atmosphere processes, the initial and boundary
conditions (IC), among others. In fact, as indicated by several authors, one of the main sources
of error and uncertainty, when numerical mesoscale models are applied, is derived from the ICs
that feed the model, which are essentially atmospheric information provided by analysis/forecast
products. Indeed, several authors have shown that these data have a crucial impact on the mesoscale
model outcomes [28–30]. ICs are a three-dimensional set of meteorological data to force the boundary
conditions of the model, and together with a terrain and roughness database, enable for conducting
numerical physical simulations, for the region under analysis, in a time horizon comprising the
day-ahead market. The ICs are obtained from global atmospheric models, such as the global forecast
model system (GFS), with both a low time (6 h: at 12:00 a.m., 6:00 a.m., 12:00 p.m. and 6:00 p.m. UTC)
and low spatial resolutions (e.g., 50 km) [31].

With the increasing levels of VRE generation in EMs, the underlying impact of wind power
forecast into the power system has been explored by several authors. For instance, in [27], the authors
studied the certainty gain effect of a wind power producer that participates in the day-ahead market,
by delaying the forecasts according to NWP data availability. The results obtained demonstrate
that NWP data availability determines the wind power forecast accuracy in the day-ahead market.
In [6], by using a case study where wind parks are allowed to participate in the Portuguese tertiary
reserve, the authors concluded that changing the market time unit from 1 h to 15 min reduces their
imbalances about 10%. Thus, schedule updates as close as possible to real-time operation may strongly
reduce the effect of forecast errors. However, the majority of the physical transactions of energy are
performed in the day-ahead market (around 90% in Europe [32]), meaning that intraday markets
(in Europe) and real-time markets (in the United States and Australia) have been less attractive,
despite the fact that they allow schedule updates closer to real-time operation. Balancing markets
operate essentially in real time and have attractive prices, when compared to spot markets, but have
less liquidity (smaller trading quantities). A study conducted in Denmark [33] concluded that the
participation of wind power producers in balancing markets increases the wind energy value [34] only
4.5%. However, some preliminary results (see, e.g., [35]) indicated that a suitable day-ahead market
design can contribute to a large increase in the wind energy value, mainly by reducing the penalties
paid with deviations.
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This article explores the adjustment of the DAM gate-closure considering wind power forecasts
according to the typical availability of the IC meteorological data. Currently, the Portuguese wind
farm producers may participate in the Iberian day-ahead market by considering forecasts based on
meteorological information obtained 18 h before the first trading hour (see Figure 1). To accomplish
the technical requirements, such as the unit commitment and the time needed to perform all the
steps necessary to obtain the wind power forecasts, the proposed new gate closure time is set to
2:00 p.m. (considering the 12:00 p.m. IC conditions). This adjustment can be favourable to deal with
the variability of stochastic energy sources [36–38].

Figure 1. Global Forecast System (GFS) data availability and DAM design: (top)—actual; (bottom)—
proposed in this work.

3. The MATREM Simulator

The major components of the MATREM system include a day-ahead market, an intra-day market,
a futures market, a balancing market, and a marketplace for negotiating the terms and conditions of
“tailored” bilateral contracts [19,20]. The system supports seven types of market entities: generating
companies (GenCos), retailers (RetailCos), aggregators of VRE, coalitions of consumers, traditional
consumers, market operators and system operators. All entities are modeled as software agents.

GenCo agents may own one power plant or a set of power plants with different technologies.
Typically, they sell energy in the day-ahead market and the intra-day market—that is, the centralized
markets—as well as in the bilateral market—the futures market. RetailCo agents buy energy from
GenCos in the centralized markets as well as in the futures market, and subsequently, re-sell that
energy to private consumers (by signing bilateral contracts with them). Aggregators of VRE allow the
participation of wind power produces and other types of VRE producers in the centralized markets.
Coalitions of consumers are essentially alliances of end-use consumers with the goal of reducing their
energy cost, typically by increasing their bargaining power. Large traditional consumers can trade
energy in the centralized markets and the bilateral market, while small traditional consumers may ally
into coalitions or establish private bilateral contracts with retailers.

The day-ahead market is cleared one day in advance—that is, in day D for each of the 24 h
of the next day (D + 1), as illustrated in Figure 1. The intraday market is a short-run market
involving several auction sessions. Typically, both markets operate according to the system marginal
pricing algorithm, although MATREM also supports locational marginal pricing. Supply-side agents
compete by submitting offers to sell energy while demand-side agents submit offers to buy energy.
The system ranks the selling offers by increasing price and the buying offers by decreasing price,
obtaining the supply and demand curves, respectively. Next, the market operator computes the
market-clearing prices and sends the results to the system operator, who checks (in a preliminary way)
the security constraints.
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The stability of the power system is a task associated with the system operator. To this end,
this agent needs to take access to reserve capacity for the provision of system services.
MATREM considers three different types of reserve capacity: primary reserve (or frequency control
reserve), secondary reserve (or fast active disturbance reserve), and tertiary reserve (or slow active
disturbance reserve). Tertiary reserve has to be available within 15 min and its activation is carried out
manually—this type of reserve is the most important for the work described here.

Tertiary reserve is traded by the system operator in a day-ahead tender. This agent defines
the needs for up and downregulation, receives the offers from the balance responsible parties,
and computes the market-clearing prices by using a simplified version of the system marginal pricing
algorithm. Two different simulations are performed, one for computing the upregulation price,
and another for determining the downregulation price. Following the clearing process, the system
operator can perform an imbalance settlement process.

The futures market is an organized market for trading standard bilateral contracts. Such contracts
are agreements by which the parties take on the obligation to buy or to sell electricity, in a
standardized quantity and quality, on a predefined date and place, at a price agreed in the present.
The bilateral marketplace allows private parties to negotiate the terms and conditions of tailored
(or customized) long-term contracts, specifically forward contracts [39] and contracts for difference [40].
To this end, market participants are equipped with a model that handles two-party and multi-issue
negotiation [41,42].

4. Method

This work makes use of a diverse range of models and involves a set of tasks. Figure 2 depicts a
flowchart of the approach considered, highlighting the main tasks and the relationships between them.

Figure 2. Overview of the methodology considered in this work, specifically the method and the main
tasks related to the definition of the bids of the wind power producer (green) and the other market
participants (light orange), as well as the procedure associated with the operation of the day-ahead
market and the imbalance management process (light yellow).

4.1. Wind Power Forecast Approach

In the last few years, one of the key scientific research topics is the development of reliable
forecasting systems. These systems are being widely employed in different fields, such as the prediction
of consumer comfort based on temperature and humidity, electricity demand, wind speed and direction
for onshore wind power, and also metocean conditions for offshore wind power, and irradiation for
solar power (see, e.g., [43–46]).

For the particular case of wind power forecast systems, several techniques have been proposed in
the literature (see, e.g., [47–52]). To support the participation of wind power producers in the DAM,
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existing wind power forecast systems are generally based on statistical post processing approaches
coupled with mesoscale NWP outputs [23]. In this article, a K-nearest neighbour (K-NN) methodology
is applied to provide the wind power forecasts. This statistical approach, also known as analogous
forecast, has been applied by several authors due to its simplicity, effectiveness and non-parametric
features [53,54].

The K-NN methodology is considered a lazy learning methodology, since there is no need to
(previously) build a model or a function. Instead, the methodology uses only similar situations from
the historical data to forecast. This characteristic is especially suitable to forecast weather dependent
variables, such as wind power. The K-NN methodology considers that atmospheric flow releases
the same local impact. Consequently, and taking into account the atmospheric flow characteristics,
where the meteorological weather patterns have a tendency to repeat over certain regions, from time
to time, the wind power forecast production for a determined hour can be determined from a similar
meteorological weather pattern from historical events. The K-NN technique has shown a high efficiency
in forecasting phenomena where the synoptic variability is predominant, such as precipitation [55]
and wind speed [56]. Currently, this technique has already been explored by several authors for
forecasting wind power, showing good performance [57–59]. To estimate the degree of similarity with
each historical event, the Euclidean distance, with a trajectory matrix providing information regarding
the state of the atmosphere on the preceding times, is the most common metric used in the wind
forecast sector [59].

Due to a large number of degrees of freedom of the atmosphere, it is usual to apply a principal
component analysis (PCA) approach to the input data. This procedure allows to filter atmospheric
perturbation that represents only background noise [27]. To assist in this filtering process, the North
criterion [60] was applied, allowing to identify the appropriate number of principal components (PCs)
to be used in each meteorological parameter input.

Figure 3 depicts the flowchart of the K-NN methodology applied in this work. In order to calibrate
the forecasting methodology, sensitivity studies were performed, using two years of real wind power
data from a set of wind parks located in the central region of Portugal. These sensitive tests comprise
the suitable number of K nearest neighbours, the size of the trajectory matrix and the selection of the
most adequate meteorological parameters. After some tests, the most adequate configuration of the
forecast methodology was to set K to 10 using a trajectory matrix with a lag of 3 h, composed by the
first three PCs of the longitudinal component of the wind, wind speed, and atmospheric pressure.
Thus, the deterministic wind power forecast is based on the average value of the ten historic events.

The normalized root mean square error (NRMSE) represents the quadratic difference between the
estimated value (based on the proposed methodologies), and was normalized by the nominal capacity
of wind park: Pnom. The correlation r is used in statistics to measure how strong the relationship is
between two variables, in this case, the observed power Pobs

t and the forecast power P f or
t . The F Test

is used to verify the statistical significance between the deviations associated with the two different
gate-closures considered in this work. Mathematically, the previous parameters are defined by the
following equations:

NRMSE [%] =

√√√√∑
(

Pobs
t − P f or

t

)2

N
× 1

Pnom (1)

r =
cov

(
Pobs

t , P f or
t

)
√

var
(

Pobs
t
)

var
(

P f or
t

) (2)

F =
var

(
Pobs

t − P f or1
t

)2

var
(

Pobs
t − P f or2

t

)2 (3)
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Figure 3. Wind power forecasts methodology based on NWP data coupled with a K-NN approach.

4.2. Selection of Representative Days

The underlying goal of choosing representative days is to statistically detect the most typical
wind power daily patterns and, at the same time, clustering together days that exhibit identical
patterns. This procedure allows for: (i) feeding the MATREM simulator without resorting to extensively
time-consuming simulations, and (ii) assessing, for instance, the typical profiles that can jeopardize
the wind power producer revenues enabling for adopting measures to mitigate their risk exposure.
The identification of representative days is a suitable approach widely employed to increase the
knowledge of a determined parameter allowing the creation of decision support systems (e.g., the
classification of the type of profile of electricity customers [61]). A K-medoids clustering algorithm [62]
is used in this work to find the representative days based on the daily observed wind power profile for
the wind parks considered. This technique allows arranging the input data with similar characteristics
into clusters in order to achieve the most representative daily profile. With this step, it is possible to
identify (in a statistical way) statistically independent patterns from the data that can be related to
physical processes. Clustering algorithms are unsupervised learning processes typically applied to
find and split the data according to the similarity among the observations, in a way that is always
closer to the elements of the same cluster, and dissimilar among the remaining clusters [62,63].

The main advantages of the K-medoids algorithm, when compared to others non-hierarchical
clustering algorithms (e.g., the K-means algorithm) are: (1) to be more robust to noise and outliers
by using the median values, and (2) to allow for selecting data points as centres (medoids) [63].
The K-medoids technique used in this work is classified as a non-hierarchical clustering algorithm,
allowing to group the data into K clusters. The suitable K, i.e., the number of clusters, is predetermined
through the Calinski–Harabasz (CH) criterion [64].

The wind power input matrix (Xd,t) for the clustering algorithm is defined as follows:
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Xd,t =

∣∣∣∣∣∣∣∣∣∣
Z1,1 Z1,2 · · · Z1,t
Z2,1 Z2,2 · · · Z2,t

...
...

...
...

Zd,1 Zd,2 · · · Zd,h

∣∣∣∣∣∣∣∣∣∣
(4)

where t represents the wind power observed during a predetermined hour of day d during the
period 2009–2010.

4.3. Measures of Economic Results

In this section, the formulation used to compare the results between the 12:00 p.m. scenario
(hereafter designated as the base case) and 2:00 p.m. scenario (hereafter designated as the upgraded case)
is presented. The total remuneration (per hour) of the wind power producers is as follows:

Rt =
23

∑
t=0

Pbid
t Cdayahead

t +


(

Pobs
t − Pbid

t

)
Cupdeviation

t , for Pbid
t < Pobs

t(
Pobs

t − Pbid
t

)
Cdowndeviation

t , for Pbid
t > Pobs

t

(5)

where:

• Cdayahead
t is the day-ahead price at hour t;

• Cupdeviation
t and Cdowndeviation

t are the up and down deviation costs, respectively.

It is important to note that Pbid
t Cdayahead

t is the part consisting of the remuneration obtained from
the day-ahead. The other part consists of the remuneration obtained from the deviations. Therefore, the
total remuneration Rd and average remuneration R̄d for a specific day d are as follows:

Rd =
23

∑
t=0

Rt (6)

R̄d =
Rd

∑23
t=0 Pt

(7)

The average remuneration obtained in the day-ahead market R̄dayahead
d is defined as follows:

R̄dayahead
d =

∑23
t=0 Pbid

t Cdayahead
t

∑23
t=0 Pbid

t
(8)

In addition, the average remuneration obtained by considering the deviations R̄deviation
d is as follows:

R̄deviation
d =



∑23
t=0

(
Pobs

t − Pbid
t

)
Cupdeviation

t

∑23
t=0

(
Pobs

t − Pbid
t

) , for Pbid
t < Pobs

t

∑23
t=0

(
Pobs

t − Pbid
t

)
Cdowndeviation

t

∑23
t=0

(
Pobs

t − Pbid
t

) , for Pbid
t > Pobs

t

(9)

With these formulae, it is possible to compute the average wind power value, the energy transacted
in the tertiary reserve market, and the tertiary reserve cost for both scenarios. Both the reserve cost
and the electric system levelized cost are computed by taking into account the occurrence of each
representative day and the traded energy. In order to assess the gain effect regarding the proposed
adaptation of the gate closure of the day-ahead market, several key performance indicators (KPIs) are
defined (see Table 1).
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Table 1. KPIs considered in this work.

KPI Objective Formulation

Increase in the wind Increase the remuneration
Equation (7)power value to of wind power producers

the market in the market

Increase in the forecast Reduce the forecast error Equation (3)accuracy

Reduction of total control Reduce the balance
Equations (1) and (2)reserve by wind power needs of the

forecast improvements tertiary reserve

Reduction of the tertiary Reduce the balance costs Tertiary reserve
reserve costs of the tertiary reserve simulation

Reduction of total Reduce the system costs Day-ahead market
operating costs in the with the day-ahead market and
electricity system by and the tertiary reserve tertiary reserve
forecast improvements simulations

5. The Case Study

This section describes a case study to analyse the effect of wind power forecasts errors on the
outcomes of the DAM. The following two scenarios are considered: (i) a base scenario, where the DAM
closes at 12:00 p.m. (the bids of the wind power producers are based on a wind forecast performed
18 to 42 h ahead), and (ii) an updated scenario, where the DAM closes at 2:00 p.m. (the bids of WPPs
are based on an updated forecast performed 12 to 36 h ahead).

5.1. Software Agents and Wind Power Profiles

This study makes use of data published by the Iberian electricity market (MIBEL) and involves the
simulation of the day-ahead market prices as well as the balancing market prices. Market participants
are modeled as software agents, defined with the help of the MATREM system. Since the normal
operation of the daily market of MIBEL involves a number of bids on the order of thousands for a
particular hour, there is a need to make some simplifications related to the number of software agents,
in order to avoid a large computational complexity. Accordingly, the main agents considered in the
study are as follows: a market operator (S1), a system operator (S2), twelve producers (supply-side
agents) and four retailers (demand-side agents). Table 2 presents the characteristics of the supply-side
agents. The wind aggregator (agent P1) represents the Portuguese wind farms.

Table 2. Producer agents (software agents) and their key characteristics.

Agent Country Technology Maximum Marginal
Capacity (MW) Cost (e/MWh)

P1 Portugal Wind 2500 0
P2 Portugal Renewable mix 2000 0
P3 Portugal Hydroelectricity 4500 [30; 60]
P4 Portugal Coal 1800 ≈30
P5 Portugal Combined Cycle Gas 3000 ≈55
P6 Portugal Fuel oil 2000 ≈70
P7 Spain Renewable mix 30,000 0
P8 Spain Hydroelectricity 16,500 [30; 60]
P9 Spain Coal 10,000 ≈30
P10 Spain Nuclear 7500 ≈30
P11 Spain Combined Cycle Gas 22,000 ≈55
P12 Spain Fuel oil 4000 ≈70
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It is important to note that the detection of violations related to the interconnection constraints
between Portugal and Spain leads to a process of market splitting, resulting in different price areas for
Portugal and Spain. After a careful examination, we concluded that this situation applies for some
hours of the days under consideration. In practice, this means two sets of simulation for each hour of
operation, one for Portugal and another for Spain. However, for convenience, and in the interests of
simplicity, the day-ahead market is cleared for Portugal only.

The forecast methodology is deterministic and uses the following: (i) numerical weather prediction
data outputs (see Section 4), and (ii) observed data for a set of wind farms during the period 2009–2010.
The wind farms have a nominal capacity of 250 MW (10% of the Portuguese installed capacity, in 2010).
This value is upscaled to 2500 MW to obtain a meaningful impact on the market results. The observed
wind power profiles are depicted in Figure 4a. The representability of each wind power profile is also
shown in Figure 4b.

(a) (b)

Figure 4. Wind energy typical profile (a) and representability of each wind power profile during the
2-year period of the study (b).

The analysis of Figure 4 supports the consideration that the Portuguese wind farms are located in
a mountain region, since several wind power profiles show the typical features of wind speed in such a
region (although with different intensity)—that is, due to the thermal stratification and local effects [65],
the highest wind speed is associated with the nocturnal period. Moreover, the most common wind
power profile shows a reduced production during all day. On the other hand, profile 2 is associated
with a high level of wind power production, which occurs during the passage of severe meteorological
phenomena, as the cyclone systems [66]. This profile shows the lowest number of occurrences.

5.2. Wind Power Forecast Deviations

Figure 5 depicts the wind power forecast deviations (forecast minus observed production) for the
seven representative days, at 12:00 p.m. (base case, left) and 2:00 p.m. (updated case, right). The figure
shows that the wind power forecast deviations at 12:00 p.m. have an absolute value that is almost
twice that of the deviations at 2:00 p.m. Moreover, wind power fluctuations are considerably higher in
the base scenario. For instance, the uncertainty in profile 2 ranges between −200 and 1700 MW.
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Figure 5. Wind power forecast deviations at 12:00 p.m. (base case, left) and at 2:00 p.m.
(updated case, right).

Table 3 depicts the forecast results regarding both the NRMSE and the correlation values between
the two scenarios. The most significant improvement was observed in profile 2. This profile, usually
associated to extreme weather conditions, shows a strong improvement in the correlation and the
NRMSE values. The link between wind power variability as well as the uncertainty with extreme
weather conditions was described by several authors [23,66–69], who demonstrated that larger errors in
the wind power forecast are expected to occur during severe weather conditions with strong dynamics
(e.g., storms and cold fronts) when compared with weather conditions associated with stationary
systems (e.g., anticyclonic systems). For a 0.05 significance level, the critical value is 2.01, which means
that comparing both deviations (see Figure 5), exist statistically differences in all profiles, except in
profile 6 (see Table 3).

Profile 4 also shows a strong improvement in the wind power forecast for the upgrade scenario.
Profile 5 shows the lowest NRMSE amelioration that can be explained with the capabilities to obtain
a reliable forecast during calm wind speed conditions [67,69]. Consequently, results from Table 3
highlighted the fact that the data considered about the ICs strictly define the wind power forecast
errors. Thus, as expected, since the most up-to-date information on the state of the atmosphere is
used, postponing the gate closure can strongly reduce the uncertainty of the bids that the wind power
producers submit to the day-ahead market.

Table 3. Correlation and NRMSE between the observed and forecasted wind power and F value of the
wind power deviations for each scenario and wind power profile.

Parameter Difference Simulation
Wind Power Profile

1 2 3 4 5 6 7

Correlation Base Scenario 0.91 −0.35 0.72 0.54 0.79 0.78 0.47
Upgrade Scenario 0.95 0.27 0.89 0.86 0.92 0.88 0.71

NRMSE (%) Base Scenario 4.23 19.46 10.72 12.45 2.73 5.99 8.94
Upgrade Scenario 2.87 12.85 3.93 5.52 2.10 3.90 5.61

F Both Scenario 2.07 3.39 2.61 2.81 2.37 1.94 3.85

5.3. Simulation Results

5.3.1. Impact of Wind Power Forecast on Market Outcomes

In a preliminary attempt to understand the relation of the aforementioned wind power forecast
uncertainty results with the market outcomes, we observed that the deviations are essentially positive
in most of the representative days (day seven is the exception), meaning that the forecasts normally
underestimate the wind power values. From the point-of-view of wind power producers, this situation
(underestimation) can be profitable, since wind power is offered at a price around 0 e in the day-ahead
market, and thus an underestimation forecast will increase the market price. On the other hand,
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an overestimation forecast can decrease the day-ahead market price, decreasing the wind energy
value. Therefore, it can be concluded that an underestimation of the wind power production in the
day-ahead market (shortage forecast) overestimates the importance of the wind power and also gives
an extra amount to the supply-side agents (by increasing the market-clearing price). On the other
hand, an overestimation of the wind power production (excess forecast) undervalues the wind power
value. Moreover, due to the payment of penalties in the balancing market, the latter situation can lead
to a drastic reduction in the revenues of wind power producers. Thus, an underestimation of wind
power production can be more profitable for wind power producers.

The results of the simulations for both the base scenario (12:00 p.m.) and the updated scenario
(2:00 p.m.) are presented in Tables 4 and 5, respectively. In both tables, details regarding the outcomes
of postponing the market closing time by two hours are also provided. As mentioned previously,
the sum of the wind power deviations at 12:00 p.m. is almost twice the deviations associated with
2:00 p.m., and on some days it is more than twice the amount, such as the 3rd and 4th representative
days. The results also show that the underestimation of wind power production can increase the
market price and, as discussed previously, can overvalue the wind power. This conclusion takes into
account the fact that the average day-ahead remuneration is higher at 12:00 p.m., in almost all days,
excluding the 7th representative day. In this representative day, the overestimation of wind power
production leads to an undervaluation of the wind power value. This behavior can also be observed
in the revenue deviations results. In fact, when both day-ahead and revenue deviations are positive,
an underestimation of wind power is obtained. Consequently, power producers receive a positive
revenue for the extra energy at the real-time operation (normally less than in the day-ahead market,
due to penalties). When the revenue deviations are negative, this normally means an overestimation
of wind power production when compared with the forecast, so there will be a need to pay a value
higher than the day-ahead price.

Table 4. Key results for the base scenario (12:00 p.m. scenario).

Profile Power Forecast 12 h (Base Scenario)

1 2 3 4 5 6 7

Day-ahead
22.01 25.93 22.18 14.37 10.58 8.06 12.61energy bid

(GWh)

Day-ahead
767.21 951.6 885.58 529.22 389.25 317.03 525.92Remuneration

(ke)

Average
34.85 36.7 39.93 36.82 36.81 39.31 41.72Day-ahead Rem.

(e/MWH)

Real time
4.45 21.86 11.61 13.26 2.55 5.5 8.78deviations

(MWh)

Deviations
−143.6 460.33 226.29 317.29 9.94 98.66 −527.7Revenue

(ke)

Average
29.94 30.03 32.91 30.63 33.75 31.75 −0.46Remuneration

(e/MWh)

Total
623.62 1411.9 111.19 846.51 399.19 415.69 −1.77Remuneration

(ke)
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One of the key parameters that can be used to compare the base scenario with the updated
scenario is the average remuneration of the wind power producers. Considering both tables, it can
be seen that, in the updated scenario, the wind value (average remuneration of the wind power) is
always higher, and the proposed market design element seems even more relevant when a wind power
forecast overestimation occurs. For instance, for the 7th representative day, the average remuneration
of the wind power producer is negative, in the base case. Therefore, if hypothetically wind power
producers are active players in the market, with the current market design, when the day-ahead market
prices are lower than the deviation prices, the producers who have an energy shortage (when compared
to their energy forecast bids) may have a negative average remuneration.

Table 5. Key results for the updated scenario (2:00 p.m. scenario).

Profile Power Forecast 2:00 p.m. (Updated Scenario)

1 2 3 4 5 6 7

Day-ahead
20.62 32.48 30.83 22.59 13.41 10.26 9.83energy bid

(GWh)

Day-ahead
699.61 1173.3 1187.7 784.42 488.76 400.31 414.5Remuneration

(ke)

Average
33.93 36.12 38.53 34.73 36.44 39.03 42.17Day-ahead Rem.

(e/MWh)

Real-time
2.76 14.59 3.78 5.2 1.75 3.82 6.01deviations

(MWh)

Deviations
−45.3 330.82 48.19 124.78 −81.56 43.28 −355.6Revenue

(ke)

Average
31.42 31.99 36.58 32.9 34.43 33.88 15.41Remuneration

(e/MWh)

Total
654.31 1504.1 123.59 909.2 407.2 443.6 58.94Remuneration

(ke)

Now, taking into account the representability of each wind power profile during the two years of
data, it is possible to compute the average wind energy value, the energy transacted in the tertiary
reserve market, and the tertiary reserve costs, among other key parameters, for both the 12:00 p.m.
and the 2:00 p.m. scenarios (see Table 6). The results in the Table show that the upgraded case leads to
better results in almost all key indicators (the exception is the reserve cost).

Also, the results suggest that a reduction in the day-ahead market prices, due to a reduction in
the forecast errors (NRMSE), leads to an increase in the wind power producers revenues, by allowing
for reducing their losses associated with the deviation penalties. With a reduction of forecast errors,
the quantity of reserve required to compensate the deviations decreases. However, both the reserve
levelized cost and the reserve cost increased. These results are associated with a decrease in the system
requirements for down reserve (see the reserve direction parameter). In this way, the system operator
receives an inferior remuneration from the down reserve, which leads to an increase of the down
reserve price. This increase, together with a decrease in the down reserve utilization and the day-ahead
market prices, will negatively affect the revenue of the power plants that bid at the tertiary reserve
market. This behavior is associated with a reduction of the remuneration of wind power producers
from the day-ahead market since they need to pay a high price for the down reserve, for a small
quantity of energy.
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Table 6. Average values of the key parameters under evaluation per day.

Key Parameters
Simulations

12:00 p.m. 2:00 p.m.
(Base Scenario) (Updated Scenario)

Wind Energy Value (e/MWh) 28.46 31.69
Forecast NRMSE (%) 8.03 4.52
Reserve Use (GWh) 11.1 6.23
Reserve Direction (GWh) −7.44 −3.83
Reserve Costs (Me) −0.1 −0.04
Reserve Levelized Cost (e/MWh) −7.26 −3.83
Down Reserve Price (e/MWh) 20.07 25.7
Day-ahead Market Cost (Me) 18.75 18.63
Day-ahead Market Prices (e/MWh) 38.6 37.97
Day-ahead Market Energy (GWh) 487.71 491.31
Electric System Cost (Me) 18.65 18.58
Electric System Lev. Cost (e/MWh) 38.84 38.12

5.3.2. Quantifying the Gain Effect of the Proposed Market Design Change

The KPIs defined in Section 4 enable for quantifying the gain effect by setting the gate closure of
the day-ahead market to 2:00 p.m., instead of 12:00 p.m. (see Table 7). The change of the day-ahead
market closing time brings benefits to the system in general, with a reduction around 16.5% in the
total costs. As stated before, the wind power producers and the demand-side players benefit from this
change. Wind power producers gain from selling the same quantity at a higher net price (market price
with fewer penalties). The demand-side players gain from buying a similar quantity of electricity at a
lower price. The system operator benefits from using less the reserve market to balance the system
(a reduction around 44%) and also receives the lowest revenue (less 56%) from the down reserve
market (part of the tertiary reserve market), which means that the agents that deviate will pay higher
penalties. Notwithstanding, the power producers that buy energy from the tertiary reserve market
(down reserve) decrease their revenues, by having less energy to buy at a higher price.

A comparison of the results shown in Table 7 with the main results presented by the literature
(see Section 2) allows us to conclude that postponing the gate-closure of the day-ahead market only two
hours seems to be a change of market design that can bring large benefits to power systems generally.

Table 7. Key performance indicators (KPIs).

KPIs (%) Changing from 12:00 p.m. to 2:00 p.m.

Increase in the wind power value to the market 11.34

Increase in the forecast accuracy 43.71

Reduction of total control reserve by forecast 43.87
improvements in wind power

Reduction of the tertiary reserve costs −56.25

Reduction of total operating costs in the 16.46
electricity system by forecast improvements
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6. Conclusions

The article analyzed a change in the gate closure of the day-ahead market to deal with the
uncertainty of variable generation. Specifically, it considered the adjustment of the day-ahead market
closing time from 12:00 p.m. (currently in use in most of the European electricity markets) to 2:00 p.m.
(CET). To test this adjustment, a case study based on real data from a set of aggregated wind parks in
Portugal, and also data from the supply-side (producers) and demand-side (retailers buying electricity
for the end-use consumers) of the Iberian Market (MIBEL), as an approximation of the entire system,
was established.

Wind power forecast data were obtained using a K-NN approach based on data from a NWP
model. The day-ahead market was simulated using the system marginal pricing algorithm for seven
representative days, taking into account two scenarios: gate closure of the day-ahead market set
to 12:00 p.m. (base case) and to 2:00 p.m. (updated case). The seven representative wind power
production days enable: (i) to simulate only the most common typical wind power production days in
the region under study, and (ii) to identify the wind power profiles that can jeopardise the revenues of
the wind power producers or can pose serious challenges to transmission system operators.

From a wind power forecast perspective, the results show that some wind power profiles clearly
benefit from a change in the market design. Regarding the electricity market perspective, the results
show that the change of the day-ahead market closing time to 2:00 p.m. benefits the wind power
producers at both a technical and financial level by decreasing the forecast errors and increasing
the revenues. The consumers can also potentially take advantage of this change due to a potential
reduction in the overall system costs, which may allow a reduction of the electricity tariffs. The system
operator benefits from a reduction in the wind park forecast errors, by reducing the requirements to
maintain the production/demand balance (technical benefit), requiring less energy from the tertiary
reserve market. However, they also receive less money from the downregulation (financial loss), which
means that the agents that deviate will need to pay higher penalties to compensate this loss. The power
producers that bid at the down reserve market have a loss due to a decrease in the system requirements
for this type of reserve, i.e., the system operator requires less down reserve quantity to balance the
system, which increases the price of this market.

The results presented in this work highlight that electricity markets with high shares of VRE
could benefit from DAMs with a gate closure closer to real-time operation, due to improvements in
the forecast accuracy. The full integration of wind power in markets can be possible with substantial
changes to the current market designs, especially in power systems with a high share of VRE integration,
as expected in the forthcoming years with the society decarbonization.
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Abbreviations

CH Calinski–Harabasz
EM Electricity market
EU The European Union
GenCos Generating companies
GFS Global Forecast System
IC Initial and boundary conditions
K-NN K-nearest neighbour
KPI Key performance indicator
MAS Multi-agent system
MATREM The Multi-agent Trading in Electricity Markets
MIBEL The Iberian electricity market
MM5 The Fifth-Generation Penn State/NCAR Mesoscale Model
MO Market operator
NRMSE Normalized root mean square error
NWP Numerical weather prediction
PC Principal component
PCA Principal component analysis

RetailCos Retailers
SMP System marginal pricing
TSO Transmission system operator
VRE Variable renewable energy

Indices
d Day
t Time period (hour)

Parameters
Pnom Nominal capacity

Variables
Cdayahead

t Day-ahead price
Cdowndeviation

t Down deviation cost

Cupdeviation
t Up deviation cost

Pbid
t Bidding power

Pdown
t Down reserve power

Pdown,re f
t Down reserve power for the reference case

P f or
t The wind power forecast

Pobs
t The hourly observed wind power production

Pre f
t Reference bidding power

Pup
t Up reserve power

Pup,re f
t Reference up reserve power

R Remuneration
Xd,t Wind power input matrix
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