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Abstract: Light-emitting diodes (LEDs) have numerous advantages. However, LEDs only offer a
point light source. Therefore, transforming LEDs into planar light sources is a new objective in
general lighting applications. Solid light guides have strong uniformity but are marred by their
material absorption characteristics and weight. Hollow light guides constitute a solution to the weight
problem but exhibit poor uniformity and necessitate sacrificing efficiency to enhance uniformity.
To resolve the uniformity, weight, and efficiency problems simultaneously, we propose a hollow light
guide architecture involving mini-LEDs with asymmetric luminous intensity. To develop this guide
module, we first optimized the aspect ratio of the cavity and then modulated the light path by using
varied angles of the reflection surface on the end wall of the module. We then designed a beveled
reflection surface near the mini-LEDs to further enhance uniformity. An archetype of the proposed
architecture for planar light source modules had a width and depth of 51.5 and 9.95 mm, respectively.
Experimental results revealed a total efficiency of 83.9% and uniformity of 92.3%. The module
weight was determined to be 215 g, which was 40% lighter than that of similarly sized solid light
guide modules.

Keywords: planar illuminators; diffuse reflection cavity; asymmetric; mini-LED

1. Introduction

After several decades of light-emitting diodes (LEDs), emergent, LED lighting technology has
undergone several significant developments and has gradually become the typical light source for
backlighting liquid crystal displays and lighting devices. This revolution has marked a milestone
breakthrough in LED technology and led to LEDs becoming an irreplaceable light source. Using
LEDs rather than fluorescent lamps as light sources offers several advantages due to the higher color
performance, energy efficiency, and eco-friendly characteristics of LEDs [1–3]. Studies have been
conducted to test designs for extracting light from backlight modules [4–6]. Recently, planar panel
light sources, a new lighting product, have been used in lighting applications. Planar illuminators
are usually designed using the concept of side-light backlighting. Such illuminators include LEDs,
light guide plates (LGPs), brightness enhancement films (BEFs), and reflection films [7]. Direct-type
backlighting modules are another category of backlighting systems, and such modules are relatively
thick. Therefore, several studies have been conducted on hollow light guides. The primary problem
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encountered in hollow light guides is uniformity. Researchers have attempted to resolve this problem
by using a second lens to modulate the luminous intensity of LEDs [8], using multicolored LEDs
with micro-lens arrays [9–13], using LEDs with the anodic aluminum oxide structure [14], and using
multiple LEDs with various angles of emission toward a reflector [15]. Moreover, researchers have
attempted to enhance the uniformity of diffusion plates to avoid partial reflection and transmission
of light [16–18]. To modulate the light distribution profile of LEDs to enhance uniformity, a study
proposed the use of a second lens with a parabolic surface and different focal lengths [19]. The estimated
overall efficiency achieved through the aforementioned designs is 80% [20]. In hollow light guides,
reducing the thickness is difficult because of the absence of a solid light guide. Uniformity and efficiency
can be enhanced by designing a diffuse reflection cavity that provides multiple reflection rates [21].
Accordingly, this study proposes a hollow light guide architecture involving mini-LEDs with an
asymmetric luminous intensity distribution, diffuse reflection cavity, and beveled reflection surface to
enhance efficiency, enhance uniformity, and reduce weight.

2. Hollow Light Guide Architecture Involving Mini-LEDs with Asymmetric Luminous Intensity

LEDs are point light sources, so the traditional design must be converted to a surface source by
using an LGP. Traditional architectures typically include light guides, reflector films, dot patterns, and
optical films [22–25]. A light guide plate is mainly made from solid materials such as polycarbonate
(PC) and polymethyl methacrylate (PMMA). Using a light guide plate has several disadvantages
due to its bulky characteristics in size and weight. Therefore, we propose using varied angles of the
reflection surface (VARS) on the end wall in the diffuse reflection cavity. The proposed hollow light
guide structure does not have any of these components or optical films. Instead, it uses a brightness
enhancement film and diffuser plates. Figure 1 presents a comparison of a solid- and hollow-light
guide for a planar light module. The hollow light guide was simulated and optimized to improve the
aspect ratio (ASR) of the hollow body and adjust the VARS to a uniform planar surface source.
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Figure 1. (a) Solid light guide module for backlighting applications and (b) proposed hollow light 
guide module for backlighting applications. 

2.1. Simulation and Design of Proposed Hollow Light Guide Involving Mini-LEDs with Asymmetric 
Luminous Intensity Distribution 

A simulation was conducted to demonstrate the effectiveness of the proposed hollow light 
guide module. Specifically, a ray tracing simulation was performed using TracePro (LAMBDA 
Corp., Virginia, MA, USA). Figure 2 shows a light source module that contained the proposed hollow 
light guide and had widths of 51.5 (W1) and 42.8 mm (W0), length of 100 mm (L0), and height of 9.95 
mm (H0). The diffuse reflection cavity was composed of aluminum 6061 and was fabricated through 
extrusion. The mini-LEDs with asymmetric luminous intensity distribution were packaged in a flip 
chip package [26]. Table 1 lists the surface and material parameters of all components of the light 
source module used in the simulation. 

Figure 1. (a) Solid light guide module for backlighting applications and (b) proposed hollow light
guide module for backlighting applications.

2.1. Simulation and Design of Proposed Hollow Light Guide Involving Mini-LEDs with Asymmetric Luminous
Intensity Distribution

A simulation was conducted to demonstrate the effectiveness of the proposed hollow light guide
module. Specifically, a ray tracing simulation was performed using TracePro (LAMBDA Corp., Virginia,
MA, USA). Figure 2 shows a light source module that contained the proposed hollow light guide and had
widths of 51.5 (W1) and 42.8 mm (W0), length of 100 mm (L0), and height of 9.95 mm (H0). The diffuse
reflection cavity was composed of aluminum 6061 and was fabricated through extrusion. The mini-LEDs
with asymmetric luminous intensity distribution were packaged in a flip chip package [26]. Table 1 lists
the surface and material parameters of all components of the light source module used in the simulation.
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Table 1. Simulation parameter settings.

Components Specifications

Surface Characteristics Material

Diffusion Reflection Cavity Diffusion white reflection: R = 94% Aluminum 6061

Varied Angle of the Reflection Surface

Diffusion white reflection: R = 94%

Aluminum 6061
BRDF: 0.94
BRDF g = 0
BRDF B = 0.1
BRDF A = 0.329132

Diffusion plate

BRDF: 0.66

polycarbonate (PC)

BRDF g = 0
BRDF B = 0.1
BRDF A = 0.231
Thickness (mm): 1.5
Transmittance ratio: 0.33
Diffusion type: Lambertian
Manufacturer: Entire Technology
Company Limited.
Model: EML-R35A

Metal Core PCB (printed circuit board) Diffusion white reflection: R = 90% Aluminum

Brightness Enhancement Film

Index = 1.59

polyethylene terephthalate
(PET)

Surface: polished
Prism Angle (degrees): 90
Prism Pitch (µm): 50
Caliper (µm): 152
Thickness (µm): 155
Model: 3M AEF-155
Manufacturer: 3MTM

2.2. Simulation and Design of Optical Cavity of Hollow Light Guide

The efficiency and uniformity of a light module depends on the aspect ratio of the optical cavity,
which can be expressed as W0/H0, where W0 represents the optical cavity width and H0 represents the
optical cavity height. Height is the key factor related to uniformity. Accordingly, we set a constant
width but varied the height to evaluate the best aspect ratio of the optical cavity in our simulation.
Figure 3 illustrates the hollow light guide module for a planar light source containing mini-LEDs with
asymmetric luminous intensity distribution, a brightness enhancement film, and a diffusion plate.
Table 2 presents the efficiency and uniformity simulated for different aspect ratio values.
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Figure 3. Hollow light guide module for planar light source, where BEF is brightness enhancement film.

Table 2. Efficiency and uniformity of a light module at various aspect ratio values.

W0 H0 Aspect Ratio (W0/H0) Uniformity (%) Efficiency (%)

42.8 12.5 3.4 87.1 79
42.8 11.5 3.7 88.2 80
42.8 10.5 4.1 89.4 80.2
42.8 9.95 4.3 90 80.9
42.8 9.5 4.5 88.6 81.6
42.8 8.5 5.0 82.8 84.6
42.8 7.5 5.7 75.4 84.8
42.8 6.5 6.6 61.4 85
42.8 5.5 7.8 50.52 85.4
42.8 4.5 9.5 46.7 85.8

In this paper, the hollow cavity was used to replace the traditional conductive medium with
solid light guide plate. First, we optimized the values of the primary hollow light guide, H0 and W0,
where we defined the aspect ratio value as W0/H0 and the evaluation functions were efficiency and
uniformity. The uniformity is expressed in Equation (1) [27], where “minimum” and “maximum”
denote the degree of illumination (E) that can be measured from a detection surface.

Uniformity = 100%
minimum E(lux)
maximum E(lux)

(1)

Figure 4 shows the relationship between efficiency and uniformity at various aspect ratio values. At an
aspect ratio value of 4.3, the observed uniformity was superior to the efficiency. Nevertheless, the
efficiency was still reasonably favorable. Figure 5 presents the illumination map observed by the
detector at an aspect ratio of 4.3. It can be seen from Table 2 and Figure 5 that the efficiency was 80.9%
and the uniformity was 90%. The efficiency was improved when the hollow body was a rectangular
cavity, however, the light was still ejected inside causing loss of efficiency. For further efficiency
enhancement, the end wall of the light guide was tilted at an angle of Θe (Figure 6). In order to further
improve the efficiency, a hypotenuse angle Θe was designed at the end of the hollow cavity to reduce
the loss caused by the internal bounce of light. Figure 7 shows the illumination map observed for the
detector at a Θe value of 45◦. Table 3 presents the simulated uniformity and efficiency at different
Θe values. In the Table 3 and Figure 7, the efficiency and uniformity were about 86% and 84.4%,
respectively, when the Θe was at 45◦. The angle of the bevel at the end of the hollow cavity was a
single angle, causing the light to concentrate too much in a certain area, resulting in a decrease in
uniformity. Therefore, it was necessary to optimize the curvature of the tail end to change to the
multi-section curvature. As indicated in the Table 3, the best efficiency was observed at a Θe value
of 45◦. However, the uniformity decreased to 84.4% at this angle. We could not achieve favorable
efficiency and uniformity simultaneously at the same Θe value. Therefore, we proposed the use of
VARS on the end wall in the diffuse reflection cavity.
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Table 3. Simulated efficiency and uniformity at different Θe values.

Tilting end Wall Angle (Θe) Uniformity (%) Efficiency (%)

20◦ 84.6 85.3
30◦ 84.5 85
45◦ 84.4 86
60◦ 82.2 85

2.3. Optimized VARS

Figure 8 illustrates the VARS implemented on the end wall. It shows the VARS structure design,
which was used to adjust the uniformity distribution of the light emitted from the hollow cavity.
The main idea of this study was that the light shone out in the middle of the hollow body. Figure 9
presents the ray tracing in VARS that is an explanation for the derivation of the VARS theory.
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To optimize efficiency and uniformity, we let the L1, L2, and L3 rays travel toward the center of the
diffusion plate through the reflection engendered by the VARS. In Figure 9, W0 represents the width,
and H0 represents the height of the VARS. Moreover, N1–N3 denote the normal lines perpendicular to
the X–Z sections, respectively. The tilt angles Θ1, H1, and Θr1 are defined in Equations (2)–(4). Θi1 is
the incident angle, Θr1 is the reference angle of Θ1, and Θo1 is the reflection angle corresponding to N1

in the X section.

tan Θr1 =
H0 −

H0
6

W0
2

, (2)
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H1 = H0 −
H0

6
, (3)

Θ1 = 90−Θr1 −Θi1. (4)

The second tilt angle Θ2 and H2 are defined in Equations (5) and (6). Θi2 is the incident angle,
and Θo2 is the reflection angle corresponding to N2 in the Y section.

Θ2 � 90−Θ1, (5)

H2 = H0 −
3H0

6
. (6)

The third tilt angle Θ3 and H3 are defined in Equations (7) and (8). Θi3 is the incident angle, and
Θo3 is the reflection angle corresponding to N3 in the Z section.

Θ3 � 90−ΘI, (7)

H3 = H0 −
5H0

6
. (8)

Through Equations (2)–(8), VARS profiles can be drawn, and VARS can be defined by the following
polynomial equation:

Y = C0 +
∑

Bi ∗Xi i = 0, 1, 2 . . . (9)

where C0 is a constant, and B1–B6 are the coefficients of the polynomial equation listed in Table 4.

Table 4. Coefficients of polynomial equation.

Symbol Value

Intercept (C0) −3.49128 × 10−14

B1 16.708
B2 −48.53044
B3 56.33018
B4 −18.82259
B5 −4.49559
B6 2.73919

Figure 10 shows the proposed hollow light guide with VARS. It illustrates a 3D schematic diagram
of a hollow cavity combined with VARS. Figure 11 illustrates the illumination map observed for the
proposed hollow light guide with VARS. The uniformity was determined to be 89%, and the overall
efficiency was determined to be 85%. It can be seen from the light trace that the light was concentrated
in the middle of the hollow cavity through designing multi-segment VARS. At this time, the uniformity
was 89%, and the efficiency of 85% had reached a good result. In order to improve overall uniformity,
the design of a beveled reflection surface at the entrance of the hollow cavity could converge the LED
light intensity distribution at the module.
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2.4. Beveled Reflection Surface Design and Optimization

As indicated in Figure 11, the luminance at the center of the detection surface was higher than the
overall luminance because the light was directed to the center through the VARS. We optimized Θ4 to
further enhance uniformity. A beveled reflection surface was designed to reduce the vertical axis beam
angle of the mini-LEDs to enhance uniformity. Table 5 lists the efficiency and uniformity measured at
various angles of reflection bevel edge Θ4.

Table 5. Efficiency and uniformity of calculation results at various bevel angles Θ4.

Reflection Bevel Edge (Θ4) Uniformity (%) Efficiency (%)

10◦ 86.7 80.7
20◦ 88.2 81.1
30◦ 90.8 82.5
40◦ 90.6 81.7
50◦ 87.1 81.3

Figure 12 illustrates the illumination map measured for the beveled reflection surface. After
optimization, it can be seen from Table 5 and Figure 12 that the efficiency can be increased to 82.5%
and the uniformity can reach 90.8% when the Θ4 = 30◦. Figure 13 shows the intensity distribution
curve for the beveled reflection surface in the detector. Figure 13 is the light distribution curve after the
simulation, wherein the blue line is a 0◦ tangent angle, the green line is a 45◦ tangent angle, the red line
is a 90◦ tangent angle, and the cyan line is a 135◦ tangent angle light distribution curve, respectively.
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3. Actual Production and Verification

Figure 14 is the actual finished product which depicts an archetype of the planar mini-LED light
source module with VARS and a beveled reflection surface. Figure 15 shows the measured intensity
curve obtained using the LEDGON goniometer instrument (Instrument Systems GmbH, Munich,
Germany). Approximation and simulation data are presented in Figure 13. Figure 16a presents the
illumination map measured when the module was shut down. Figure 16b shows the illumination map
when the module was in operation. Nine equidistant points were established to evaluate uniformity,
and Figure 17 shows these measurement points obtained using a BM-7 luminance meter (Topcon
Corporation, Tokyo, Japan). Uniformity was evaluated by determining (Lmin/Lmax × 100%). Table 6
lists the measurement results. The data presented in Table 6 were measured using an integrating
sphere (Isuzu Optical, Hsinchu, Taiwan). The relative luminance (L) measured at point 1 was 92.3%.
Table 7 presents the measured optical characteristics of the module. The module efficiency was 83.9%.
Table 8 provides a comparison of the simulation and measurement results, revealing close agreement.
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Table 6. Relative luminance measured at nine points.

Position Relation Luminance L (nits)

P1 0.925
P2 0.923
P3 0.927
P4 0.984
P5 1
P6 0.986
P7 0.936
P8 0.931
P9 0.938

Table 7. Optical characteristics of light source and light source module.

CIE x CIE x Flux (lm) Efficiency (%)

Light source 0.3792 0.3821 300 100
Light source module 0.3802 0.3734 251 83.9
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Table 8. Comparison of simulation and measurement results.

Item Simulation Measurement

Uniformity (%) 90.8 92.3
Efficiency (%) 82.5 83.9

Horizontal axis (degree) 104 106
Vertical axis (degree) 76 74

4. Conclusions

This paper presents a novel planar light source module involving mini-LEDs with asymmetric
luminous intensity distribution and a novel optical cavity consisting of a diffuse reflection cavity,
beveled reflection surface, and VARS to achieve high efficiency and uniformity. The archetype achieved
a uniformity of 92.3% and efficiency of 83.9%. We used varied angles of the reflection surface (VARS)
on the end wall in the diffuse reflection cavity instead of traditional solid light guide architecture to
reduce the thickness and weight of this light source module. This architecture with an asymmetric
luminous intensity distribution and diffuse reflection cavity can improve LED lighting performance.
The proposed hollow light guide had a width of 51.5 mm, making it more suitable for linear lighting or
slender backlighting than for display stand applications.
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