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Abstract: With the aim of improving the shortcomings of the traditional single hidden layer back 
propagation (BP) neural network structure and learning algorithm, this paper proposes a centrifugal 
pump performance prediction method based on the combination of the Levenberg–Marquardt (LM) 
training algorithm and double hidden layer BP neural network. MATLAB was used to establish a 
double hidden layer BP neural network prediction model to predict the head and efficiency of a 
centrifugal pump. The average relative error of the head between the experimental and prediction 
obtained by the double hidden layer BP neural network model was 4.35%, the average relative error 
of the model prediction efficiency and the experimental efficiency was 2.94%, and the convergence 
time was 1/42 of that of the single hidden layer. The double hidden layer BP neural network model 
effectively solves the problems of low learning efficiency and easy convergence into local minima—
issues that were common in the traditional single hidden layer BP neural network training. 
Furthermore, the proposed model realizes hydraulic performance prediction during the design 
process of a centrifugal pump. 

Keywords: centrifugal pump; double hidden layer; Levenberg–Marquardt algorithm; performance 
prediction 

 

1. Introduction 

The performance prediction of centrifugal pumps has become an indispensable part of the 
optimization design of centrifugal pumps. At present, the traditional prediction methods mainly 
include computational fluid dynamics (CFDs) numerical simulation methods, and empirical 
formulas [1]. When the CFDs method is used to predict the performance of a centrifugal pump, the 
performance prediction error of centrifugal pumps is usually more than 5%, due to the fact that the 
mechanical loss and partial volume loss of the centrifugal pump are ignored. Meanwhile, empirical 
formulas can be used to predict the efficiency of a centrifugal pump under the design parameters, 
but they cannot effectively predict the actual efficiency of an impeller with the same design 
parameters and different structural parameters (blade number, blade angle, etc.). Table 1 shows the 
empirical relationship of the disc loss with different specific speeds of a centrifugal pump. The disc 



Energies 2019, 12, 2709 2 of 14 

 

loss is nearly inversely proportional to the specific speed [2]. Otherwise, the disc loss is difficult to 
test and apply in the pump system. 

Table 1. Disc loss with different specific speeds of a centrifugal pump. 

Specific Speed 30 40 50 60 70 80 90 100 150 200 
Disc Loss/% 28.5 20.4 15.7 12.7 10.6 9.1 7.9 7.0 4.4 3.1 

Testing the performance of a centrifugal pump by the experimental method includes three steps: 
The design, manufacturing, and performance test of the prototype pump. However, this method has 
some shortcomings, such as tedious measurement process, high cost, and a long research and 
development cycle. Therefore, it is generally not used as the preferred method to predict the 
performance during the design process of pumps nowadays. 

In recent years, the artificial neural network (ANN) method has often been used to solve 
uncertain or nonlinear control problems owing to its advantages of strong adaptability, high 
accuracy, precise function approximation ability, and nonlinear mapping ability. In ANN, the 
nonlinear mapping relationship is built between the input and output of sample data through the 
self-learning ability of each neuron. It has the characteristics of large-scale parallel processing, fault 
tolerance, self-organization and self-adaptation ability, and strong associative function. Therefore, it 
has been applied in many fields for performance prediction, target recognition, intrusion detection, 
on-line supervisory control, fault diagnosis, etc. Li et al. [3] proposed a method of combining a chaos 
algorithm with a genetic algorithm to overcome the shortcomings of the neural network for gesture 
recognition, and used the optimal result as the initial weight and threshold of the BP neural network 
to identify gestures. Simulation and experimental results showed that this method has better real-
time accuracy for gesture recognition. Peng et al. [4] proposed a vehicle and personnel identification 
method based on an improved neural network—that is, the seismic signals of moving objects are 
processed and analyzed to obtain eigenvectors—so as to realize good classification. Experimental 
results showed that the method has better recognition accuracy and effectiveness.  

The ANN method has a shorter prediction cycle and lower cost compared with the experimental 
method. Moreover, it can predict the hydraulic performance during the design process of a 
centrifugal pump, as it is forward-looking and time-sensitive, and provides a new idea for the 
efficient performance prediction of centrifugal pumps. Ne et al. [5] first applied the BP algorithm in 
ANN for the performance prediction of a centrifugal pump. In the training process, the method 
constantly modified the weight value using the gradient fastest descent method, and the weight value 
changed along the negative gradient direction of the error function. The maximum predicted the 
deviation of the head and efficiency to be 7% and 8%, respectively, which shows the feasibility of 
pump performance prediction based on the ANN method. Yao et al. [6] used the BP neural network 
to predict the centrifugal pump head, and the training function was learned by the gradient descent 
method. The highly nonlinear mapping between the geometric parameters’ input of the transition 
parts and the performance output of the centrifugal pump was realized through the self-application 
and learning function of the neural network. Cong et al. [7] used the Bayesian regularization 
algorithm to predict the performance of a single stage centrifugal pump hydraulic model, in which 
the regularization method improved the generalization ability by modifying the training 
performance function of the neural network. They found that the error of performance prediction 
with the improved neural network was lower than 6%. Jiang et al. [8] considered that the CFD 
numerical simulation method directly used to predict the performance of a centrifugal pump will 
greatly increase the calculation cost, and the design cycle will also become longer. Therefore, they 
used the combination of CFDs simulation and the BP neural network to predict the efficiency of the 
centrifugal pump impeller. BP neural network technology was used to establish an approximate 
proxy model between the influencing factors and the response value, and the optimized hydraulic 
model of the centrifugal pump was given. Otherwise, the method was limited to the optimization 
design of the centrifugal pump impeller with a lower specific speed.  
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The above studies on the performance prediction of centrifugal pumps are all based on the single 
hidden layer BP neural network. Due to the simple structure of the single hidden layer BP neural 
network, it is impossible to extract more characteristic information of input parameters, and the 
prediction of centrifugal pump performance faces problems, such as small coverage and low 
robustness. Considering that a deeper network depth will result in network redundancy and the 
convergence time of the network will become longer, this will lead to an inaccurate performance 
prediction of the centrifugal pump. Therefore, it is necessary to establish an appropriate method to 
increase the network depth and accelerate the convergence of the deep BP neural network to improve 
the prediction accuracy of centrifugal pump performance. 

In recent years, the LM algorithm has been favored by domestic and overseas scholars [9–12]. It 
is a classical nonlinear numerical optimization algorithm that combines the advantages of the 
gradient descent method and the Gauss-Newton method. Moreover, it has the local convergence of 
the Gauss-Newton method and the global characteristics of the gradient descent method. The fast 
convergence of the Gauss-Newton method is adopted when the solution is near to the optimal 
solution, and the convergence characteristic is achieved by adaptively adjusting the damping factor. 
The approximate second-order derivative information is used to achieve the ability of superlinear 
convergence near the optimal solution, which has a higher iterative convergence speed and 
accelerates the convergence of the neural network. The robustness of the gradient descent method is 
adopted when the solution is far from the optimal solution. That is, when the input information or 
the neural network has finite perturbation, the neural network can still maintain the stability 
characteristics from the input to the output relationship to obtain reliable solutions, thus solving 
problems, such as the poor numerical stability of the neural network. This approach has thus been 
widely applied to various research fields.  

Wang [13] designed a new intrusion detection model based on the LM-BP neural network to 
address the issues of the traditional BP neural network, such as slow convergence speed, the tendency 
to fall into local minima, and high cost of computation. Through further research of the neural 
network and intrusion detection systems, the comparative experimental results showed that the new 
model combines the advantages of anomaly and misuse detection. It can quickly detect new 
intrusions as well as reduce the false alarm rate and missed alarm rate. Zhao et al. [14] applied the 
LM algorithm neural network with the learning rate for on-line supervisory control. Compared with 
the traditional forward neural network BP, the new control strategy can improve the operation speed 
and the local minima. It can improve the tracking performance of the servo system with an unknown 
load disturbance. The search direction can be optimized by the LM-BP neural network and has been 
applied to transformer fault diagnosis [15]. Through test and analysis, not only was the convergence 
speed accelerated, but the accuracy was also greatly improved. The study results showed that the 
positive rate of the fuzzy fault diagnosis reached 92.5%; the verified method could improve the 
transformer fault diagnosis performance. 

To sum up, the nonlinear relationship between the hydraulic performance and the structural 
parameters of the impeller is so complex that the actual efficiency of the impeller is difficult to predict 
with different structural parameters, whether by CFDs or empirical methods. On the other hand, the 
double hidden layer BP neural network can enhance the mapping ability of the complex relationship 
between the input and output of the system, and has stronger approximation and fault tolerance 
abilities than the single hidden layer BP neural network [16]. So, the combination of the LM algorithm 
and double hidden layer BP neural network can be used to predict the performance of centrifugal 
pumps rapidly and precisely for use in strong nonlinear engineering prediction fields, such as 
intrusion detection, on-line supervisory control, and transformer fault diagnosis. 

2. Structural Design of the Centrifugal Pump Performance Prediction Model 

2.1. Double Hidden Layer BP Neural Network Structure 

Multi-layer BP neural networks can be used to predict different engineering problems for the 
forward propagation of parameters and the back propagation of errors. In theory, it has the ability to 
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approximate any nonlinear continuous map, so it is very suitable for the modeling and performance 
prediction of nonlinear systems [17]. In this paper, a double hidden layer BP neural network with 
multiple inputs and two outputs is constructed. It is assumed that the input layer is composed of m 
neurons, which is used to complete the input of m predicted parameters of the system. The first 
hidden layer is composed of k neuron nodes, which are used to complete the spatial weighted 
aggregation of input signals and the excitation output. The second hidden layer is composed of p 
neuron nodes, which are used to improve the nonlinear mapping capability of the network for a 
complex relationship between the input and output of the system. The output layer consists of two 
process neuron nodes that are used to complete the system output, as shown in Figure 1. 

The transfer function of each layer in the BP neural network has a significant impact on the 
performance of the model. These transfer functions are usually determined experimentally. In the BP 
neural network, the commonly used transfer functions are linear transfer function (“purelin”), 
tangent transfer function (“tansig”), logarithmic sigmoid transfer function (“logsig”), etc. When the 
transfer function of the input layer and the first hidden layer is “tansig”, the transfer function of the 
first hidden layer and the second hidden layer is “tansig”, and the transfer function of the second 
hidden layer and the output layer is “purelin”, which are shown in the MATLAB neural network 
toolbox [18–20]. 
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Figure 1. Double hidden layer back propagation (BP) neural network structure. 

Assuming that the signal that passes from the input layer to the first hidden layer is mj, this can 
be expressed as in Equation (1): 

m

j k kj j
k=1

m = x w +b
,
 (1) 

where xk is the input neuron and xk represents each design parameter of the centrifugal pump in this 
paper. wkj represents the input layer to the first hidden layer weight and bj represents the first hidden 
layer bias. 

The first hidden layer output signal is denoted as yj, shown as in Equation (2): 

)m(sigtany jj = . (2) 

The signal transmitted from the first hidden layer to the second hidden layer is denoted as ni, 
and the calculation of ni is shown in Equation (3): 

'
i

'
ji

k

1j
ji bwyn +=

= ,
 (3) 

where wji' represents the weight of the first hidden layer of the second hidden layer and bi' is the bias 
of the second hidden layer. The output signal of the second hidden layer is denoted as zi, which is 
expressed as in Equation (4): 
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The signals transmitted from the second hidden layer to the output layer are, respectively, 
recorded as s1 and s2, shown as in Equations (5) and (6): 
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where wi1'' and wi2'' represent the weights from the second hidden layer to the output layer, and b1'' 
and b2'' represent the biases of the output layer. 

During the process of centrifugal pump performance prediction, the output signals of the head 
(H) and the efficiency (η) of the output layer are denoted as h1 and h2, respectively, which can be 
expressed as in Equations (7) and (8), wherein a1, a2, b1, and b2 represent the coefficients of the linear 
transfer function “purelin”: 
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2.2. LM Algorithm 

As the traditional gradient descent method is used to train the deep network, the convergence 
speed is greatly reduced because of the greater network depth. In order to solve this problem, the 
improved form of the Gauss-Newton method combined with the LM training algorithm is used to 
train the network in this paper. The proposed method can accelerate the network training and 
convergence speed effectively [21,22]. The LM algorithm is a second-order algorithm. So, when the 
gradient of the error surface is small, the LM algorithm is similar to the gradient descent method. 
When the gradient of the error surface is large, the LM algorithm is similar to the Gauss-Newton 
method [23]. In addition, the LM algorithm can estimate the learning rate (LR) in each gradient 
direction of the error surface according to the Hessian matrix, so compared with a first-order 
algorithm, the LM algorithm is more effective than others for training neural networks at present 
[24]. The following is a brief description of the LM algorithm: Firstly, the error index function of the 
neural network is set as E(x), as shown in Equation (9). Here, N is the number of samples, Yi 
represents the expected network output vector, Yi’ denotes the actual network output vector, and 
ri(x) represents the current error: 

)x(r
2
1YY

2
1)x(E

N

1i

2
i

2N

1i

'
ii 

==

=−=
.
 (9) 

If the weight vector of the t-th iteration of the neural network is xt, the new weight vector, xt+1, 
of the Newton algorithm can be obtained by Equation (10). Here, Δxt, He, and gt represent the updated 
value of the weight, Hessian matrix, and current gradient, respectively. He and gt can be obtained 
from Equations (11) and (12), where J and r(x) represent the Jacobian matrix and the error, 
respectively: 
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However, the matrix, He, is not always reversible. In order to solve this problem, considering the 
introduction of a coefficient, λt, the LM algorithm after updating the weight is as shown in Equation 
(13), where I is an identity matrix: 

[ ] )x(r)x(JI)x(J)x(Jxx tt
T1

ttt
T

t1t
−

+ λ+−= . (13) 

Obviously, when λt is very large, the LM algorithm approximates the gradient descent method; 
when λt is close to zero, it is equivalent to the Gauss-Newton algorithm. Since the approximate 
second-order derivative information is used in the calculation, the algorithm is much faster than the 
gradient descent method. In other words, the LM algorithm is superior to the Gauss-Newton method. 
Therefore, it is feasible to train the double hidden layer BP neural network based on the LM algorithm 
to improve the convergence speed of deep network training. 

3. Establishment of Sample Data Sets 

In the design of a centrifugal pump, the design parameters of the impeller have an important 
effect on the efficiency, cavitation performance, and characteristic curve of the centrifugal pump [25]. 
Therefore, it is necessary to investigate the influence of the design parameters of the impeller, such 
as flow rate (Q), rotating speed (n), impeller inlet diameter (Dj), hub diameter (dh), impeller outlet 
diameter (D2), specific speed (ns), blade outlet width (b2), and blade numbers (Z), on the centrifugal 
pump design and performance prediction. In the prediction of centrifugal pump performance, the 
sample data used in this paper are representative data obtained from [26], which construct 44 groups 
of a training sample set. These sample data are from Dalian Hongze Pump Industry, Zhejiang 
Institute of Mechanical, and Electrical Design, Jiangsu University Fluid Machinery Engineering 
Technology Research Center, China. In order to ensure the universality of the model, low, medium, 
and high values of ns as well as large and small values of Q are considered in the sample data. Some 
of these shown in Table 2. 

Table 2. Centrifugal pump performance prediction model sample data. 

Serial Number ns Q (m3/h) N (r/min) Dj (mm) dh (mm) D2 (mm) b2 (mm) Z H (m)  η (%) 
1 23.1 12.5 2900 52 0 242 4 4 80.78 42.21 
2 30 21 2900 60 0 245 10 10 80 41 
3 33 12.5 2900 48 0 200 6 5 50.34 51.09 
4 47.2 12.5 2900 44 0 160 5.6 5 31.25 56.32 
5 48 300 1450 175 45 547 17 7 100 75 
6 58 75 2950 100 50 290 11 6 80 70 
7 73 148 2900 110 25 278 15 6 90 80.5 
8 81 140 1450 138 32 317 19 6 30 79.7 
9 90 200 2900 110 25 255 18 7 84 80 
10 103 130 1450 140 38 262 23 6 21 82 
11 131 400 1450 190 0 345 35 6 32 83 
12 151 243 1450 162 35 262 34 6 19 86.8 
13 205 2600 740 450 0 640 120 5 25 88.9 
14 225 6300 490 700 0 965 186 5 23 88 
15 302 6650 660 625 0 775.5 187 4 24 85.8 

4. Prediction Results and Analysis 

The flow diagram of predicting the performance of the centrifugal pump in this paper is shown 
in Figure 2. It can be seen from the figure that the whole process of centrifugal pump performance 
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prediction is divided into three parts. The first step is the construction of a double hidden layer BP 
neural network. In order to ensure the correctness of the training direction in the training process and 
accelerate the speed of the network convergence, all the data are initialized before the training starts, 
known as normalization processing. The normalization process here is achieved by the “prestd” 
function in the MATLAB toolbox. Then, the number of neurons in each hidden layer of the double 
hidden layer BP neural network is determined through training. The second step is the training 
process of the double hidden layer BP neural network. In this case, the training parameters were first 
set and the double-hidden BP neural network was built by MATLAB software. In the process of 
training, the LM algorithm was used to calculate the error value of each iteration and compare it with 
the set mean squared error (MSE) value. If the iterative error was less than the set value, the training 
would be completed; otherwise, the next iteration would continue until network convergence was 
achieved. The third step is the evaluation of the double hidden layer BP neural network model. From 
the second step, the centrifugal pump back propagation (CPBP) performance prediction model will 
be established, then the test data will be input into this model for the prediction of the head and 
efficiency. 

 
Figure 2. Centrifugal pump performance prediction flow diagram with the centrifugal pump back 
propagation (CPBP) model. 

4.1. Parameter Selection of the CPBP Model 

With the aim of overcoming the shortcomings of predicting the performance of a centrifugal 
pump with a single hidden layer BP neural network, a double hidden layer BP neural network was 
constructed in this paper, including one input layer, two hidden layers, and one output layer. In order 
to obtain a better nonlinear mapping relationship of the related parameters through network 
learning, the S-type tangent function and linear function were used for the transfer functions of the 
two hidden layers and the output layer, respectively. Similar to the traditional BP neural network, 
the performance of the double hidden layer BP neural network is also affected by the number of 
neurons in the input layer and hidden layer. In general, the number of input layer neurons is 
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determined by the number of input sample variables. So, the number of neurons in the input layer 
was set as eight in this paper. Similarly, the number of neurons in the output layer needs to be equal 
to the number of the predicted parameters. The number of neurons in the output layer of the network 
was set as two, including the head and efficiency of the centrifugal pump. With regard to the 
determination of the number of neurons in the hidden layer, this paper adopted the design method 
of the number of neurons in the hidden layer [27,28], as shown in Equation (14): 

fudc ++= , (14) 

where c, d, and u represent the number of neurons in the hidden layer, input layer, and output layer, 
respectively. The values of the constant “f” ranged from 1 to 10, so the range of neuron numbers in 
the hidden layer was 4 to 13. 

The number of hidden layer neurons is input into the corresponding model and then the 
network is trained once again. Figure 3 shows the MSE values corresponding to different networks. 
The horizontal axis is the ratio (n2/n1) of the number of neurons (n2) in the first hidden layer to the 
number of neurons (n1) in the input layer; the longitudinal axis is the ratio (n4/n3) of the number of 
neurons (n4) in the output layer to the number of neurons (n3) in the second hidden layer; and the 
vertical axis is the training MSE corresponding to each network. As the numbers of neurons in the 
first hidden layer and the second hidden layer were both six, the corresponding MSE was the 
minimum. Therefore, the final structure of the double hidden layer BP neural network suitable for 
the prediction of centrifugal pump performance was 8-6-6-2. Figure 4 is the structure diagram of the 
CPBP network. 

 
Figure 3. Comparison of mean squared errors of back propagation (BP) networks with different 
double hidden layers. 
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Figure 4. Centrifugal pump back propagation (CPBP) neural network structure diagram. 

4.2. Training Process of CPBP Model 

The training parameters of neural networks have an important influence on the performance 
prediction of centrifugal pumps, so it is necessary to choose the appropriate training parameters. The 
parameters used in the CPBP network training include the maximum number of iterations: Epochs, 
LR, momentum factor (MF), and MSE. These training parameters have a direct impact on the 
prediction accuracy of the final centrifugal pump performance. The CPBP network model can be 
established with the help of the neural network toolbox in MATLAB to determine the design values 
of the network training parameters, as shown in Table 3. 

The training network is started after the CPBP network is built. During the training process, the 
back propagation of error is used to iterate repeatedly until the convergence of the CPBP network is 
achieved. Finally, the prediction model of the centrifugal pump can be established by the CPBP 
network. 

Table 3. Training parameter settings. 

Parameter Epochs LR MF MSE 
Setting 550 0.04 0.95 0.001 

4.3. Prediction Results of CPBP Model 

In order to verify the accuracy of the prediction method, five sets of test data provided by 
Shanghai Kaiquan Pump Co., Ltd. China, were input into the trained model to obtain the prediction 
values of the head and efficiency. The corresponding relative error can be calculated between the 
experimental and the predictive values. Simultaneously, the prediction accuracy of the CPBP 
network model can be obtained. The comparison between the experimental and the predicted results 
is shown in Table 4. Among them, H** and η** are the head and efficiency predicted by the CPBP 
model, respectively. 

The maximum relative error of the head predicted by the CPBP model compared with the 
experimental results was 11.87%, the minimum was 0.13%, and the average relative error was 4.35%. 
From these error values, it can be found that the error distribution was relatively average. The 
maximum relative error between the model prediction and the experimental efficiency was 4.99%, 
the minimum was 0.47%, and the average relative error was 2.94%, so the error distribution was also 
uniform. The average relative error of the prediction values on the head and efficiency indicate the 
reliability of the CPBP model. 

Table 4. Comparison of prediction results and experimental results of five test sets. 

Input Value Experimental Value Predictive Value 
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Serial 
Number ns 

Q 
(m3/h) 

n 
(r/min) Dj (mm) 

dh 
(mm) 

D2 
(mm) 

b2 
(mm) Z H (m) Η (%) H** (m) η** (%) 

1 180 620 1450 225 50 340 54 5 28 85 24.6756 84.6602 
2 114 775 1450 240 48 440 42 6 60 88.2 58.2233 81.3399 
3 246 3500 740 500 0 650 137 5 24 88.9 23.9672 89.1542 
4 85.6 100 2900 90 0 210 16 6 56.5 81.25 54.1095 80.2150 
5 128.1 100 2900 100 0 178 17 6 33 74.2 32.1484 77.9264 

4.4. Comparison of Results 

In order to compare the prediction accuracy of the CPBP network with the traditional single 
hidden layer BP neural network, the traditional single hidden layer BP neural network with the best 
prediction effect was constructed to predict the performance of the centrifugal pump. Firstly, 
Equation (14) was used to determine the value range of the number of hidden layer neurons when 
the number of input neurons was eight and the number of output neurons was two. After calculation, 
the value range of hidden layer neurons was also 4 to 13.Then, the single hidden layer BP networks 
corresponding to 4 to 13 hidden layer neurons were set up in MATLAB and trained. The MSE values 
corresponding to different networks are shown in Figure 5, where the abscissa is the ratio (n2/n1) of 
the number of neurons (n2) in the hidden layer to the number of neurons (n1) in the input layer and 
the ordinate is the training MSE corresponding to each network. 

 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.016

0.020

0.024

0.028

0.032

0.036

0.040

m
se

n2/n1  
Figure 5. Comparison of the mean squared errors of different single hidden layer back propagation 
(BP) networks. 

As can be seen from Figure 5, when the number of neurons in the hidden layer was six, the 
corresponding MSE was the smallest. That is, the single hidden layer BP neural network composed 
of six neurons in the hidden layer had the best prediction effect compared with other single hidden 
layer BP neural networks. Its structure is shown in Figure 6. 
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Figure 6. Single hidden layer back propagation (BP) network structure diagram. 

Five groups of identical test data with the CPBP were input into the centrifugal pump 
prediction model obtained by the single hidden layer BP neural network training to obtain 
the predicted results. The results of the prediction of centrifugal pump performance 
between the single hidden layer BP network and the double hidden layer BP network were 
compared, as is shown in Table 5 and Figure 7. Among them, H*and η* are the head and 
efficiency of the single hidden layer BP neural network prediction, respectively. Δη* and △H* are the relative errors of the efficiency and head of the single hidden layer BP neural 
network, respectively. Δη** and △H** are the relative errors of the efficiency and head of 
the CPBP model, respectively. Compared with the CPBP network, the maximum, the 
minimum, and the average relative error of the head value of the single hidden layer BP 
network increased by 11.41%, 0.23%, and 3.40%, respectively. Meanwhile, the maximum, 
the minimum, and the average relative error of the efficiency prediction value increased by 
4.99%, 0.47%, and 2.37%, respectively. It can be concluded that the CPBP network has a 
higher prediction accuracy than the single hidden layer BP network for the performance 
prediction of centrifugal pumps. 

Table 5. Comparison of the results of centrifugal pump performance prediction between the single 
hidden layer back propagation (BP) network and the double hidden layer back propagation (BP) 
network. 

Serial 
Number 

Experimental 
Value 

Predicted Value and Relative Error of BP 
Network with Single Hidden Layer 

Predicted Value and Relative Error of 
Double Hidden Layer (CPBP Model) 

H/m η/% H*/m η*/% △η*/% △H*/% H**/m η**/% △η**% △H**/% 
1 28 85 23.5700 83.5183 1.7400 15.8200 24.6756 84.6602 0.3990 11.8700 
2 60 88.2 58.0873 80.9351 8.2400 3.1880 58.2233 81.3399 7.7700 2.9600 
3 24 88.9 21.2275 87.6447 1.4000 11.5500 23.9672 89.1542 0.2860 0.1360 
4 56.5 81.25 52.0179 76.9955 5.2400 7.9000 54.1095 80.2150 1.2700 4.2300 
5 33 74.2 33.1127 81.6154 9.9900 0.3400 32.1484 77.9264 5.0000 2.5800 
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Figure 7. Comparison between the prediction results and experimental results of five test sets. 

As can be seen from Figure 7, the predicted and the experimental values exhibited the same 
change trend; the small deviation may be caused by the accuracy of the experimental data and the 
deficiencies of the training samples. 

Figure 8 shows the variation of the MSE during the training of the BP network with a single 
hidden layer and the CPBP network. It can be seen that the traditional single hidden layer BP 
network had difficulty in achieving a high convergence accuracy quickly compared with the 
CPBP network. Therefore, the CPBP network is more effective in predicting the performance of 
centrifugal pumps compared to the traditional single hidden layer BP neural network. 
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Figure 8. Change of the mean squared errors on the back propagation (BP) neural network with 
different hidden layers. (a) Back propagation (BP) network with a single hidden layer; (b) centrifugal 
pump back propagation (CPBP) network. 
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5. Conclusions 

(i) In this paper, a new CPBP model for the performance prediction of centrifugal pumps based 
on design and structure parameters was established. The LM algorithm was used to accelerate the 
convergence rate of the double hidden layer BP network. The proposed model improves the mapping 
ability of the complex relationship between the input and output of the nonlinear system, known as 
the centrifugal pump performance, with its structure and operation parameters. 

(ii) The CPBP network could easily achieve a high convergence accuracy quickly compared with 
the traditional single hidden layer BP network. 

(iii) Compared with the traditional single hidden layer BP network, the average relative error of 
the head and efficiency prediction values of the CPBP network decreased by 3.40% and 2.37%, 
respectively, and the training time of CPBP model was only 1/42 of that of the traditional BP network. 
This indicates that the CPBP network model is more suitable for the rapid and efficient determination 
of the optimum design of a centrifugal pump. 
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