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Abstract: Under the severe challenge of increasingly stringent emission regulations and constantly
improving fuel economy requirements, hybrid electric vehicles (HEVs) have attracted widespread
attention in the auto industry as a practicable technical route of green vehicles. To address the
considerations on energy consumption and emission performance simultaneously, a novel control
algorithm design is proposed for the energy management system (EMS) of HEVs. First, energy
consumption of the investigated P3 HEV powertrain is determined based on bench test data. Second,
crucial performance indicators of NOx and particle emissions, prior to a catalytic converter, are also
measured and processed as a prerequisite. A comprehensive objective function is established on
the grounds of the Equivalent Consumption Minimization Strategy (ECMS) and corresponding
simulation models are constructed in MATLAB/SIMULINK. Subsequently, the control algorithm is
validated against the simulation results predicated on the Worldwide-Harmonized Light-Vehicle
Test Procedure (WLTP).Integrated research contents include: (1) The searching process aimed at the
optimal solution of the pre-established multi-parameter objective function is thoroughly investigated;
(2) the impacts of weighting coefficients pertaining to two exhaust pollutants upon the specific
configurations of the proposed control algorithm are discussed in detail; and (3) the comparison
analysis of the simulation results obtained from ECMS and classical Dynamic Programming (DP),
respectively, is performed.

Keywords: hybrid electric vehicles; control algorithm design; energy consumption;
emission performance

1. Introduction

Human beings have used fossil fuels in large quantities since the first Industrial Revolution.
The discovery and exploitation of petroleum has significantly promoted the development of internal
combustion engines and fuel vehicles [1–3]. Nevertheless, conventional vehicles with high fuel
consumption and massive exhaust emissions have become more and more subject to fierce criticism
due to serious energy shortage and potential environmental pollution problems [4,5]. Pressured by
increasingly stringent emission regulations and constantly improving fuel economy requirements,
green vehicles including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs),
battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs) have attracted attention from
the entire automobile industry [6,7]. Considering these different technical routes, the so-called range
anxiety problem and the perceived inconvenience of charging vehicles set barriers to the widespread
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acceptance of PHEVs and BEVs [8,9]. Additionally, the inadequacies of existing hydrogen production,
storage, and transportation technology, the poor infrastructure construction of hydrogen refueling
station as well as soaring manufacturing costs have always been the biggest obstacles restricting the
large-scale industrialization of FCEVs [10]. In contrast, HEVs display unique advantages in structural
compatibility and control system complexity without suffering from the severe capacity fading of
power batteries. Consisting of an engine, most of the time a motor and a battery, HEVs combine the
advantages of conventional fuel-powered vehicles and pure electric vehicles, which makes HEVs a
practicable technical scheme and consequently gives rise to its prosperity in the field of both academic
research and industrial application [11,12].

With respect to the core technologies of HEVs development, energy management system (EMS)
undoubtedly occupies an important position. For the purpose of realizing better fuel economy and
lower power consumption, EMS is generally designed to locate the operating points of a vehicle engine
in the optimal efficiency region [13]. Integrated EMS is capable of making significant difference in
HEVs overall performance improvement. Therefore, the hierarchical control architecture and the
concrete control strategy of EMS have been considered as a research hotspot by many corporations
and institutes, especially in Europe, Japan, and the United States [11,14].

Homchaudhuri et al. presented a hierarchical control strategy for connected HEVs in urban road
conditions. Both higher level controller and lower level controller solved problems focused on fuel
efficiency and energy management. Information about driving conditions was captured and made full
use of. First, traffic light information was utilized through vehicle to infrastructure (V2I) communication.
Secondly, state information of the vehicles in its near neighborhood was utilized via vehicle to vehicle
(V2V) communication [15]. Zhang et al. quantitatively analyzed and evaluated current research status
of energy management strategies for HEVs based on bibliometrics for the first time and put forward the
emphasis and orientation of future study which aimed at promoting the development of a simple and
practical energy management controller with low cost and high performance for HEVs [16]. Bayindir
et al. proposed an overview of HEVs with a focus on hybrid configurations, energy management
strategies, and electronic control units, clearly emphasizing the advantages and disadvantages of each
configuration [17]. Yi et al. introduced a novel architecture of hybrid electric powertrain systems
which suppressed torque fluctuations and carried out the functionality of hybrid driving. A model
for this new powertrain was established and a specially designed ruled-based multi-state controller
was included to achieve control and enhance fuel economy [18]. Shabbir and Evangelou put forward
a real-time control strategy called supervisory control system (SCS) to maximize HEV powertrain
efficiency. It was tested and benchmarked against two conventional control strategies in a high-fidelity
vehicle model, representing a series HEV. Extensive simulation results were presented for repeated
cycles of a diverse range of standard driving cycles, showing significant improvements in fuel economy
(up to 20%) and less aggressive use of the battery [19].

Additionally, Model Predictive Control (MPC) should not be neglected as a research hotspot, as
it is an online strategy able to manage fuel consumption, battery aging, and overall cost of energy
simultaneously. Sockeel et al. provided a Pareto-front analysis of the objective function, taking into
account the equivalent fuel consumption and the battery aging for PHEVs in the charge sustaining
(CS) mode [20]. Furthermore, the concrete influences of how to estimate the state of charge on
MPC performance with respect to equivalent fuel consumption and battery capacity fades were also
thoroughly investigated [21]. Prevailing power management strategy (PMS) utilized in HEVs were
summarized by Huang et al. from a comprehensive perspective [22]. Based on detailed comparison,
they initially attached significant importance to MPC based strategies. Di Cairano et al. presented
a novel method for driver-aware vehicle control based on stochastic model predictive control with
learning (SMPCL) and backed up it with experimental validation [23]. A MPC torque-split strategy
fully considering corresponding diesel engine transient characteristics was proposed by Yan et al. for
the first time. Simulation research based on an HEV model with actual system parameters and an
experimentally validated diesel-engine model indicated that the proposed MPC supervisory strategy
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considering diesel engine transient characteristics possessed superior equivalent fuel efficiency while
maintaining HEV driving performance [24]. Rashid and Minh built up a typical model of a parallel
HEV and developed model predictive controllers for this model to control the speeds and torques for
fast clutch engagement with high driving comfort and low jerk. Some modified algorithms for model
predictive controllers were also studied to improve their ability to track the desired speed set points,
subject to input and output constraints [25]. Xiang et al. proposed a real time EMS for a dual-mode
power-split HEV in order to improve the fuel economy and maintain proper battery’s state of charge
while satisfying all the constraints and the driving demands. The EMS employed a cascaded control
concept including a velocity predictor, a master controller and a slave controller. The velocity predictor
was proposed based on radial basis function neural network and forward dynamic programming was
employed in nonlinear model predictive control to improve efficiency [26].

In general, HEVs are one of the most promising solutions for reducing fuel consumption and
exhaust emissions [27]. Furthermore, how to optimize the specific control algorithm for EMS and
obtain a more comprehensive power allocation scheme is one of the major topics to be investigated
in this field. Unfortunately, most previous studies addressed the concerns including fuel economy,
power performance, and overall powertrain efficiency. In particular, few studies, to our knowledge,
have considered the impacts of exhaust pollutants and put as much emphasis on emission reduction
as on energy conservation. Apparently, the EMS, which only considers fuel economy and power
performance, cannot meet the tougher requirements on environmental influence. To illuminate this
uncharted area, a novel control algorithm design for HEVs considering both energy consumption and
emission performance is proposed. A combined objective function is established on the grounds of the
Equivalent Consumption Minimization Strategy (ECMS) [28,29]. Taking into account the indicators of
both energy consumption and emission performance, we adopt a normalization method in purpose to
eliminate the adverse effects caused by different dimensions. The emission data of NOx and particle
are measured and processed as a prerequisite for subsequent control algorithm design. Corresponding
emission model is carefully selected and validated against the experimental data to guarantee its
accuracy. Associated with the established mathematical model of multi-objective optimization,
a simulation model is built in MATLAB/SIMULINK accordingly. First, the proposed optimization
method is tested against the measured data based on the Worldwide-Harmonized Light-Vehicle Test
Procedure (WLTP). Second, the impacts of weighting coefficients pertaining to different kinds of
pollutants upon the final results are discussed in detail. By comparing the optimization results with
that obtained by classical Dynamic Programming (DP), the feasibility and accuracy of the proposed
control algorithm are demonstrated.

2. Energy Consumption and Emission Performance Indicators Modeling

2.1. HEV Powertrain Configuration

In terms of existing HEVs, parallel powertrain architecture is broadly applied due to its unique
advantages in control complexity [18,30,31]. A P3 HEV oriented at both Europe and China auto market
is set as the research focus of this paper with its vehicle model constructed in MATLAB/SIMULINK
environment. P3 refers to a kind of HEV powertrain structure in which the motor is located at the
output of gearbox. Figure 1 displays the structure of the investigated P3 HEV powertrain. As shown
in Figure 1, high voltage (HV) battery and gasoline engine conspire to provide the power needed for
driving the vehicle. Specifications of the gasoline engine are presented in Table 1.
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regularity. Similarly, it can be derived that there exists a quadratic function between motor torque 
and electric energy consumed power as shown in Figure 3. It is important to note that motor torque 
and electric energy consumed power can be simultaneously negative under the circumstance that the 
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energy consumed power actually turns into charging power. As a consequence, the quadratic curves 
of the motor can be divided into two central-symmetric parts with zero as a demarcation point. 

Figure 1. Structure of the investigated P3 hybrid electric vehicles (HEV) powertrain.

Table 1. Gasoline engine specifications.

Parameters Value

Type L4
Displacement 1498 cm3

Bore 74.5 mm
Stroke 85.9 mm

Bore/stroke ratio 0.867
Compress ratio 12.5

Maximum power 96 kW
Maximum torque 200 N·m

Intake valve opening event 150 ◦CA
Exhaust valve opening event 180 ◦CA

Fuel ROZ95 E10

2.2. Quadratic Polynomial Fitting of Consumed Power

The overall consumed energy of the investigated P3 HEV powertrain is composed of two parts:
The chemical energy contained in fuel burned in the internal combustion engine (ICE) and the electric
energy supplied to the motor. The former is denoted as chemical energy consumed power and the
latter is denoted as electric energy consumed power. A large number of bench tests are conducted in
purpose to obtain a precise estimation of the functional relationship between output torque and the
consumed power. As displayed in Figure 2, experimental data are marked as cross dots with different
colors indicating different engine speed. It can be obviously observed that chemical energy consumed
power is changed along with engine torque content in a manner of approximate quadratic function
regularity. Similarly, it can be derived that there exists a quadratic function between motor torque
and electric energy consumed power as shown in Figure 3. It is important to note that motor torque
and electric energy consumed power can be simultaneously negative under the circumstance that the
E-Motor in Figure 1 acts as a generator. On this condition, the HV battery will be charged and electric
energy consumed power actually turns into charging power. As a consequence, the quadratic curves
of the motor can be divided into two central-symmetric parts with zero as a demarcation point.
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Based on the experimental data, quadratic polynomial fitting is introduced into describing the
relationship between the consumed power and interrelated output torque. The equation is as follows:

PEC = p1,EC + p2,ECMEC + p3,ECM2
EC (1)

where PEC is one of these two energy consumed power mentioned above, MEC is the corresponding
output torque (engine torque or motor torque), and p1,EC, p2,EC, and p3,EC are fitting coefficients.
It should be noted that with respect to the electric energy consumed power, there exists two different
quadratic function expressions over full operating range. Alternatively, a piecewise function can be
employed to integrate these two segments with zero as a demarcation point as mentioned above.

2.3. Quadratic Polynomial Fitting of Emission Data

Apart from addressing the concerns about energy consumption, it is equally important to work
out emissions accurately and rapidly for the purpose of realizing the subsequent optimization of
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emission performance and energy consumption simultaneously. Table 2 displays the vital modeling
components of several mainstream emissions modeling methodologies [32,33]:

Table 2. Characteristics of several mainstream emission models.

Emission Models Vehicle Test Procedure Emission
Representation Vehicle Activity Factors

Parameterized Physical
Model

short driving cycle to
determine key

parameters

parameterized analytical
representation

second-by-second profile
and/or parameterized

trip characteristics

Velocity-Acceleration
Matrix Model

second-by-second
emissions testing for all

modes

average emissions for
each mode of

velocity-acceleration

time spent in
velocity-acceleration

matrix

Emission Mapping
Model

second-by-second
emissions testing

emissions map for all
modes of engine power

and speed

engine power and speed
(must be translated from

second-by-second
velocity profile)

Among these models above, the Parameterized Physical Model calculates emissions according to
the fuel consumption rate [33]:

ER = FR·
(

gemissions

g f uel

)
·CPF (2)

where ER is specific emission rate, FR is fuel consumption rate, gemissions is the mass of engine-out
emissions, and g f uel is the mass of consumed fuel. CPF is defined as catalyst pass fraction, which
indicates the proportion of emissions discharged through the tailpipe. CPF is usually a function
primarily of air/fuel ratio (A/F) and engine-out emissions. Additionally, Equation (2) can be
approximately estimated is shown as follows:

ER ≈
[
C0·

(
1−φ−1

)
+ C1

]
·FR (3)

where C0 is the weigh coefficient and approximately set as 3.6, φ is the fuel/air equivalence ratio and C1

is defined as the emission index coefficient (engine-out emissions in g/s divided by fuel consumption
rate in g/s), which can be measured under stoichiometric combustion condition. Further, the equation
for calculating CPF is:

CPF = 1− Γ· exp
[(
−CF −CM·

(
1−φ−1

))
·FR

]
(4)

where Γ is the maximum catalyst carbon monoxide (CO) or hydrocarbon (HC) efficiency, CF is the
stoichiometric CPF coefficient calibrated based on the low power Federal Test Procedure (FTP) Bag
2 cycle, and CM is the enrichment CPF coefficient calibrated based on the 1st Version of the Modal
Emissions (MEC01) cycle.

Both the Velocity-Acceleration Matrix Model and the Emission Mapping Model calculate the
emissions through map look-up. The difference between them is that velocity and acceleration are
defined as independent variables in the first map while their counterparts in the second map are engine
power and speed. Furthermore, some regression models have been employed by previous researchers
to simplify the calculation mainly based on comparatively sophisticated map look-up process. For the
Velocity-Acceleration Matrix Model, the engine-out emissions can be calculated as shown [34,35]:

ER =
(
a1 + b1v + c1v2

)
+

(
a2 + b2v + c2v2

)
a +

(
a3 + b3v + c3v2

)
a2 (5)

v =
n

i0ig
·2πR (6)

a =

(MICEig+MMOT im)i0
R −

1
2 cdAρairv2

−mg fr
m

(7)
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where a1, a2, a3, b1, b2, b3, c1, c2, c3 are regression coefficients, v is vehicle velocity, a is vehicle acceleration,
n is engine speed, i0 is the reduction gear ratio of main decelerator, ig is the transmission ratio of
gearbox, R is the radius of wheel, MICE is engine torque, MMOT is motor torque, im is the transmission
ratio of motor gearbox, cd is aerodynamic drag coefficient, A is cross-sectional area, ρair is the mass
density of ambient air, m is entire vehicle weight, and fr is rolling resistance coefficient. As for
the Emission Mapping Model, v and a in Equation (5) are replaced with engine power and speed,
respectively. In addition, Asher et al. have established an emission model based on artificial neural
network algorithms [36]. However, limited by the actual computational capacities, this emission model
generally has to get accurate results at the cost of soaring time expenditure, which makes it not a
practicable solution.

Due to numerous influence factors, vehicle emissions are often considered as comparatively
complicated functions. However, to determine the amount of emissions at an acceptable time cost is
of vital importance to the control algorithm design of EMS for the investigated P3 HEV powertrain,
especially in the real-time online control scenario. As a consequence, an appropriate approximation
method has to be employed to speed up the control algorithm for the sake of improving practicability.
In this paper, a quadratic regression model is applied to indicate the emission performance for both
computing time and conformance requirements reasons. First, it is fairly easy to determine the
optimum point of a quadratic function, which means the time expenditure can be affordable. Second,
the mathematical expressions of emission estimation model are supposed to be in consistency with
previously established calculation models for energy consumption. In Section 2.2, quadratic polynomial
fitting is adopted to determine the specific consumed power of both chemical energy and electric
energy. Similar to Equation (1), the emission rate prediction equation is shown as follows:

ER = p1,i + p2,iMICE + p3,iM2
ICE (8)

where i refers to specific emissions (NOx or particle), p1,i, p2,i, and p3,i are fitting coefficients.
In accordance with Equation (1), Equation (8) holds on the basis of constant engine speed n, which
means the specific values of fittings coefficients p1,i, p2,i, and p3,i will change along with engine speed.
In order to obtain the detailed coefficient configurations of Equation (8) under all operation conditions,
massive efforts have been contributed to corresponding emission testing of the ICE in the investigated
P3 HEV powertrain. As mentioned above, NOx and particle are determined as two main considerations
for emission performance evaluation. Foundational emissions map of these pollutants are plotted
based on the experimental data as shown in Figure 4. It should be noted that the amount of NOx is
measured in grams per kilowatt hour while that of particle is represented by the detected specific
blackening values (SBV, a unitless quantitative evaluation index employed to reflect the amount of
particle in exhaust gas) per kilowatt hour. Additionally, what needs to be emphasized is that currently
HEVs equipped with catalytic converters would almost completely clean out the NOx emissions under
proper operating temperatures, so that the NOx optimization results after applying the proposed
control algorithm would be non-significant if the NOx emission data acquisition was performed after
the catalytic converter. Consequently, we collect the emission data directly from the exhaust pipe
located before the catalytic converter when carrying out corresponding bench test. First, the measured
numerical values of NOx emissions cease to be negligible, which subsequently highlights the contrast
effect before and after optimization. Secondly, this experimental operation has little impact upon the
measured values of the other pollutant particle. Considering that the following proposed control
algorithm mainly targets at the realization of particle emissions reduction, this simplified operation
not totally conforming to the real NOx emissions scenario is considered tolerable.

The family of relation curves between specific emission rate and engine torque are plotted in
Figure 5. Similar to Figures 2 and 3, experimental data are marked as cross dots with different colors
indicating different engine speed. Comparing the measured experimental data with related quadratic
polynomial fitting curves, we can reach a conclusion that the fitting results show good agreement with
the raw data. In particular, the variation tendency of original particle data points is comparatively
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complicated as shown in Figure 5b. Apparently, a simple quadratic function is not accurate enough to fit
the data. In order to make the fitting curve match the original data points better, a piecewise quadratic
function is brought into the fitting process. In addition, the demarcation point is self-adjusting under
different engine speed circumstances to reach precise fitting results.
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In general, the indicators of both energy consumption and emission performance are modeled by
means of quadratic polynomial fitting method, which lays a solid foundation for subsequent control
algorithm design. Based on the existing fitting results, the consumed power and specific emission
rate can be incorporated into an integral objective function because of their parallel structures of
mathematical expressions.

3. Control Algorithm Design for EMS

3.1. Combined Objective Function Establishment

In order to simultaneously account for the indicators of energy consumption and emission
performance, appropriate multi-objective optimization method should be employed. For the control
algorithm of EMS for HEVs, DP, and ECMS are commonly used methods [37]. The former adopts
a traverse approach to get the global optimum solution, while the latter usually establishes a
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comprehensive fuel consumption cost function by means of making the instantaneous consumed
battery energy equivalent to fuel consumption of the ICE:

.
meqv =

.
m f +

.
mbatt,eqv =

.
m f + αe f ·

Ebatt
LHV

·

.
SOC (9)

where
.

meqv is overall equivalent fuel consumption rate,
.

m f is the actual fuel consumption rate of ICE,
.

mbatt,eqv is the equivalent fuel consumption rate of consumed battery energy, αe f is an equivalence factor
applied to convert consumed battery energy into fuel consumption rate, Ebatt is consumed battery
energy, LHV is the low heating value of used fuel, and

.
SOC is the derivative of the state of charge.

Compared with DP, which needs the specific configurations of complete driving cycle, EMCS shows
unique advantages in undemanding applications and fast algorithm speed, which consequently makes
the online implementation a practicable reality under precise parameter calibration [38]. In this paper,
a multi-parameter objective function is established on the grounds of ECMS as follows:

JMP(t) = Pe(MICE, n) + λ·Pm(MMOT, n) + µ·ER(MICE, n) (10)

where JMP(t) is the calculation value of the multi-parameter objective function at any time step,
Pe(MICE, n) is the calculation value of the chemical energy consumed power, Pm(MMOT, n) is the
calculation value of the electric energy consumed power, and ER(MICE, n) is the calculation value of
the emission rate of specific emissions (NOx or particle). Both Pe(MICE, n) and ER(MICE, n) are the
function of engine torque MICE and engine speed n, while Pm(MMOT, n) is the function of motor torque
MMOT and engine speed n. Pm(MMOT, n) is less than the battery capacity decrease because of efficiency
loss, whereas battery efficiency coefficient λ is adopted in order to describe the health status of vehicle
battery. µ is the weighting coefficient of emission performance and the change of µ has a significant
impact on the subsequent control strategy. Higher µmeans that objective function pays more attention
to emission performance, while lower µ indicates that consideration of energy consumption reduction
is more preferred in the search process for optimal solution.

As shown in Figures 2, 3 and 5, numerical values of the three parameters Pe(MICE, n), Pm(MMOT, n),
and ER(MICE, n) differ greatly. To eliminate the adverse effect caused by excessive numerical value
differences, normalization is employed as a dimensionless method as shown in following equations:

Pen =
Pe(MICE,n)

Pe(MICE,n)max

Pmn =
Pm(MMOT ,n)

Pm(MMOT ,n)max

ERn =
ER(MICE,n)

ER(MICE,n)max

(11)

where Pen, Pmn, and ERn are all non-dimensional parameters, Pe(MICE, n)max,Pm(MMOT, n)max, and
ER(MICE, n)max refer to corresponding maximum numerical values during all calculation time steps,
respectively. Combined with previously obtained quadratic fitting results, each of these three key
factors can be determined through followed equations:

Pe(MICE, n)
Pe(MICE, n)max

=

p1,ICE + p2,ICE·

Mdem
i0
−MMOT im

ig
+ p3,ICE·

 Mdem
i0
−MMOT im

ig

2

Pe(MICE, n)max
(12)

Pm(MMOT, n)
Pm(MMOT, n)max

=
p1,MOT + p2,MOTMMOT + p3,MOTMMOT

2

Pm(MMOT, n)max
(13)

ER(MICE, n)
ER(MICE, n)max

=

p1,ER + p2,ER·

Mdem
i0
−MMOT im

ig
+ p3,ER·

 Mdem
i0
−MMOT im

ig

2

ER(MICE, n)max
(14)
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JMP(t) = Pen + λ·Pmn + µ·ERn =
Pe(MICE, n)

Pe(MICE, n)max
+ λ·

Pm(MMOT, n)
Pm(MMOT, n)max

+ µ·
ER(MICE, n)

ER(MICE, n)max
(15)

where p1,ICE, p2,ICE, p3,ICE, p1,MOT, p2,MOT, p3,MOT, p1,ER, p2,ER, p3,ER are fitting coefficients, Mdem is the
total demanded torque of the investigated P3 HEV. The original multi-parameter objective function in
Equation (10) is updated as displayed in Equation (15). Above equations confirm that JMP(t) can be
considered as a quadratic function of motor torque under all operation conditions. Earlier analysis has
revealed that both Pm(MMOT, n) and ER(MICE, n) are piecewise quadratic functions. The demarcation
point of the former is always zero while that of the latter varies under different operation conditions,
which means there are two demarcation points over full torque range. Considering that JMP(t) is the
linear combination of these three crucial parameters, it is clear that JMP(t) is a piecewise quadratic
function divided into three continuous intervals.

With regard to a three-stage piecewise quadratic function, a conclusion that can be drawn is that
the optimal point must be selected from two boundary points, two demarcation points, and extreme
points. As displayed in Figure 6, boundary points are marked with purple circles and demarcation
points are marked with blue circles, while all existing extreme points are marked with green circles.
For this scenario, the optimal point is marked with a red round dot. Planned comparisons lead to
the conclusion that the identification of the optimal point can be performed accurately and promptly,
which consequently guarantees the computation speed of subsequent control algorithm. As shown in
Figure 6, Mop refers to the determined optimal motor torque within the range from Mlb to Mub and
JMP(t)min is the corresponding minimum value of the multi-parameter objective function established
in Equation (15).
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Figure 6. The optimal point identification for one scenario.

What calls for special attention is that the related part of the piecewise quadratic function can be
regarded as a part of parabola going upward or downward in each interval. Considering that there are
three intervals divided by two demarcation points (one demarcation point is zero while the other is
indeterminate), 23 or 8 scenarios of the specific trend of the piecewise quadratic curve are supposed to
be obtained. Furthermore, the indeterminate demarcation point may be positive or negative, which
results in that all possible scenarios amounts to 8 × 2 = 16, as displayed in Figure 7. What needs
illustration is that the identification process of the optimal point for each scenario of the 16 is nearly
the same as demonstrated in Figure 6, thus there is no more detailed description.
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3.2. Algorithm Flow Design

Figure 8 shows a unified modeling language (UML) activity diagram for the proposed control
algorithm. Considering that battery efficiency coefficient λ is generally unknown before the process
of algorithm implementation, the initial iteration value λ0 within the range from λmin to λmax is
determined at the beginning. Moreover, the initial value of the state of charge SOC0 and weighting
coefficient µ are input as default parameters. Based on the related simulation model established in
MATLAB/SIMULINK, Mdem, JMP(t)min, the optimal MMOT, and corresponding MICE at each time step
of the whole driving cycle are calculated sequentially.

With regard to the investigated P3 HEV, an obvious conclusion that can be drawn is that
better driving experience comes from lower battery replacement frequency. In consideration of the
non-rechargeable characteristic of the on-board power battery, its battery capacity is expected to
maintain at the original level as much as possible with vehicle tested by a complete driving cycle,
owing in large measure to appropriate control algorithm of EMS. Consequently, the proposed control
strategy is performed around the premise that SOCfinal of vehicle battery must equal to the original
status after a complete driving cycle. A crucial constraint condition is set in search for the certain value
of λ. The current SOC of vehicle battery is calculated at each time step and SOCfinal will be determined
after all time steps of the complete driving cycle have been calculated. Detailed configurations of
the control algorithm for the complete driving cycle can be abstracted from previous calculation
results on condition that SOC0 equals to SOCfinal; otherwise, the bisection method will be applied to
iterate the specific value of λ and the preceding algorithm flow will be re-executed until the constraint
condition has been satisfied. Another point to note is that the impact of weighting coefficient µ upon
the final control algorithm results can be investigated by replacing the preset value of µ with another
one at the start of algorithm flow, as displayed in Figure 8. In general, the inputs of the proposed
control algorithm include the initial value of SOC (SOC0), the initial iteration value of λ (λ0), the range
constraint for λ (upper bound λmax and lower bound λmin), the preset weighting coefficient of emission
performance µ, the demanded vehicle velocity v, and vehicle acceleration a at each time step of the
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complete driving cycle (WLTP). Moreover, engine torque MICE and motor torque MMOT are determined
as the control input.
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As mentioned above, a corresponding simulation model is established in MATLAB/SIMULINK
environment. With respect to the optimization solver, there are four general categories of solvers
internally installed in the MATLAB/SIMULINK optimization toolbox: Minimizers, Multi-Objective
minimizers, Equation solvers, and Least-Squares (curve-fitting) solvers. Among them the last one
attempts to minimize a sum of squares. This type of problem frequently arises in fitting a model
to data. As a consequence, this group of solvers is commonly used to address problems of finding
nonnegative solutions, bounded or linearly constrained solutions, and fitting parametrized nonlinear
or linear models to data. Coincidentally, the optimization problem targeted at JMP(t) fits into this
category. Therefore, Least-Squares (curve-fitting) solvers are selected in consideration of their good
compatibility with the proposed control algorithm.

4. Simulation Results Analysis

4.1. Driving Cycle Selection

The previously established control algorithm model should be tested against the actual urban
driving conditions to prove its practicability. Considering that the investigated P3 HEV is oriented
around the Europe and China auto market, mainstream driving cycles including the New European
Driving Cycle (NEDC) and the aforementioned WLTP should be selected before further comparison.

Figure 9 displays the complete velocity profile of the NEDC. Both urban and suburban driving
conditions are taken into consideration in NEDC to guarantee that the driving performance of vehicle
can be accurately tested most of the time. However, it should be noted that NEDC is composed of
different uniform-acceleration, uniform-speed, and uniform-deceleration processes, which makes it
less approximate to the actual driving conditions as we all know that it is nearly possible for drivers
to maintain at a constant speed or acceleration under the circumstance of actual road running. Past
investigations have shown that NEDC is not representative for real-world vehicle usage because
the emissions and fuel consumption of the vehicles are underestimated. With emissions regulations
tightening continuously, NEDC has been replaced by WLTP in Europe since Sept. 1st 2018 due to its
inadequacy in test precision [39,40].
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As shown in Figure 10, it is clear that the velocity profile of the WLTP is comparatively sophisticated,
aiming at a more dynamic and worldwide harmonized test cycle. Considering that the WLTP is closer
to real-world driving and has become the new type approval test in Europe, WLTP is ultimately selected
as the driving cycle for simulation. Corresponding configurations are presented in Table 3 [41,42].
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Table 3. WLTP velocity profile configurations.

Parameters Value

Cycle distance 23.26 km
Cycle time 1800 s

Average velocity 46.52 km/h
Maximum velocity 131.3 km/h

Maximum acceleration 1.75 m/s2

Maximum deceleration −1.72 m/s2

4.2. Simulation Results with Different Weighting Coefficients

It should be noted that all those fitting coefficients in Equations (12)–(15) play an important role
in determining the specific value of JMP(t). However, considering the huge amount of fitting data
(the whole operation conditions are supposed to be included) and space limitation, corresponding
fitting coefficients table are not presented in this paper. Additionally, specific configurations of the
investigated P3 HEV are listed in Table 4. It needs to be emphasized that a series of discrete values
of µ is determined as algorithm input to further explore the impact of weighting coefficient upon
the control strategy. µmax is set as 0.2 while µmin is set as 0. As mentioned above, the realization of
particle emissions reduction is our primary concern in the present study. Therefore, these two most
representative scenarios for particle are investigated in detail with simulation results shown as follows:

Table 4. P3 HEV configurations in simulation model.

Parameters Value Parameters Value

i0 4 m 1615 kg
ig 4.6/3.3/2.3/1.7/1.29/1/0.84 fr 0.01
R 353.1 mm λmax 10
im 3.5 λmin 1
cd 0.37 SOC0 70%
A 1.88 m2 λ0 1.25
ρair 1.188 kg/m3 µ 0~0.2

With respect to different weighting coefficients, the simulation results of µmin are presented in
Figure 11a,c, contrasted with those of µmax in Figure 11b,d. As shown in Table 3, the cycle time of
WLTP is 1800 s. It should be noted that the time step in the MATLAB/SIMULINK model is set as 1 s,
which indicates that all operation condition points of the complete WLTP cycle amount to 1800. Red
cross dots in Figure 11 represents these operating points.
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Applying Equation (10), it is clear that the leverage of emission performance will be not taken
into consideration in the µmin scenario. Comparing Figure 11a,b, it can be concluded that the
distribution status of brake specific fuel consumption (BSFC) values of all operating points fails to
change significantly with µ increasing from 0 to 0.2. In the µmin scenario where the established objective
function only pays attention to energy consumption, nearly half of all operating points are located in
the optimal fuel economy area while the other half are mainly located at its periphery area as shown
in Figure 11a. By contrast, the above situation seems to stay the same in the µmax scenario where
emission performance influence plays an important role as exhibited in Figure 11b, which implies that
the overall fuel consumption of these two scenarios are roughly equivalent.

Nevertheless, remarkable differences can be observed when it comes to the amount of particle
represented by specific blackening values between these two scenarios. As shown in Figure 11d,
operating points are more concentrated in the low SBV area with emission performance assigned with
a higher weight in the process of constructing objective function in Equation (10). Comparatively,
the distribution status of the µmin scenario appears not as good as the other one. As shown in Figure 11c,
quite a few operating points situate in the high SBV area, which means more particle emissions during
the whole WLTP test cycle.
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Figures 12 and 13 show the variation curves of crucial state parameters including SOC, engine
torque, motor torque, and gear of µmin and µmax scenarios, respectively. Associated with the velocity
profile of WLTP presented in Figure 10, comparative analysis leads to the conclusion that the engine
generally runs in the relatively high-torque region in the µmax scenario. Simultaneously, the frequency
of recharging and discharging of the vehicle battery, which is represented by the degree of fluctuation
observed in the SOC or motor torque variation curves, is slightly higher. Conversely, the frequency of
the gear shift is strikingly lower than that of the µmin scenario; the corresponding control algorithm
will provide the driver with a relatively simple gear shift strategy during the whole WLTP test cycle
under the circumstance of the preset value µmax. Obviously, relevant adjustment of gear shift strategy
makes contribution to the driving experience improvements for the driver.

Energies 2019, 6, x FOR PEER REVIEW  16 of 28 

 

model is set as 1 s, which indicates that all operation condition points of the complete WLTP cycle 
amount to 1800. Red cross dots in Figure 11 represents these operating points. 

Applying Equation (10), it is clear that the leverage of emission performance will be not taken 
into consideration in the 𝜇௠௜௡ scenario. Comparing Figures 11 (a) and (b), it can be concluded that 
the distribution status of brake specific fuel consumption (BSFC) values of all operating points fails 
to change significantly with 𝜇 increasing from 0 to 0.2. In the 𝜇௠௜௡ scenario where the established 
objective function only pays attention to energy consumption, nearly half of all operating points are 
located in the optimal fuel economy area while the other half are mainly located at its periphery area 
as shown in Figure 11 (a). By contrast, the above situation seems to stay the same in the 𝜇௠௔௫ scenario 
where emission performance influence plays an important role as exhibited in Figure 11 (b), which 
implies that the overall fuel consumption of these two scenarios are roughly equivalent. 

Nevertheless, remarkable differences can be observed when it comes to the amount of particle 
represented by specific blackening values between these two scenarios. As shown in Figure 11 (d), 
operating points are more concentrated in the low SBV area with emission performance assigned 
with a higher weight in the process of constructing objective function in Equation (10). 
Comparatively, the distribution status of the 𝜇௠௜௡ scenario appears not as good as the other one. As 
shown in Figure 11 (c), quite a few operating points situate in the high SBV area, which means more 
particle emissions during the whole WLTP test cycle. 

Figure 12 and Figure 13 show the variation curves of crucial state parameters including SOC, 
engine torque, motor torque, and gear of 𝜇௠௜௡ and 𝜇௠௔௫ scenarios, respectively. Associated with 
the velocity profile of WLTP presented in Figure 10, comparative analysis leads to the conclusion that 
the engine generally runs in the relatively high-torque region in the 𝜇௠௔௫ scenario. Simultaneously, 
the frequency of recharging and discharging of the vehicle battery, which is represented by the degree 
of fluctuation observed in the SOC or motor torque variation curves, is slightly higher. Conversely, 
the frequency of the gear shift is strikingly lower than that of the 𝜇௠௜௡ scenario; the corresponding 
control algorithm will provide the driver with a relatively simple gear shift strategy during the whole 
WLTP test cycle under the circumstance of the preset value 𝜇௠௔௫. Obviously, relevant adjustment of 
gear shift strategy makes contribution to the driving experience improvements for the driver. 

 
Figure 12. Three state parameters’ variation curves of 𝜇௠௜௡ for emission particle. Figure 12. Three state parameters’ variation curves of µmin for emission particle.Energies 2019, 6, x FOR PEER REVIEW  17 of 28 

 

 
Figure 13. Three state parameters’ variation curves of 𝜇௠௔௫ for emission particle. 

Figure 14 displays the variation curves of SOC during the whole WLTP test cycle pertaining to 
different 𝜇 for emission particles. It can be observed that the maximum decreasing amplitude of SOC grows larger with 𝜇 gradually increasing. Considering that the higher 𝜇 is, the more attention 
will be paid to the optimization of emission indicators. As a consequence, the operation range of 
engine is supposed to be obliged to “comparatively low emissions area” (i.e., the darker areas in 
Figure 4 (b)) in pursuit of the fulfillment of emission performance considerations. Comparison results 
in Figure 14 provide solid evidence that motor will make greater contribution to overall power output 
to compensate the underpowered engine. It is in perfect accordance with the relevant facts 
demonstrated by the motor variation curves shown in Figure 12 and Figure 13 that motor will act 
more as a role of power output instead of power generation under the higher 𝜇  circumstance. 
Meanwhile, it is confirmed again that the preset constraint condition SOC଴ must equal SOC୤୧୬ୟ୪ and 
further, that is strictly satisfied under different 𝜇 circumstances. 

 

Figure 14. The variation curves of SOC pertaining to different 𝜇 for emission particle. 

SO
C

 (%
)

Figure 13. Three state parameters’ variation curves of µmax for emission particle.

Figure 14 displays the variation curves of SOC during the whole WLTP test cycle pertaining
to different µ for emission particles. It can be observed that the maximum decreasing amplitude of
SOC grows larger with µ gradually increasing. Considering that the higher µ is, the more attention
will be paid to the optimization of emission indicators. As a consequence, the operation range of
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engine is supposed to be obliged to “comparatively low emissions area” (i.e., the darker areas in
Figure 4b) in pursuit of the fulfillment of emission performance considerations. Comparison results in
Figure 14 provide solid evidence that motor will make greater contribution to overall power output to
compensate the underpowered engine. It is in perfect accordance with the relevant facts demonstrated
by the motor variation curves shown in Figures 12 and 13 that motor will act more as a role of power
output instead of power generation under the higher µ circumstance. Meanwhile, it is confirmed
again that the preset constraint condition SOC0 must equal SOCfinal and further, that is strictly satisfied
under different µ circumstances.
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Figure 14. The variation curves of SOC pertaining to different µ for emission particle.

In terms of corresponding simulation results for the other pollutant NOx, similar conclusions
can be reached through the same analysis. Due to space limitation, detailed result figures of NOx are
presented in Appendix A.

Combining all the simulation results of the series of discrete values µ for both particle and NOx,
Figure 15 exhibits the relationship between emission performance and fuel consumption (FC) based
on the 20 obtained sets of data; specific values are listed in Table A1 in Appendix A. The data points
of particle are marked as 20 red plus dots; those of NOx are marked as blue cross dots. Considering
the complete WLTP test cycle, the calculation results of each time step add up to the integrated FC in
L/100km and total emissions (i.e., NOx emissions in grams and particle emissions in SBV). As shown in
Figure 15, data points located from top left to bottom right signify the simulation results of increasing
µ for both exhaust pollutants. By analysis of the curve trend, it is clear that there exists a trade-off

relationship between fuel economy and emission performance, whether it is for NOx or particle. As the
weighting coefficient µ grows up, relevant results indicating worse fuel economy and better emission
performance simultaneously are attained through simulation, which also conforms to a previous
inference derived from JMP(t), set up in Equation (15).

Considering that the investigated P3 HEV is oriented at Europe and China auto market, both the
latest European emission standard (i.e., Euro 6c) and the Chinese counterpart (i.e., China VI) are
investigated and the emission limits of particle and NOx are shown in Table 5 [43–47]. Moreover,
the simulation results obtained from the two most representative scenarios (i.e., µmin = 0.00 and
µmax = 0.20) are also presented in Table 5 as a contrast. It should be noted that the unit of particle
emissions used in China VI and Euro 6c is the number (Nb) of particle per kilometer rather than
SBV employed in this paper. Therefore, the conversion of the relevant numerical values is supposed
to be performed beforehand. In terms of particle emissions, it can be concluded that the particle
number (PN) is more than five times the limit of China VI/Euro 6c in the µmin scenario where the
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established objective function only pays attention to energy consumption. Conversely, the PN succeeds
in meeting the requirements of these two emission legislations in the µmax scenario where the emission
performance indicator is endowed with a substantial weight. An obvious conclusion that can be drawn
is that the effectiveness of the proposed control algorithm is validated once again. With respect to
NOx emissions, it is clear that µmin or µmax scenario yields results that significantly exceed the limits
of the China VI/Euro 6c. As mentioned above, the experimental data of NOx emission is directly
captured from the exhaust pipe located before the catalytic converter, which causes its numerical
values considerable, thus the optimization effect will be heightened. Actually, HEVs are supposed
to be equipped with catalytic converters in order to fulfil the relevant NOx limitations of the China
VI/Euro 6c in the real world.
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Figure 15. The combination of simulation results of the series of discrete values µ.

Table 5. Comparison between simulation results and the latest emission standards.

Scenarios Particle Emissions (Nb/km) NOx Emissions (mg/km)

µmin = 0.00 3.0× 1012 1231
µmax = 0.20 5.0× 1011 978

China VI 6.0× 1011 60
Euro 6c 6.0× 1011 75

4.3. Comparison between DP and ECMS

Actual execution time features prominently in the practicability of proposed algorithm. In the
real world, classical DP algorithm is subject to online application restrictions in most cases because of
prohibitive time expenditure. Nevertheless, a real sense of global optimal solution can be obtained by
DP algorithm. In contrast to DP, solutions found by ECMS or other simplification algorithm generally
suffer, to some extent, local optimal traps. Consequently, offline calculation results based on DP are
commonly set as a reference for comparison [48–50].

As mentioned above, the proposed control algorithm design is developed on the basis of ECMS.
Instead of applying quadratic polynomial fitting method for the sake of the simplification of objective
function, the classical DP algorithm employs a comparatively straightforward traversal method in
order to identify the specific location of the optimal point. During the optimization process of searching
the minimal value of JMP(t), the DP algorithm basically calculates the specific values of JMP(t) under
all possible operation conditions and sorts out the corresponding output torque configurations (i.e.,
Mop) for JMP(t)min. It should be noted that the detailed numerical calculation in the DP algorithm
is predicated on the raw experimental data (e.g., the emissions map of two main pollutants particle
and NOx as shown in Figure 4) rather than fitting results, which on the one hand guarantees the
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precision of the global optimal solution obtained by DP algorithm, but on the other hand makes it
significantly time-consuming.

Considering both exhaust pollutants, Figure 16 displays the comparison between simulation
results of DP and ECMS; the specific relative error (RE) data are presented in Table A2 in Appendix A.
It can be concluded from Figure 16 that DP yields global optimal data points distinguishing from those
local optimal counterparts of ECMS with only slightly perceptible difference, which thus demonstrates
the accuracy and feasibility of the proposed control algorithm predicated on ECMS.
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5. Discussions and Conclusions

Continuous deterioration of the global atmospheric environment has given rise to the prosperity
of so-called green vehicles. Therefore, HEVs have drawn extensive attention from academia and
the automobile industry alike as a practicable technical route. With respect to the EMS design,
which undoubtedly occupies an indispensable position in HEVs advance, strategic planning are in
particular required in order to boost the overall performance improvement of the HEV powertrain.
In consideration of tightening regulations on vehicle exhausts, it seems natural that there needs to be
more concern about vehicle emission performance during the design process of the control algorithm
design for the EMS in HEV powertrain.

However, few previous studies have deeply investigated a feasible control algorithm,
simultaneously considering both energy consumption and emission performance. To illuminate the
uncharted area, we present a novel design scheme incorporating the aforementioned two performance
evaluation indicators into a single objective function based on ECMS. Massive bench test data have
been collected as the prerequisite for subsequent modeling. Quadratic polynomial fitting method is
appropriately applied into the process of determining the specific values of corresponding indicators.
This operation not only guarantees that both consumed power and specific emission rate can be
incorporated into an integral objective function because of their parallel structures of mathematical
expressions, but it also significantly improves the computation speed of the proposed control algorithm
because the identification process of the optimal point can be performed accurately and promptly.

Subsequently, a comprehensive multi-parameter objective function is established on the grounds
of ECMS with the relevant simulation models constructed in MATLAB/SIMULINK. The proposed
control algorithm design is validated against the simulation results predicated on WLTP. The impacts
of weighting coefficients pertaining to two exhaust pollutants upon the specific configurations of the
proposed control algorithm are discussed in detail. Furthermore, comparative analysis of the simulation
results obtained from ECMS and classical DP algorithm, respectively, is performed. In the present
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study, we mainly focus on the algorithm structure design and preliminary simulation verification.
Further, we think that the present research findings may not be optimal but should be sufficient
to provide requisite guidance necessary for the appropriate design of control algorithm for EMS,
which undoubtedly plays a vital role in the HEV powertrain performance improvement. Although
demonstrated by preliminary simulation results, this proposed control algorithm design suffers from
some limitations due to the lack of real road running experimental data from the vehicle equipped
with the redesigned EMS. However, the obtained results can still cast a new light on the control
algorithm design for EMS in HEV powertrain despite that inadequacy. Detailed analysis leads to the
following conclusions:

1. The indicators of both energy consumption and emission performance are accurately modeled
by applying the quadratic polynomial fitting method. Fitting results of corresponding relation
curves show good agreement with the raw data obtained from bench test, which lays a solid
foundation for subsequently incorporating the aforementioned considerations into the integrated
objective function.

2. With respect to the related mathematical expression of the combined objective function,
a three-stage piecewise quadratic function is attained. Furthermore, it is confirmed that the
identification of corresponding optimal point can be performed precisely and promptly, which
consequently yields significant computation speed advantages when compared with the classical
DP algorithm.

3. Remarkable changes can be observed in the simulation results between weighting coefficients µ.
Under the circumstance of emission performance assigned with a higher weight, findings prove
that the operation range of engine is obliged to “comparatively low emissions area” while motor
makes greater contribution to the overall power output. Considering the series of discrete
values µ, analysis of curve trend demonstrates that there exists a trade-off relationship between
fuel economy and emission performance, whether it is for NOx or particle.

4. A comparative investigation of the simulation results from ECMS and DP respectively validates
the feasibility and accuracy of the proposed control algorithm design predicated on ECMS.
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Nomenclatures

Abbreviations
HEVs hybrid electric vehicles
PHEVs plug-in hybrid electric vehicles
BEVs battery electric vehicles
FCEVs fuel cell electric vehicles
EMS energy management system
V2I vehicle to infrastructure
V2V vehicle to vehicle
SGC supervisory control system
MPC Model Predictive Control
CS charge sustaining
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PMS power management strategy
SMPCL stochastic model predictive control with learning
ECMS Equivalent Consumption Minimization Strategy
WLTP Worldwide-harmonized Light-vehicle Test Procedure
DP Dynamic Programming
HV high voltage
ICE internal combustion engine
A/F air/fuel ratio
CO carbon monoxide
HC hydrocarbon
FTP Federal Test Procedure
MEC01 1st Version of the Modal Emissions
SBV specific blackening value
UML unified modeling language
BSFC brake specific fuel consumption
FC fuel consumption
Nb Number
PN particle number
RE relative error
Symbols
PEC chemical/electric energy consumed power
MEC corresponding output torque (engine torque/motor torque)
p1,EC, p2,EC, p3,EC fitting coefficients in Equation (1)
ER specific emission rate
FR fuel consumption rate
gemissions the mass of engine-out emissions
g f uel the mass of consumed fuel
CPF catalyst pass fraction
C0 weight coefficient in Equation (3)
φ fuel/air equivalence ratio
C1 emission index coefficient in Equation (3)
Γ maximum catalyst CO/HC efficiency
CF stoichiometric CPF coefficient based on FTP Bag 2 cycle
CM enrichment CPF coefficient based on MEC01 cycle
a1, a2, a3, b1, b2, b3, c1, c2, c3 regression coefficients in Equation (5)
v vehicle velocity
a vehicle acceleration
n engine speed
i0 the reduction gear ratio of main decelerator
ig the transmission ratio of gearbox
R the radius of wheel
MICE engine torque
MMOT motor torque
im the transmission ratio of motor gearbox
cd aerodynamic drag coefficient
A cross-sectional area
ρair the mass density of ambient air
m entire vehicle weight
fr rolling resistance coefficient
i subscript indicating specific emissions (NOx or particle)
p1,i, p2,i, p3,i fitting coefficients in Equation (8)
.

meqv overall equivalent fuel consumption rate
.

m f the actual fuel consumption rate of ICE
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.
mbatt,eqv the equivalent fuel consumption rate of consumed battery energy
αe f equivalence factor
Ebatt consumed battery energy
LHV the low heating value of used fuel

.
SOC the derivative of the state of charge

JMP(t)
the calculation value of the multi-parameter objective function at any
time step

Pe(MICE, n) the calculation value of the chemical energy consumed power
Pm(MMOT, n) the calculation value of the electric energy consumed power

ER(MICE, n)
the calculation value of the emission rate of specific emissions (NOx or
particle)

λ battery efficiency coefficient
µ the weighting coefficient of emission performance
Pen non-dimensional parameter for Pe(MICE, n)
Pmn non-dimensional parameter for Pm(MMOT, n)
ERn non-dimensional parameter for ER(MICE, n)
Pe(MICE, n)max the maximum value of Pe(MICE, n) during all time steps
Pm(MMOT, n)max the maximum value of Pm(MMOT, n) during all time steps
ER(MICE, n)max the maximum value of ER(MICE, n) during all time steps
Mdem the total demanded torque of the investigated P3 HEV
Mop the determined optimal motor torque in Figure 8
Mlb the lower bound of motor torque
Mub the upper bound of motor torque
JMP(t)min the corresponding minimum value of JMP(t) in Figure 8
λmax the upper bound of λ
λmin the lower bound of λ
SOC0 the initial value of the state of charge
λ0 the initial iteration value of λ
SOC state of charge
SOCfinal the final calculation value of the state of charge
µmax the maximum value of µ
µmin the minimum value of µ
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Figure A4. The variation curves of SOC pertaining to different µ for emission particle.

Table A1. The combination of simulation results of the series of discrete values µ.

µ Particle NOx
FC (L/100km) SBV(-) FC (L/100km) Emissions (g)

0.00 3.908 54.92 3.897 28.63
0.01 3.938 44.48 3.903 28.34
0.02 3.992 30.94 3.905 28.16
0.03 4.032 25.57 3.922 27.32
0.04 4.073 19.21 3.928 27.10
0.05 4.116 14.76 3.931 26.78
0.06 4.153 13.93 3.935 26.43
0.07 4.172 13.84 3.939 26.16
0.08 4.181 13.82 3.950 25.74
0.09 4.197 13.84 3.962 25.04
0.10 4.221 13.79 3.995 23.63
0.11 4.246 13.82 4.007 23.42
0.12 4.278 12.80 4.012 23.32
0.13 4.293 11.93 4.033 23.15
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Table A1. Cont.

µ Particle NOx
FC (L/100km) SBV(-) FC (L/100km) Emissions (g)

0.14 4.324 11.56 4.045 22.96
0.15 4.348 11.32 4.052 22.90
0.16 4.377 10.92 4.068 22.85
0.17 4.391 10.51 4.075 22.81
0.18 4.418 10.29 4.083 22.78
0.19 4.439 9.90 4.096 22.76
0.20 4.466 9.63 4.105 22.75

Table A2. The relative error between simulation results of DP and ECMS.

µ Particle NOx
FC RE (%) SBV RE (%) FC RE (%) Emissions RE (%)

0.00 0.252 0.019 0.256 0.045
0.01 0.217 0.031 0.334 0.036
0.02 0.206 0.089 0.367 0.017
0.03 0.36 0.017 0.247 0.034
0.04 0.367 0.038 0.214 0.014
0.05 0.254 0.063 0.342 0.033
0.06 0.369 0.044 0.271 0.011
0.07 0.284 0.031 0.318 0.012
0.08 0.282 0.045 0.237 0.039
0.09 0.218 0.022 0.249 0.061
0.10 0.288 0.048 0.368 0.042
0.11 0.304 0.019 0.228 0.043
0.12 0.249 0.094 0.202 0.054
0.13 0.235 0.118 0.296 0.056
0.14 0.275 0.121 0.221 0.017
0.15 0.305 0.131 0.28 0.044
0.16 0.339 0.083 0.364 0.092
0.17 0.258 0.076 0.355 0.043
0.18 0.316 0.092 0.313 0.014
0.19 0.354 0.023 0.245 0.043
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