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Abstract: Providing a price tariff that matches the randomized behavior of residential consumers
is one of the major barriers to demand response (DR) implementation. The current trend of DR
products provided by aggregators or retailers are not consumer-specific, which poses additional
barriers for the engagement of consumers in these programs. In order to address this issue, this paper
describes a methodology based on causality inference between DR tariffs and observed residential
electricity consumption to estimate consumers’ consumption elasticity. It determines the flexibility
of each client under the considered DR program and identifies whether the tariffs offered by the
DR program affect the consumers’ usual consumption or not. The aim of this approach is to aid
aggregators and retailers to better tune DR offers to consumer needs and so to enlarge the response
rate to their DR programs. We identify a set of critical clients who actively participate in DR events
along with the most responsive and least responsive clients for the considered DR program. We find
that the percentage of DR consumers who actively participate seem to be much less than expected by
retailers, indicating that not all consumers’ elasticity is effectively utilized.

Keywords: consumption elasticity; causal inference; data-driven; demand response; residential
consumers

1. Introduction

1.1. Context and Motivation

Demand response (DR) incentivizes changes in customer energy usage patterns to reward lower
electricity use at times when system reliability is jeopardized, the price of electricity is higher, or the
grid has difficulties in delivering the electricity to the consumers. Electric utilities essentially consider
DR as an effective way to reduce customer demand for electricity delivered over the grid. This change
in the consumption behavior of the consumer can be brought about by two methods. The first method
(active participation) relies on the consumer to alter how they use their appliances that they already
own by stimulation through different pricing mechanisms, customer engagement platforms, and alerts
of grid stability via text or mobile applications. The other method (passive participation) requires the
consumers to purchase or install additional devices that use less electricity. The main issues with the
active participation of residential consumers in DR programs are that gains may be lost as soon as the
program ends, may inadvertently lead to increased electricity use, and active periods of participation
may not coincide with required DR periods.

The retailers (or aggregators) encourage the consumers to participate in various DR strategies
that are influenced by time-of-use (TOU) pricing, which is a static pricing mechanism, and direct load
control (DLC) strategy, real-time pricing (RTP), and critical-peak pricing (CPP), which are dynamic
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pricing mechanisms [1]. Residential electricity consumers are usually unwilling to participate in volatile
pool markets. The use of a short-term DR program with time-varying prices in residential DR will have
little to no electricity consumption elasticity from consumers [2]. There is no guarantee of a response
from a consumer as it directly depends on its willingness to reduce consumption (unless the consumer
is in a direct load control program). The TOU strategy supports DR by inducing demand shifts from
high price periods to lower pricing periods as it provides at least two pricing levels—one high price
during peak hours (afternoons) and the other hours having a lower off-peak pricing. The drawback is
that the TOU pricing works on a predicted average marginal cost for the peak hours and there are not
enough incentives for the consumers when they provide DR services during critical grid issue periods.
The assumption that serving peak demand is more expensive than serving off-peak is not true anymore
as there could be days when consumers pay high prices for peak periods under no active capacity
constraints (as these rates were fixed based on historical patterns). There may be vulnerable consumers
who are not part of the peak demand problem but still end up paying for rewards for consumers
who shifted their usual high peak consumption. DR programs with direct load control (DLC) take
a variety of forms, including one-time signing payment, free hardware installation, and a recurring
annual payment [3]. The DLC strategy corresponds to voluntary programs, which provide the utility
(or aggregator) with the capability and permission from the consumer to perform direct load control
on certain equipment within the household (like air conditioners, refrigerators, etc.). Nevertheless,
there are times when the system peak may occur outside of the window of hours that are available
for DLC from the contracted clients. This means that it is also important to consider situations when
DLC is unavailable. The change in price must be large enough for customers to deem a response
worthwhile, a proper communication channel for conveying the price change, and customers must
have the means to shed or shift load (for example, via home-automated controls). To overcome some of
these issues, it is possible to adopt a dynamic pricing mechanism that changes retail electricity prices
(usually done by regulators) due to some specific conditions in the electricity systems (for example,
due to expected critical peak hour). The retailers are expected to inform the consumers well before
these events occur for them to be aware of this price change and take action accordingly. This would
create the opportunity to aggregate a set of consumers to a block of price incentivized DR period.

The RTP provides hourly tariffs based on the price signals received by the utility from the market
operator (marginal costs) on an hourly basis. However, this involves the residential consumers
making hourly decisions in deciding their consumption levels if they are willing to participate in
certain hours/days. This is undesirable and not practical for such disaggregated and small electricity
consumers as they will not be able to get the maximum benefits from this strategy. The CPP is a
variation of the TOU strategy that provides a very high price for the critical stress peak periods in the
system. These prices are discretionary and are predetermined rates, which are applied during the
forecasted system critical period [4–6].

The current residential DR programs’ engagement is far from its achievable potential because
of a lack of addressing the barriers that largely vary between contracted individual consumers [7].
The aggregator and retailer must incorporate possible directions to alter consumption patterns along
with their DR signals to clients, who are allowed to take free actions towards the signals they receive.
This will lead to confident participation of the consumers without their current concerns of energy
security and privacy. This approach, on the other hand, will cause some concerns for the retailers in the
scope of reliability and security of the bids they make in the wholesale market. The accuracy of their
bid highly depends on the prediction of the consumer’s behavior towards their DR signals and during
the non-DR periods. Presently, retailers that send out these signals to their consumers do not know
their actual response. They make basic assumptions/predictions by admitting that their consumers
will reduce their demand based on price incentives (price variations between the DR and non-DR
periods). In all implicit DR programs, the change in demand is considered a result of price signals
seen by the consumers. This reduction is relative to the hypothetical demand that would have been
observed, in the absence of the DR signal. However, in the real scenario, retailers do not know the
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flexibility of their contracted residential clients. If they do not make an informed bid, then a bidding
high capacity would result in a penalty due to a failure in reaching the contract obligation or bidding
less might result in suboptimal revenue. Furthermore, DR products can introduce more uncertainty
and variability in the load forecasting task that is used to construct buying bids from retailers in the
electricity market. This will require the development of new load forecasting techniques that produce
a joint modelling of load and dynamic prices, where information about consumer elasticity is useful
for improving the forecasting accuracy. On the other hand, demand side flexibility can also be used to
reduce market imbalances due to forecast errors (e.g., from renewable energy).

The Federal Energy Regulatory Commission (FERC) estimated that the current residential DR
programs in the US only engaged 10% of homes and is far from the achievable potential [8]. The DR pilot
carried out by Puget Sound Energy (PSE) involving 400,000 small commercial and residential customers
in 2001 to 2002 had very modest price differentials between the peak and off-peak periods [9]. On the
first year, customer satisfaction was high. However, in the second phase, when the program included a
monthly fee (for managing collected data), consumers saw little to no savings and many opted out of
the program. This is probably because, in a recent DR status report done by Joint Research Centre (JRC)
Science with the European Commission [10], it was reported that most of the business cases developed
for DR do not prove to be positive for all actors involved in the DR value chain. They suggested
(re)designing the new market with the capability of adopting new actors, like prosumers, EV, and other
storage systems, that could typically dominate residential sectors. Designing DR programs with these
capabilities could prove to be an additive incentive for consumers not to opt-out of the program.
A general deduction is that the influencing factors on consumer behavior and consumption are more
dynamic, which makes them less predictable so that building a common and fixed plan becomes
virtually impossible [11]. Currently, retailers do not know the exact flexibility of their clients and do
not know whether their residential clients react to several DR actions or products [12].

1.2. Related Work and Contributions

It is important to understand how demand changes in response to incentives or tariff. Many
models integrate survey data with a detailed residential load model to identify customer elasticity
for incentives. Asadinejad et al. [13] identified incentive-based elasticity at the individual appliance
level (by load disaggregation) and showed that lighting had the highest elasticity, but HVAC has the
highest share in the aggregated load, resulting in more effective load shifting. Klaassen et al. [14]
analyzed household flexibility based on the load shifting of smart appliances and the overall peak
load towards dynamic tariffs. They followed the experimental procedure of using two groups with
different peak pricings and price responsiveness was assessed by comparing peak load shifts between
these groups. Studies on empirical estimations of long and short-term electricity consumption elasticity
using error correction, loglinear, and translog techniques showed that the elasticity is near unity, such as
Baker et al. in the United Kingdom [15] and Kamerschen et al. in the United States [16]. It is not
possible to predict an individual’s baseline demand with high accuracy. Some studies, such as [17,18],
have used machine learning techniques, like ordinary least square regression, support vector regression,
and decision tree regression, and have compared their results’ accuracy. The DSO uses these baseline
consumption levels to check whether the aggregator and retailer satisfied their offers and charged them,
respectively. One specific case in California with the Southern California Edison (SCE) utility has shown
why the current status of DR programs still does not achieve their potential. For a period in June 2016,
the California ISO charged the SCE for overages even though they saw a significant reduction in demand.
This was because their 10-in-10 approach uses the 10 most recent non-event business days and it provided
them a baseline prediction that was much less than the actual reduction seen. Apart from this, another
issue that the utilities could face is the intentional increase in baseline consumption by consumers if they
realize that a DR event could be in the near future (for example, sunny days) [19].

The EcoGrid EU experiment [20,21] disaggregated the residential consumers’ load into its
constituent parts to understand the controllable resources and integrate residential DR into a balancing
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market. To determine consumption changes, they used a classical time-series differencing linear
model to avoid collinearity problems. They found that consumers were not always price sensitive.
A data-driven targeting of consumers for demand response was performed by [22,23]. They considered
this approach because the DR programs are typically designed to extract a targeted level (based on
the bid made by the aggregator/retailer in the market) of power from participants. Both these studies
suggested that the most important statistics for a utility to manage its DR program is to typically identify
the trade-off curve between DR availability and DR reliability. Throughout the literature, there is a
growing consensus that a change in price (and external variables, like temperature) causes changes in
electricity consumption. The correlation between these variables and electricity consumption does not
imply causation. For example, electricity consumption along a day varies relative to the time of the
day. Here, the time components are highly correlated to the consumption, but this does not mean they
causes consumption changes.

The elasticity of consumers’ consumption behavior varies from individual to individual and utilities
will benefit from knowing the elasticity their different tariff schemes create. Grouping consumers
based on predicted base load profiles and determining their price elasticity to demand (such as in [24])
undermines the effective flexibility each consumer can offer. In addition, stamping a price elasticity of
demand value for a consumer based on their overall consumption (such as [15,16]) further narrows down
on the demand flexibility it can offer during different periods of the day. The downside of using linear
models and using baseline-estimating techniques is that it removes useful information and the considered
parameters will no longer relate to the absolute effects that one sees in electricity consumption changes.

Since price-based DR programs use the flexibility in price as an incentive to induce consumers to
respond, one needs to define the relationship between the client’s electricity consumption and price.
It has also been identified that selecting customers with high energy saving potential during a DR event
day requires an accurate model. This is very difficult because no model can provide close to accurate
predictions without errors that can be simulated, for example, the unexpected behavior of a consumer
during particular seasons. Our approach tackles this problem by using causality inference techniques.
Many confounders (variables that influences both the dependent and independent variable) affect the
final consumption change made by the consumer on the day. An action or intervention, in theory, will
have an effect and the causes of these effects can be studied to understand how the intervention resulted
in the effect. Causes have effects, which causes other effects and the chain goes on. The magnitude of
the effect depends on how the intervention affects the process.

The main original contribution from this paper is a methodology that uses causal inference
theory to estimate the elasticity of domestic electricity consumption in response to dynamic tariffs.
The challenge associated to the application of causal effect models is to use available information of
electricity consumption from before and after a DR event instead of two different (experimental and
control) groups, like in [9]. This eliminates the need for selecting, monitoring, and controlling a set of
consumers (i.e., baseline group) who behave similar to clients considered for DR. A similar objective
(i.e., baseline-free approach) is followed in [20], but by using a correlation-based distance between
the individual loads and the real-time price and without including exogenous information, such as
the ambient temperature. In contrast, the methodology proposed in this paper uses a causality-based
metric and includes the effect of exogenous variables.

Our novel method identifies an individual’s consumption elasticity to DR pricing rather than
grouping consumers as in [24], as such aggregated groups often lose much flexibility information at the
individual level. This enables the retailer to understand the effect of a price change on consumption
for every contracted DR client and identify whether a particular consumer is susceptible to DR pricing.
In fact, the results negate the notion of believing that an increasing price reduces consumption, as stated
in most of the literature. The proposed method also allows an understanding of whether the consumer
is susceptible to either higher tariffs or lower tariffs or both, along with the hours and periods for which
this is evident. Moreover, the proposed method can be used to rank clients according to their elasticity
for each hour (or a specified period), which contrasts with other methods [15,16,24]. This enables
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retailers to make a well-informed purchase bid from the pool market and ensure optimal participation
of all clients.

1.3. Structure of the Paper

After this introductory section, Section 2 describes the collected residential consumption data
from the London electricity pricing trial and Austin Texas smart grid demonstration project, and the
developed causality inference methodology for estimating consumer consumption elasticity. Section 3
presents the results and discussion for each dataset considered, and Section 4 enumerates the most
relevant conclusions.

2. Data Collection and Causality Inference Methodology

2.1. Dataset Description

The Low Carbon London (LCL) project was the UK’s first residential sector, time-of-use electricity
pricing trial. UK Power Networks and EDF Energy jointly performed this project. The trial involved
5667 households of two groups, one the target group and the other the control group. The group that was
influenced by dynamic time-of-use tariffs (dToU group) consisted of 1122 households and the control
group, which remained with existing non-dynamic time-of-use tariff (non-ToU), consisted of 4545
consumers [25]. The electricity consumption was measured every 30 mins from 2012 (July–December)
till 2013 (full year). The dataset was relatively complete for the year 2013 for both dToU and nonToU
groups. The dataset also contained tariff information, which comprised of three rates: Default is
0.1176 £/kWh; high is 0.6720 £/kWh; low is 0.0390 £/kWh. These rates were applicable to the dToU
group (only for the year 2013) and the default tariff was the only tariff for the nonToU group (for
2012 and 2013). Customers were informed of upcoming price changes one day ahead of delivery
via notifications that appeared on their smart-meter linked in-home-display and also, if requested,
via short message service (SMS) messages to their mobile phones. The price events were based on
system balancing (lasted between 3 h to 12 h) and distribution network constraint management signals
(which lasted for nearly 24 h) received by the retailers. We used 81 clients who have the largest period
of historical data and that, after data cleaning, provided the best featured collection of consumers.
Since weather related information was not provided with this dataset, daily as well as half-hourly
weather data for the years 2012 and 2013 were collected from Weather Underground (an online weather
service provider) [26]. The new dataset was designed to include the following features for each client:
Average power (kW) per 30 min interval, hour of consumption, price associated with the consumption
period, temperature, current time of an event, minute, month, day of the week, week of the year,
weekday number, atmospheric temperature, humidity, pressure, visibility, wind direction, wind speed,
and weather conditions (example, cloudy, clear, rainy, fair, etc.).

The second collection of data used in our analysis is a part of a smart grid demonstration
project in Austin Texas. Some of the Texas, California, and Colorado homeowners have participated
in Pecan Street Inc.’s consumer energy research (co-managed by Center for Commercialization of
Electric Technologies, CCET) on how people use electricity on a minute-to-minute basis down to the
appliance level [27]. The dataset contains information about the total electricity consumption and
includes information about installed solar panels, electric vehicles, batteries, and smart thermostats [28].
The research trial was conducted for 18 months between March 2013 through to October 2014 and
focuses on how new features influence customers’ likelihood of shifting portions of their energy use
away from critical high peak periods on hot summer afternoons. They were expected to shift these
loads towards the nighttime hours during the months when Texas wind farms were more productive.
Though Pecan Street currently has nearly 1450 participants, only a handful of the (~100) homeowners
have comprehensive audits, which do not include demographic information. For the purpose of this
study, we consider seven clients (which were selected to maximize the sample size with a complete
annual record after data cleaning) with electric vehicles. The consumers received text messages to their
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mobile phone at 16 h one day earlier than the scheduled DR event. The electricity consumption for the
Pecan Street sample was measured every hour for the years 2013 and 2014. The critical peak pricing
(CPP) events lasted for 4 h from 16 h to 19 h during the months of June to September 2013 and 2014.

2.2. Causality Inference for Elasticity Estimation

2.2.1. Framework for Applying Causality Inference in DR Data

The purpose of this work was to determine the consumer consumption elasticity during the trial
period and whether the dynamic tariffs offered by the DR program acted according to the objectives
and took full potential of their contracted consumers. In order to estimate consumption elasticity, most
experiments will rely on using two groups that are identical in most ways except that one receives a
treatment while the other does not. All consumers would be subject to the estimation process with
some of them selected as under treatment while some are under no treatment, as shown in Figure 1.
The experiments are performed with these two sets of consumers at the same time, one of them
corresponding to the control group and the other to the experimental group. However, this sometimes
tends to be more expensive and time consuming, with both the control and experimental groups having
the need to be closely similar in most aspects of consumption. The other way is to use observational
methods and try to understand the causal effects in the absence of an experiment.
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Figure 1. Common model for determining the effect of DR products on consumer electrical
energy consumption.

A causal inference approach was used to identify a specific set of consumer sub-groups within the
DR residential clients who would respond to a specific DR period. This data-driven approach involves a
methodology in which the retailer analyzes the consumption pattern of the consumers before and after
the intervention of the DR program. This helps in identifying whether the consumer has performed
the DR action during the contracted DR periods. Based on these computations, the elasticity of each
consumer is obtained to provide the weight (or rank) for their DR response. The accumulated weight
identifies the most reliable (highly responsive) group of contracted clients for a specific DR strategy.

The proposed model is detailed in Figure 2 and it examines the consumer’s DR behavior. This is
done by using data-driven algorithms, which explore both machine learning and causal inference
techniques in order to build a model to estimate the elasticity of the consumers. The retailer sets the
DR strategy, which is then sent periodically to the contracted clients. The behavior of each consumer to
the DR signals is recorded via home automation systems and this feedback is used to understand their
actual behavior elasticity. The client consumption, associated DR price (€/kWh), and time components
are the features fed into the causal inference model. The average consumption and elasticity for each
hour is computed and ranked to identify the best set of clients. Knowing the average elasticity is more
important than identifying sporadic highest and lowest consumptions, as this gives a more consistent
response behavior.
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Figure 2. Causality inference framework for consumer elasticity.

The modeled approach helps in making a fair estimate of whether the consumer introduced any
changes to their consumption based on DR signals, as it can differentiate between a normal consumption
and a DR stimulated consumption. The consumption elasticity will give the approximate average range
a consumer is willing to change in their consumption. This will help identify whether the client is more
willing or reluctant to alter their consumption at that period. This result will be more of a percentage of
willingness to participate or predicted to participate in a given DR activity, rather than a hard yes or no
to a given signal. This could lead us to a gateway to identify how willing a particular client is, and how
this willingness can be influenced to get the maximum benefits for both the client and the retailer.

2.2.2. Causality Inference Algorithms

Data analysis and causal inference for our framework was performed by two separate algorithms,
one based on Robin’s G-method and the other using Bayesian structural time-series model. The first
algorithm used in our consumer elasticity model uses the parametric g-formula (as the causal effect
estimator) and arbitrary machine learning estimators to analyze and plot causal effects [29]. Causal
effect refers to the distribution or conditional expectation of Y given X, controlling for an admissible set
of covariates, Z, to make the effect identifiable. In our analysis (simple depiction in Figure 3), X, being
price, and Z, being time, are indeed correlated; more precisely, they will be statistically dependent.
This is basically a fork graph showing that X and Y are related with a common cause, Z. It should be
noted that it is necessary for variable Z to satisfy the back-door criterion, meaning that it should block
all backdoor paths from treatment to the outcome variable and it should not include any descendants
of the treatment variable [30]. If Z satisfies this back-door criterion, then the effect of X on Y can be
shown as Equation (1), which provides the distribution of Y.
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)]
(3)

Z− Interval = E[Y|X, Z] ± zα/2(σ) (4)

The Robin g-method enables the identification and estimation of the effects of generalized
treatment, exposure, and intervention plans. It provides consistent estimates of contrasts of average
potential outcomes under a less restrictive set of identification conditions than standard regression
models [31]. The model used by the default to minimize the mean-squared error and do the controlling
is a Kernel regression model, which gives us the conditional expectation as shown in Equation (2).
The causal dataframe helps in finding the true dependency between the X (price) and Y (consumption)
with the confounders as the calendar variables, we consider X: Price, Y: Consumption, and Z: Calendar
variables (hour—Z1, day—Z2, and week—Z3). For every hour (Z1), the causal effect of (X) on (Y) is
obtained for each DR price (Xj) with a constant (Z1) and variable (Z2 and Z3) with i = 1 to N running
over all data points as shown in Equation (3). These calendar variables are confounders that have
effects on both price and consumption. The causal analysis model works by controlling the Z variables
when trying to estimate the effect of variable X on a continuous variable Y, as shown in Equation (3).
The model returns Y estimates (E[y]) at each X = x value for every Z and provides the upper and
lower average consumption limits of the Y variable, which is used to determine the average elasticity.
The upper and the lower consumption limits of the average Y variable (for each price) is the z-intervals
calculated using the confidence levels (CI = 95% for our model). The z-interval for our consumption
average Y estimates is shown in Equation (4), where zα/2 is the alpha level’s z-score for a two tailed test
(based on the value of CI) and σ is the standard deviation of our average Y estimate. The constructed
causality model is then used to provide the estimates for each consumer demand on each hour for each
price. The parametric g-formula is implemented using python library Causality [32].

The Bayesian structural time-series model is used to determine the extent to which the price change
affects a consumer’s electricity consumption (i.e., the probability of the price having a causal effect on
consumption) [33]. This causal analysis is used for comparison and validation of the results obtained
from the Robin g-model. This package performs causal inference through counterfactual predictions
using a Bayesian structural time-series model. The model requires a set of control time series (the time
before the intervention—pre-period) and a set of response time series (the time from the beginning of
intervention until it ends—post-period). With these two sets of time defined datasets, the package
constructs a Bayesian structural time-series model and predicts how the response would have evolved
if the intervention had never occurred (counterfactual prediction). As this is a non-experimental
approach to estimate causal effects, conclusions require assumptions to facilitate accuracy. The model
assumes that:

• There is a set control time series (pre-period) that is itself not affected by the intervention. If they
were, it might falsely under or overestimate the true effect. Or it might falsely conclude that there
was an effect even though in reality there was no effect.

• The relationship between covariates and the treated time series, as established during the
pre-period, remains stable throughout the post-period.

• The relationship between the covariates (the time components) and the treated time series
(electricity consumption) remains stable throughout the post-period.

If the posterior tail-area probability is very low, the chances of having a positive effect from the
intervention is significant. This probability is obtained by calculating the posterior distribution of
the response variable (Y—consumer electricity consumption) that would be expected in the absence
of an intervention. The actual observed response is then compared to this posterior distribution.
The tail-area probability is the probability under the calculated posterior that the response is at least
as extreme (away from the expected value) as the observed one. The Bayesian structural time-series
model is implemented using the CausalImpact R package [34].
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Both algorithms mentioned above are fed with half hour electricity consumption data and price
signals (time-of-use retail rates) from the LCL dataset, and hourly electricity consumption data along
with their CPP signals, electric vehicle consumption, and solar rooftop production from the Pecan
Street dataset. The time components, such as hour, day, week season, etc., have a higher degree of
influence on a consumer’s load demand. This is evident from the daily average demand curve for
residential consumers. The influence of time on the DR tariff is also evident, such as higher demand
periods occurring during mornings or late evening, resulting in possible peak load pricing. Thus,
for our analysis, we considered time components as our confounder. Both the datasets are modified
to include calendar variables, which act as our confounders that can be controlled for estimating the
causal effect of the DR tariffs on consumption profiles for each hour. It should be noted that both these
algorithms are only fed with consumer time-series data that experiences demand response signals
with no inclusion of a control group. This makes our model more unique to include any DR dataset
with just the pre-period and post-period consumption behavior along with their confounders for a
single set of consumers experiencing any type of DR tariff.

3. Results and Discussion

3.1. Low Carbon London (LCL) Dataset

Considering the three pricing tariffs adopted in the LCL dataset, the average elasticity for the default
price is expected to be low and the only elastic consumption pattern that can be observed is between
periods of consumption (morning, afternoon, evening, and night) and between weekday and weekend
consumption. Figure 4 indicates the average consumption for a DR client with their average consumption
elasticity (indicated by the vertical black lines on top of each bar) for each price they experience. There is
a clear evidence that experiencing a lower price tariff increases the average consumption along with the
elasticity, whereas the default tariff sees marginal elasticity in the consumption pattern. This provides a
basic understanding of how this client has reacted to the DR prices, but to get more insightful information
on the change in daily consumption patterns due to price changes, the analysis was conducted under
disaggregated hourly average consumption and elasticity. Figure 5a,b gives a clear perspective of which
hours the clients prefer to actively participate in the DR program.
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The general expectation is for consumers to have higher average consumption for lower tariff
and lower average consumption for higher tariff periods (i.e., for an ideal client, one would expect,
a high elastic and high average consumption for a low price (0.0399 €/kWh) and high elasticity and low
average consumption for a high price (0.6720 €/kWh)). This could give an insight into how the clients
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will respond to DR signals, and some periods where the consumers respond poorly for a broader time
interval. Thus, the higher the average elasticity for the client for those hours, the higher their tendency
is to alter consumption for those price signals in those hours. Lower elasticity means that the client is
not susceptible to change its consumption in those hours. (Note: Change in consumption indicates an
increase or decrease during lower (L) or higher (H) price periods).
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The actual average demand (blue, orange, and green bars in Figure 4) gives a sense of average
consumption levels associated to each client for each price signal they experience. When all consumption
averages of a client are close to each other, it signifies that the client does not have much elasticity
between different price tariffs. This is evident during the early periods from 0 h until 7 h for the
considered client from Figure 5a. This specific client shows more flexibility in its consumption
between 8 and 17 h, where its average is lower for a high price and higher for a lower priced tariff.
The elasticity for lower price and higher price tariffs trades places during early evening and at night,
which corresponds to the number of high and low prices actively experienced by the consumer during
those hours. Figure 5b shows the average elasticity values that were obtained for consumer D0641
and indicates which hours are preferred by this client to change its consumption pattern based on the
prices experienced. Comparing the average elasticity plot and the average consumption plot, we can
clearly see that this client willingly participates in the DR activity, specifically during the morning and
evening periods. They also exhibit low price consumption elasticity during the afternoon.

Figure 6 shows the posterior distribution for the causal effect obtained from the Bayesian structural
time-series model for the same consumer D0641. The original time-series plot shows the black lines
of what happened before and after intervention (from January 2013) along with the prediction of
what might have happened in the absence of intervention. The pointwise plot shows the difference
between the observed data and the counterfactual estimates and the final time-series showing the
accumulated causal effect over time. The posterior probability distribution of the response variable in
the absence of intervention (counterfactual time-series) was computed using the time-series behavior of
the response variable prior to intervention. The 95% confidence interval for this distribution indicates
that predictions should become increasingly uncertain as we move along the time-series. From the
analysis, we can confirm that this client has actively responded to DR signals. Figure 7a,b shows the
actual average consumption and average consumption elasticity of another client (consumer D0421),
who has a much lesser elasticity compared to the rest of the pool of clients. Even though the developed
model picks up average consumption changes, the magnitude of the consumption elasticity is too
small to have any kind of meaningful impact in the overall DR event. This inference is backed by the
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statistical R result (Figure 8), which shows a narrow posterior probability interval, suggesting that the
prediction uncertainty is less.
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As mentioned initially, one of the aims of this work was to cluster the consumers together into
weighted categories, ranking their acceptance to each DR event. To determine the best set of DR
consumers amongst all for each hour, the elasticity of each consumer was ranked per hour. The rank
computed (between 0–100) for each of these clients on their elasticity was compared against all the
81 clients in the pool and sorted to give the best and the worst. Figures 9 and 10 depict the obtained
ranks for the low and the high price levels, in which an increasing value from 0 to 81 means an
increased elasticity. A specific client, who has a higher rank for a few hours, may not have the best
rank for the rest of the hours. The result provides the overall consistent consumers between all the
consumers and ranks them on a 24 h space. This ranking will certainly differ, when considering each
hour. It could also be used to find the client that has the best response over the entire period of DR
evaluation. This gives an insight into consistent clients who have participated in most of the DR signal
calls and have changed their consumption accordingly. Thus, we formed an effective system to sort
the clients according to their rank that provides the list of the most consistent and the least consistent
clients in the pool for each pricing level in the DR tariff. One can notice that many consumers in the
mid table of Figures 9 and 10 exhibit a higher consumption elasticity than the rest of the periods during
the day. This is particularly due to the availability of consumers during these day periods (especially
during morning and evening hours) in their house to actively perform consumption changes. This is
also evident form our result in Figure 5a for client D0641.

From the Bayesian structural time-series model, the difference between observed data and
counterfactual predictions is the inferred causal impact of the intervention. Figure 11 gives a
description of this inferred causal impact along with the probability of occurrence of such an impact by
the consumers. Consumers D0767, D0323, and D0486 exhibit changes in their average consumption
change while consumers D0328 and D0026 exhibit zero change, indicating that they did not effectively
participate in the DR program. This validates the observations from the Robin g-method results as
shown in Figures 9 and 10.Energies 2019, 12, x FOR PEER REVIEW 13 of 21 
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The python elasticity model is used as a performance measure to rate the quality of the DR strategy
and the effect it has on the contracted clients. A DR program can be considered effective when all its
contracted clients are actively participating in a consistent manner. By accumulating the ranks of each
client between the 81 clients for each period, we can find the top (5%, 10%, . . . , 50%, etc.) actively
participating clients. Using these metrics, we can find the number of clients in the top percentage levels
as shown in Figure 12. Amongst the top 5% actively participating clients, there are 15 and 18 clients,
respectively, for low price and high price. This graph shows that when the percentage of participation
is relaxed to around 63%, all 81 consumers in the pool have at least participated once in a DR event.
This indicates that the DR program has not been able to benefit from all their clients effectively. The goal
of the retailer would be to increase the most elastic region to improve their reliability in providing the
DR service to the market and increase its profit margin by selling system services to system operators.
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By ranking the consumers in terms of their consumption elasticity, the retailer can design a financial
and marketing strategy to maintain consumers with high elasticity and attract new ones so that the
elastic region is increased. Furthermore, with causality inference, it is also possible to trial different DR
products and assess consumers’ responsiveness to improve the design of dynamic tariffs in order to
maximize elasticity in different hours/periods. The retailer will have the ability to look into each hour
and request or check a specific elasticity level. This allows the retailer to make an informed decision on
how much DR will be available for it during a particular period with greater accuracy, make better
bids in the market with little to no penalty incurred, and provide better network reliability. An ideal
strategy for a retailer could be to have bigger elastic region and higher service reliability to win more
bids and get higher profits.Energies 2019, 12, x FOR PEER REVIEW 15 of 21 
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3.2. Pecan Street Inc. Dataset

The CPP DR strategy was conducted during the peak summer days for the months June to
September. The group of residents in the Austin, Texas region were expected to shift their demand
when the ERCOT electric grid in Texas was experiencing demand-driven strains during high peak
periods. It should also be noted that consumers from this trial were also equipped with solar rooftops
and electric vehicles. These play a major role in understanding how the consumers’ consumption
is influenced by price incentives apart from the available devices that they can use for this purpose.
As the CPP events were conducted separately in 2013 and 2014, we aimed to identify the consumption
elasticity and average separately for both these years to see if the program had better influence in the
second year due to the experience gained by the consumer in the first year. The general expectation for
a CPP incentivized DR program is to have a lower average electricity consumption during high price
CPP periods and shift this demand effectively to the non-peak periods.
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Figures 13 and 14 give the disaggregated hourly average consumptions for consumer 370 over the
years 2013 and 2014. As expected, there is a clear evidence that CPP periods experienced during the
evening hours (16–19 h) show a reduced average consumption than those of the same, with non-CPP
hours during the same months of June to September. This indicates that this particular consumer
was responsive to the DR signals in the first year of participation (2013). It has to be noted that
this consumer’s overall average consumption during the non-CPP hours during the months of
June to September increased from the non-CPP month’s average (shown in green). On the positive
note, we understand that the DR program encouraged this consumer to reduce his overall average
consumption in 2014, as seen in Figure 14. This reduced average demand in 2014 also resulted in more
consumption from solar generation, specifically during the hours before and during the CPP period.
Figure 15 describes the average charging profile of the electric vehicle (EV) owned by consumer 370.
Comparing 2013 and 2014, the consumer seems to have had completely lowered their EV demand
in 2013 during the day and shifted their demand to the night periods. Whereas, in 2014, they were
inelastic to the CPP signals in regards to EV charging. This shows that they preferred the comfort of
having their EV charged regardless of the price change.
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The difference in consumption elasticity (Figure 16) between 2013 and 2014 is due to their reduction
in the total average consumption during the CPP period in 2014. Figure 16b also shows that the
consumer exhibits consumption elasticity even in the non-CPP months (January–May 2014) as the
influence of the first CPP program in 2013 (in 2013, this curve was flatter, indicating little to no elasticity
during non-CPP months). This is an indication that our model picks up elasticity profiles even after
the CPP months have ended and how that influences the normal consumption of the consumer with a
default tariff. This is an important identification as one can determine the effect a DR program has
made on a consumer even after the program has ended. In 2014, the non-CPP months having a very
similar elasticity profile to that of the CPP months indicates that the consumer is closer to the maximum
elasticity they can provide without sacrificing more of their comfort. This is an indication that the CPP
program effectively encouraged this consumer to reduce its consumption during the CPP months in
the second year of enrolment. Figure 17 shows the posterior distribution for the causal effect obtained
from the Bayesian time-series model for the same consumer. As explained in the previous section,
the progressive widening of the posterior intervals (95% posterior probability intervals) indicates that
predictions should become increasingly uncertain as we move along the time-series. This is evident
with the results obtained from the Bayesian time-series model (Figures 17 and 18), which gives us
the inferred causal impact along with the probability of occurrence. Figure 18 describes the inferred
causal impact along with the probability of occurrence of such an impact by the consumer. In 2013,
consumers 370, 1169, and 7850 exhibit changes in their average consumption (indicating reliable
consumption elasticity) while consumers 2965, 6990, 8236, and 8669 exhibit little to no elasticity in their
average consumption. This, compared with 2014, shows the saturation level of elasticity for consumer
370, while consumer 8236 exhibits more elasticity compared to their 2013 behavior. Consumer 8669
indicates no real interest in modifying their average consumption, indicating that they are not very
reliable in actively participating in DR activity.Energies 2019, 12, x FOR PEER REVIEW 18 of 21 
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4. Conclusions

Studies on consumer behavior towards DR are quite new and most of them are quantitative
analysis. One should note that in a general household scenario, day-to-day energy consumption
activities are performed habitually with little, if any, conscious awareness of their impacts. Because of
such habitual behaviors, successful interventions are required to instigate household consumers to
make physical, material, or behavioral activity change in their house to promote DR. With many DR
incentives currently in use, our study focused on tariffs and how they bring about change in residential
consumers’ electricity consumption behavior.

From our analysis of the LCL dataset, it was observed that price changes do not always lead to
the best outcome for retailers (only a small portion of consumers seem to actively participate in DR
signals). We inferred whether the consumers who accepted the DR signals have done so purely based
on the financial benefits they received due to the price change, or if they preferred comfort rather than
being flexible to the tariff. This is understood by clustering (grouped) sets of consumers according
to their responses. The higher ranked consumer is more susceptible to accept price incentives than
the lower ranked consumer, who prefer offers that meet their comfort zones. This leads to a way to
performance-based payments for residential DR clients, i.e., payments to those clients who actively
participate in the DR signals they receive. From our work with the Pecan Street Inc. dataset, we were
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able to identify if the critical peak pricing strategy had desirable impacts on consumers. It was observed
that many consumers tend to exhibit increased baseline consumption during the DR months in the first
year (which undermines their observed consumption elasticity) of involvement but tend to provide
more consumption elasticity and reduced average consumption in the second year, making them more
reliable for the CPP demand response.

The approach reported in this paper can be used to provide a clear picture to the retailers in terms
of the impact DR offers make on a specific client, i.e., if the tariff is lower or increases twice for a given
period, how a client would react to such variations. Our approach using causal inference will identify
the best DR strategies to which all-individual contracted DR clients would actively participate in.
It groups consumers for a specific set of DR events, thus enhancing the success rate of DR, and paves a
way for performance-based payments for residential DR clients. The ideal plan would be to make
each of these clustered DR hours dense so that more contracted consumers fit into almost all the DR
strategy periods, thus increasing the robustness and effectiveness of the DR program. The designed
model can be generalized to use any type of DR tariff (as we have seen in the use of TOU and CPP
tariffs in our study). The performance measure plot and consumer ranking can be used to identify why
and for whom the DR signals are unsatisfactory and address those issues accordingly or at least make
a way for each of them to participate in as many DR periods as possible. This idea will be extended to
estimate the level to which the retailer can effectively help to smooth the cumulative demand curve.
Further, we will determine the bill savings the consumer can expect from actively participating in these
DR programs.
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