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Abstract: During the last decade the dynamic properties of power systems have been altered
drastically, due to the emerge of new non-conventional types of loads as well as to the increasing
penetration of distributed generation. To analyze the power system dynamics and develop accurate
models, measurement-based techniques are usually employed by academia and power system
operators. In this regard, in this paper an identification toolbox is developed for the derivation
of measurement-based equivalent models and the analysis of dynamic responses. The toolbox
incorporates eight of the most widely used mode identification techniques as well as several static and
dynamic network equivalencing models. First, the theoretical background of the mode identification
techniques as well as the mathematical formulation of the examined equivalent models is presented
and analyzed. Additionally, multi-signal analysis methods are incorporated in the toolbox to facilitate
the development of robust equivalent models. Additionally, an iterative procedure is adopted to
automatically determine the optimal order of the derived models. The capabilities of the toolbox
are demonstrated using simulation responses, acquired from large-scale benchmark power systems,
as well as using measurements recorded at a laboratory-scale active distribution network.

Keywords: equivalent models; graphical user interface; load modelling; mode identification;
multi-signal analysis; power system dynamics

1. Introduction

1.1. Motivation, Literature Review and Scope of the Paper

Traditionally, the dynamic analysis of transmission and distribution grids is performed by using
detailed power system models [1,2]. However, with the increased penetration of distributed renewable
energy sources into the existing power systems [3], the use of new types of loads, e.g., power electronic
loads, the need for more operational flexibility and the application of advanced voltage and frequency
control strategies at the distribution level, it is becoming more and more difficult for operators and
utilities to develop and maintain detailed and accurate power system models [4,5]. To overcome these
issues, the application of measurement-based methods has been proposed as a supplementary or
even principal solution for the dynamic analysis of modern power systems. In this context, several
measurement-based mode identification techniques [1] and network equivalent models [6] have been
proposed in the literature.
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Measurement-based mode identification techniques use dynamic responses, acquired either from
ringdown or operational ambient data [1], to estimate the oscillatory modes of the grid and to predict
the stability margins. Based on the form of the data they use, measurement-based mode identification
techniques can be classified into time-domain (TD) and frequency domain (FD) [7]. The former apply
directly to the measured data [7], while in the latter the signal needs first to be transformed to the FD in
order to extract the contained mode parameters [7]. Measurement-based mode identification methods
are mainly used for real-time monitoring of inter-area oscillations [8], transient stability assessment [9],
wide-area control applications [10], and for the fine tuning of power system stabilizers [11].

In situ measurements can also be used for the development of reduced order equivalent models [6].
Network models can be used to facilitate the analysis of complex power systems by replacing specific
parts of the examined grid [2]. They are divided into two main categories, i.e., static and dynamic
equivalent models [6]. Static equivalents express the real and reactive power of the grid at any time
instant as algebraic functions of the grid voltage magnitude and/or frequency at that specific time
instant [6]. On the other hand, dynamic equivalents express the real and reactive power at any time
instant as function of time, voltage and/or frequency [6]. Dynamic equivalents generally use difference
or differential equations [6]. Static equivalents are mostly used for power flow analysis [6], while
dynamic equivalents are used for small signal and transient stability analysis [12], frequency stability
analysis [13], and long- and short-term voltage stability studies [14].

Scope of this paper is to facilitate and promote the use of measurement-based techniques for
the analysis of modern power systems, by developing the System Identification and Equivalent
Models Toolbox (SIEMToolbox). SIEMToolbox is suitable for the analysis and testing of mode
identification techniques and power system equivalent models. The toolbox is developed in the
MATLAB programming language and is supported by a complete graphical user interface (GUI) and a
comprehensive user manual. SIEMToolbox is available for download at [15].

1.2. Functionalities of System Identification and Equivalent Models Toolbox (SIEMToolbox)

SIEMToolbox readily supports six of the most well-known and well-established mode identification
techniques [1], namely the Prony method [16], the matrix pencil (MP) technique [17], the eigenvalue
realization algorithm (ERA) [18], the prediction error method (PEM) [19], the sub-space state-space
system identification (N4SID) method [20], and the fast Fourier transform (FFT) combined with the
sliding window technique [21]. The first five methods apply to the TD, while FFT operates on the FD.
Additionally, SIEMToolbox supports the use of the Vector Fitting (VF) algorithm [22], which operates on
the FD for the identification of power system modes [23], as well as a hybrid FD/TD method [24], which
has been proved very robust and accurate for the mode identification of active distribution networks
(ADNs) [25]. Moreover, SIEMToolbox is equipped with an algorithmic procedure aiming to identify
automatically the dominant modes contained in power system responses using data acquired either
from individual or multiple signals. Thus, SIEMToolbox can ensure the development of minimum
order models.

Additionally, the developed toolbox supports several network equivalent models developed
during the last decades. Most of them are included in the reports of relative IEEE Task Forces [26,27]
as well as in the recent report “Modelling and aggregation of loads in flexible power networks” of the
International Council on Large Electric Systems (CIGRE) working group C4.605 [28]. Specifically,
seven types of static equivalent models and two types of dynamic equivalent models are incorporated
into the toolbox. Static equivalents include the well-known Electric Power Research Institute (EPRI)
model [29], the exponential (EXP) model [26], the polynomial or ZIP model [26], the ZIP-exponential
model [30] as well as the static equivalents proposed by Sabir in [31], Ohyama in [32], and Frantz in [33].
Note that EPRI, EXP, ZIP and ZIP-EXP models are developed both with and without considering a
frequency-dependent term. On the other hand, dynamic equivalents include models based on transfer
functions (TF) [34] as well as models based on a combination of transfer functions and non-linear
equations (TFNL) [35]. The optimal order of the transfer functions and the model parameters
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are determined through an automated algorithmic procedure which supports the analysis of both
individual and multiple signals.

The rest of the paper is organized as follows. In Section 2 the theoretical background of mode
identification methods and network equivalencing is discussed. In Section 3 the main functionalities
and capabilities of the SIEMToolbox are presented. Section 4 presents the network topologies employed
to obtain the required responses. Furthermore, indicative results are presented to validate the
effectiveness of the SIEMToolbox. Finally, Section 5 concludes the paper.

2. Problem Formulation and Parameter Estimation

In the next Sections the background of mode identification from dynamic responses and modelling
of network equivalents is described. The corresponding calculation procedures implemented in the
SIEMToolbox are also presented in detail.

2.1. Mode Identifcation

2.1.1. Problem Formulation

The performance of linear and time-invariant dynamic systems can be analyzed using the
state-space representation of (1) and (2), assuming that the time variable t is continuous (t ∈ R) [1].
If the system is subjected to small perturbations, (1) and (2) are evaluated at the operating point, around
which the perturbation is considered [36].

.
x(t) = Ax(t) + Bu(t) + w(t), (1)

y(t) = Cx(t) + Du(t) + v(t) (2)

In (1) and (2) column vectors y ∈ Rm×1, u ∈ Rr×1 are the output and input system responses,
respectively and x ∈ Rn×1 is the state vector. A ∈ Rn×n, B ∈ Rn×r, C ∈ Rm×n and D ∈ Rm×r are the
system matrices, whereas w ∈ Rn×1 and v ∈ Rm×1 are the measurement and the process noise vectors,
respectively. Both noise vectors are assumed to be zero mean, stationary white noise vector sequences
and uncorrelated with the system inputs. The response of each system state xj can be described as the
sum of n system modes [25]:

x j(t) =
n∑

i=1

cieλit =
n∑

i=1

aieσit cos(ωit + ϕi), (3)

where λi = σi ± jωi are the n eigenvalues of matrix A and can be either purely real or appear in complex
conjugate pairs; ωi = 2πfi and σi correspond to the mode angular frequency (rad/s) and damping factor
(1/s). The parameter ci = aie± jϕi /2 is the residue of the i-th mode, whereas ai and ϕi are the amplitude
and the phase angle, respectively.

The discrete form of (1) and (2) at time instant k is rewritten in (4) and (5), assuming a discretization
of Fs = 1/Ts samples per second that generates N samples [1].

xk+1 = Axk + Buk + wk (4)

yk = Cxk + Duk + vk (5)

The discrete-time poles (zi) are related to λi with:

zi = eλiTs (6)



Energies 2019, 12, 2606 4 of 19

If the system under consideration is single-input single-output (SISO), the transfer function
representation is preferable. The transfer function of a SISO system in FD is defined in (7), assuming
that D = 0:

H(s) =
Y(s)
U(s)

=
n∑

i=1

ci
s− pi

(7)

where s = jω and pi is the i-th system pole corresponding to eigenvalue λi of A. Note that ci is the
transfer function residue of the associated pole pi. The transient response or ringdown of a SISO system
is described by a sum of superimposed oscillations, given by (8) [1].

y(t) =
n∑

i=1

αieσit cos(ωit + ϕi) (8)

In discrete-time form, y (t) is rewritten as:

y[k] = y(kTs) =
n∑

i=1

cizk
i =

n∑
i=1

aieσikTs · cos(ωikTs + ϕi), k = 0, 1, . . . , N − 1 (9)

Ringdown analysis is loosely related to modal decomposition of the system impulse response.
Specifically, the transfer function in FD is the Laplace transform of the system impulse response.

2.1.2. Mode Identification Procedure

To identify the modes contained in a ringdown response the generic procedure depicted in Figure 1
is used in SIEMToolbox. The mode estimates for each identification method target to minimize the
mean absolute error (MAE) defined as:

MAE =

N−1∑
k=0

∣∣∣y[k] − ŷ[k|θM]
∣∣∣

N
(10)

where ŷ [k|θM] is the ringdown response simulated by introducing in (10) the set of the estimated
mode parameters θM. It should be noted, that dashed lines in Figure 1 refer to the optional procedures
“Initialization” and “Optimal order determination”, available in SIEMToolbox. More specifically,
the initialization procedure is required for PEM [19] and hybrid FD/TD [24] methods, in order to
determine an initial estimate of the mode parameters. Additionally, in order to develop models of
the minimum order, i.e., described only by dominant modes, excluding any possible artificial modes,
the optional “Optimal order determination” procedure is also available. The proposed procedure,
depicted in Figure 1, identifies automatically the dominant modes contained in ringdown responses by
the following steps:

• Step 1: The range of the examined model order is specified by the user; typically starting from 1.
Let us assume that in general form the lower model order value is Mmin and the maximum Mmax.

• Step 2: The selected mode identification method is applied sequentially for each case in the range
from Mmin to Mmax; the ringdown response is simulated and the corresponding MAE is calculated.

• Step 3: The calculated MAE of all examined Mmin–Mmax cases are compared. The optimal model
order corresponds to the case with the lower MAE.
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Figure 1. Mode identification procedure flowchart.

To further evaluate the accuracy of the estimated response the root mean square error (RMSE),
the mean absolute percentage error (MAPE) and the coefficient of determination (R2) indexes defined
in (11) and (13) are employed.

RMSE =

√√√√√N−1∑
k=0

(y[k] − ŷ[k|θm])
2

N
(11)

MAPE =
100
N
·

N−1∑
k=0

∣∣∣∣∣∣ y[k] − ŷ[k|θm]

y[k]

∣∣∣∣∣∣ (12)

R2 =

1−

N−1∑
k=0

(y[k] − ŷ[k|θm])
2

N∑
k=0

(y[k] − y)
2

 · 100% (13)

Note that y is the mean value of the original ringdown signal.

2.1.3. Multiple Signal Analysis

To analyze multiple ringdown responses, the multi-signal approach of [37] is incorporated.
Each identification method can be applied individually to each of the available L signals and the
corresponding modal estimates are calculated. The derived modal estimates are grouped based on the
mode frequency. For each group of modes, a final value of the mode frequency fi and damping factor
σi is determined as the average value of the corresponding mode estimate as follows [1,37]:

fi =

L∑
l=1

f̂ i
l

L
(14)

σi =

L∑
l=1

σ̂i
l

L
(15)
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2.2. Network Equivalent Models

Network equivalent models in general describe the real and reactive power response of a power
system bus following a perturbation, e.g., change of bus voltage, short-circuit, etc. As already
mentioned, static equivalent models express the real power (Ps) and reactive power (Qs) at the bus as a
function of the bus voltage (V) and frequency (f ). The mathematical formulation of this dependence
can be given in generalized form in (16) and (17), respectively, by means of functions gs and hs [28]:

Ps = gs(V, f
∣∣∣θPs) (16)

Qs = hs
(
V, f

∣∣∣θQs
)

(17)

where θPs and θQs denote the set of parameters for the real and reactive power to be
estimated, respectively.

Accordingly, the generalized formulation for the real power (Pd) and reactive power (Qd) responses
characterizing dynamic equivalent models is given in (18) and (19), respectively, including also the
time dependence [28].

Pd = gd(V, f , t
∣∣∣θPd) (18)

Qd = hd
(
V, f , t

∣∣∣θQd
)

(19)

Note that θPd and θQd are the set of parameters for the real and reactive power, respectively,
regarding dynamic models.

2.2.1. Parameter Estimation Procedure

The model parameters of (16), (17) and (18), (19) for each equivalent model structure can be
estimated by means of non-linear least-squares (NLS) optimization. In NLS the response data are
related to the simulated data by adjusting iteratively the model parameters to minimize the objective
function J given in (20), i.e., the error of the simulated response.

J =
N−1∑
k=0

(y[k] − ŷ[k|θm])
2 (20)

Here, y [k] and ŷ [k|θm] are the original and the simulated data of the k-th sample, respectively and
θm is the set of the model parameters, i.e., θPs, θQs, θPd or θQd at the m-th algorithm iteration. Note
that, y [k] can be Ps, Qs, Pd or Qd. The flowchart of the SIEMToolbox parameter estimation procedure is
presented in Figure 2. At each iteration ŷ [k|θm] is calculated, using the real or reactive power response
expressions of the examined equivalent model as well as the corresponding set of parameters. Next, J is
evaluated, and the model parameters are updated since J becomes less than a user-defined tolerance
value (τ) or the maximum number of iterations M is reached. In the case of network modelling by
means of transfer function models, i.e., TF and TFNL models, in order to determine the optimal model
order, the same iteration procedure, analyzed in Section 2.1.2., also applies.

2.2.2. Equivalent Modelling with Multi-Signal Analysis

Also, in the equivalent modelling feature, the model parameters can be estimated either using
a single signal data set or multiple signals. If multiple signals are available, the parameters of the
selected model are identified separately for each signal. The resulting model parameters using all
signals are derived by averaging all relative estimated model parameter.
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3. SIEMToolbox

In the next sub-sections, the functionalities and the capabilities of the SIEMToolbox are presented
in detail.

3.1. Main Graphical User Interface of SIEMToolbox

The SIEMToolbox is developed on the MATLAB programming language and can be launched
by typing

>>main_gui

at the MATLAB prompt. The main window of the toolbox is depicted in Figure 3; from this window
the mode identification and network equivalent modelling features can be selected.
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3.2. Mode Identification Techniques

In the mode identification techniques feature, the user must provide the measurement data,
as shown in Figure 4. In addition to the selection of the type of the analysis, i.e., single- or multi-signal,
the user must provide the input data in mat file extension, which must correspond to the following
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specifications and in an array form. Specifically, for single signal analysis, a N × 2 array is required,
where the first column corresponds to the observation time, whereas the second column to the signal
response. For multiple signals, an N × W array is required, where W – 1 is the number of signals.
Accordingly, the first column contains the vector of the observation time. In each subsequent column,
the w-th measured response data are stored.
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After importing the measured data, the user can select one of the eight developed identification
methods mentioned in Section 1.2. Consequently, the model order or a range for optimal order
determination must be specified, as depicted in Figure 5.
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To visualize the findings of mode identification methods, the SIEMToolbox result window is
employed. Indicative results are shown in Figure 6. Note that, in the example of Figure 6 the model
order is selected equal to two, and single signal analysis is considered.
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predetermined model order.

Different capabilities are offered through the mode identification result window. For example,
the measured (original) and the estimated response are compared, as depicted in the first frame of the
window. Moreover, the calculated evaluation indexes, as well as the estimated damping factor and
frequency of each mode is presented. Finally, it is worth mentioning that the user can export the plot
or export the mode identification results in a txt file for further analysis.

3.3. Network Equivalent Models

Similar to mode identification techniques, a data input window is generated for the equivalent
modelling option, as the one depicted in Figure 4. The equivalent model data input window comprises
the same options as analyzed in Section 3.2. Also in this case, the input data must be provided in
mat file extension. Five vectors namely P, Q, f, V and t, which correspond to the real power, reactive
power, frequency, voltage and time response, respectively, are required. In the case of single signal
analysis, each of the aforementioned responses must be stored in a different vector. Thus, in the mat
file extension five N × 1 vectors are included. In the case of multiple signals, the measurements must
also be provided in five different vectors. However, in each column of the P, Q, f and V vectors, the
w-th measured response is stored. Hence, one N × 1 vector, i.e., t, and four N ×W arrays are contained
in the mat file, where W is the number of signals. It should be emphasized that each column of the
vectors P, Q, f and V should include the signal response for the exact time given from the time array,
i.e., t.

Since the measurements are imported, the user can select the equivalent model under study
described in Section 1.2. The corresponding window is shown in Figure 7.
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Furthermore, the parameters for the NLS optimization must be defined. These parameters include
the tolerance, the number of function evaluations and the number of total iterations. The default values
are 10−8, 10,000 and 10,000, respectively. Two different algorithms are provided by the SIEMToolbox
to solve the optimization problem, i.e., the trust-region-reflective and the Levenberg-Marquardt
algorithm [38]. The next generated window differs depending on the selected analysis (single or
multiple signal) as well as on the specified equivalent method. Subsequent to the selection of one of
the models based on transfer functions, i.e., TF and TFNL, a similar window as the one depicted in
Figure 5 is generated. Two different possibilities are offered. In the former, the user can choose the
order of the transfer function for both real and reactive power, separately. In the latter, the SIEMToolbox
automatically determines the best transfer function order within a range provided by the user, following
the procedure described in Section 2.2.1.

The resulting window for the case of the equivalent models is visualized in Figure 8. Note that in
this case, a model based on TF with a predetermined order and single signal input is selected.
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Similar to the mode identification result window multiple capabilities are offered. For example,
the active and reactive power measured responses can be compared to the estimated, as depicted in
Figure 8. In addition, the calculated evaluation indexes, as well as the calculated model parameters
(or transfer function numerator and denominator results when transfer functions-based methods are
considered) are presented. Finally, the user can export the real and reactive power plots for further
processing or export the results in a txt file.

4. Results

In this section, the effectiveness of the developed SIEMToolbox is evaluated. Indicative results of
mode identification and network equivalencing are presented.

4.1. Description of the Systems under Study

The performance of the mode identification and equivalent modeling techniques is assessed using
signal responses obtained from the Kundur two-area system topology [36] and a laboratory-scale
ADN [39], respectively. In the following Sections the network topologies employed to obtain the
dynamic responses are briefly described.

4.1.1. Kundur’s Two-Area System

Kundur’s two-area system consists of eleven buses and two areas, connected by a weak tie
between bus 7 and 9. The basic topology is depicted in Figure 9. In total, two loads are applied to
the system at bus 7 and 9. Two shunt capacitors are also connected to bus 7 and 9. More information
regarding the network can be found in [36].
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Figure 9. Kundur’s two-area system topology.

In order to obtain the measurements for the assessment of the mode identification methods,
a disturbance at bus 7 is caused. Specifically, a load with nominal power equal to 350 MW is
disconnected from the bus at the time instant t = 1 s and is re-connected at t = 1.2 s.

4.1.2. Laboratory-Scale Active Distribution Network

To evaluate the performance of the developed equivalent models, a series of experiments were
conducted, using the three-phase, 400 V, 50 Hz, laboratory-scale ADN of Figure 10. Two sub-grids
conclude the test setup. The examined topology is interconnected with the main utility grid, which
is simulated using a real-time digital simulator (RTDS) and is connected to the ADN by means of
a three-phase programmable voltage source (PVS). A detailed description regarding the examined
topology can be found in [39].
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Figure 10. Laboratory-scale active distribution network (ADN).

Different network configurations were investigated by connecting/disconnecting the switches
of the test setup (S1–S8). In addition, different load operating conditions were examined by varying
the power of the installed components. Dynamic responses of real and reactive power were acquired
by causing artificial voltage disturbances using the PVS, ranging between −0.1 p.u. and 0.1 p.u.
To verify the efficiency of the network equivalent models developed within SIEMToolbox the following
topologies were examined:

• Topology 1: The static load bank and the asynchronous machine (AM1) are connected to the
network. The AM1 operates as a motor.

• Topology 2: The static load bank, the inverter interfaced distributed generator (DG1),
the synchronous generator (SG) and all the asynchronous machines are connected to the network.
In this case, the AM2 and AM3 asynchronous machines operate as motors, whereas the AM1
operates as generator.

4.2. Mode Identification

The effectiveness of SIEMToolbox to analyze ringdown responses is evaluated in the following
subsections. For this purpose, indicative results for single- and multi-signal analysis are presented.

4.2.1. Single Signal Analysis

To evaluate the performance of the mode identification techniques the real power response of Bus
7 acquired with a sampling rate of 100 samples per second is used. The recorded ringdown response
is first detrended to remove possible DC components and then the transient part of the response is
neglected and only the oscillatory part is considered to focus on the analysis of the interarea mode.

The influence of the mode identification model order is demonstrated in Figure 11, where the
original real power response acquired from NEPLAN software is compared with the corresponding
responses simulated by the Prony method assuming varying model order. As shown in Figure 11, a high
model order is required for the Prony method to accurately capture the original real power response.
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Figure 11. Impact of model order. Prony method.

The influence of the model order is further assessed by comparing the corresponding identified
modes with the true interarea mode calculated by the NEPLAN eigenvalue analysis tool [40],
i.e., damping factor and frequency equal to −0.127 s−1 and 0.54 Hz, respectively. The resulting
identified modes are depicted in Figure 12 for varying model order. As shown in the magnified area of
Figure 12, by increasing the model order more accurate approximations are provided for the estimation
of the interarea mode. Furthermore, it is interesting to mention that as the model order increases,
the estimated modal frequency remains constant, while the damping factor changes. It should be also
noted that, all remaining modes are trivial artificial modes introduced to enhance the accuracy of the
method [25,41].
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Figure 12. Eigenvalue analysis for Prony method assuming different model orders.

4.2.2. Multiple Signal Analysis

To offer a further insight on the accuracy of the identification methods, the multi-signal approach
is employed in this subsection. The examined mode identification techniques are applied individually
to eight distinct signals and the corresponding modal parameters are estimated. The resulting averaged
interarea modes are compared with the true NEPLAN interarea mode (σ = −0.127 s−1, f = 0.54 Hz).
For this purpose, the median absolute deviation (MAD) is employed [25], which is defined as:

MAD = median
(∣∣∣λ̂− λ∣∣∣) (21)
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where λ̂ denotes the modal estimate and λ is the true interarea mode. Note that the comparison is
carried out assuming first order approximations for all methods. The associated MAD results of the
interarea mode using all available methods in the SIEMToolbox are compared in Table 1. It should be
clarified that the resulting damping factor and frequency for each method is the averaged value by
means of multiple signals.

Table 1. Impact of multi-signal analysis on the accuracy of the mode estimates. Mean values acquired
from eight signals.

Technique Damping Factor (s−1) Frequency (Hz) MAD

MP −0.12869 0.54086 0.0009
Prony −0.40470 0.56803 0.1396
ERA −0.12848 0.54143 0.0010

N4SID −0.61850 0.74605 0.2665
PEM −0.24762 0.67708 0.0913
FFT −0.13493 0.54155 0.0040
VF −0.13062 0.54371 0.0026

Hybrid FD/TD −0.13228 0.54404 0.0033

Based on the results of Table 1, it is evident that MP, ERA, VF and Hybrid FD/TD methods
present higher accuracy regarding the interarea mode estimates, compared with the rest of the
identification methods.

4.3. Equivalent Modelling

In this subsection, the SIEMToolbox parameter estimation procedure is applied to evaluate the
performance of the network equivalent models by means of the simulated dynamic real and reactive
power responses.

4.3.1. Single Signal Analysis

One instant of the available real and reactive power responses of the laboratory-scale ADN
Topology 2 is used to evaluate the performance of the developed equivalent models. Initially, the effect
of the model order of TFNL is investigated. As demonstrated in Table 2, the accuracy of the simulated
real and reactive power increases with the model order. Specifically, optimal results are obtained using
model order 5 and 4 for the real power and the reactive power, respectively.

Table 2. Mean absolute error (MAE) for the modelling of a real/reactive power response of Topology 2,
using transfer functions and non-linear equations (TFNL) model.

Model Order Real Power Reactive Power

1 0.0216 0.0042
2 0.0380 0.0026
3 0.0238 0.1262
4 0.0315 0.0014
5 0.0103 0.4876

Additionally, to provide a better insight, the modelling of the specific real power response
assuming selective model orders is illustrated in Figure 13. It should be noted that in all cases, each
power response is normalized by means of the pre-disturbance value. In Figure 13 is verified that
higher model order results in more accurate simulations; this is mostly important in cases where the
dynamic load penetration in the whole load mix is large, since the oscillatory behavior in such cases is
more complex.
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Figure 13. Modelling of real power. Estimations provided by the TFNL using different model orders.

Next, to provide a thorough insight in the accuracy of the network equivalent models, in Figure 14,
the real and reactive power responses are simulated using some of the most widely used static
equivalents as well as the two dynamic equivalent models of SIEMToolbox. Note that for the dynamic
network equivalent models optimal order is considered; for the modelling of the reactive power, model
order 4 is considered for both dynamic models, whereas model order 4 and 5 is assumed for the
modelling of the real power for the TF and TFNL models, respectively.
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Figure 14. Modelling of (a) real and (b) reactive power response using static models; Modelling of (c)
real and (d) reactive power response using dynamic equivalent models.

To evaluate the accuracy of the derived network equivalent models, the following evaluation
indexes are also employed [35]:

OE(%) =

∣∣∣∣∣ y+ − ŷ+
y+

∣∣∣∣∣ · 100% (22)

SSE(%) =

∣∣∣∣∣ yss − ŷss

yss

∣∣∣∣∣ · 100% (23)

The overshoot error, i.e., OE (%) in (22), denotes the percentage relative error for the estimation of
the power overshoot, whereas the steady-state error, i.e., SSE (%) in (23), is the percentage relative
error related with the approximation of the new steady-state. Note that y+ is the measured power
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immediately after the voltage sag, while yss is the power at the new steady-state condition. Finally, ŷ+
and ŷss denote the corresponding estimations provided by the examined equivalent model.

In Figure 15, the OE and SSE values for each model are depicted for the real and the reactive power.
It is shown that two dynamic equivalent models result into lower OE (%) and SSE (%) compared to the
static models.
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4.3.2. Multiple Signal Analysis

In this subsection the performance of all available network equivalent models supported by
SIEMToolbox are further evaluated using multiple signal responses. Specifically, in Figure 16 the
resulting mean values of MAPE, over 10 responses of Topology 1, are depicted for both the real and
reactive power. The presented values verify that dynamic models based on transfer functions, i.e.,
TF and TFNL, present higher accuracy compared to the static equivalents. Note that for the TF and
the TFNL equivalent models optimal order determination was considered. Furthermore, it should be
mentioned that regarding the static equivalent models, the dynamic behavior of the ADN is simulated
more accurately by using the ZIP model. Another interesting remark is that the static equivalent
models that consider frequency dependency, i.e., EPRI-f, EXP-f, ZIP-f and ZIP-EXP-f, do not improve
significantly the accuracy of the simulated responses.
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5. Conclusions

In this paper, the SIEMToolbox, which was developed in MATLAB environment and is
provided with a complete user-friendly GUI, is demonstrated. SIEMToolbox incorporates several
measurement-based methods for the analysis and testing of mode identification techniques and
network equivalent models. The theoretical background regarding mode identification and
network equivalencing by using dynamic responses is analyzed. The mode identification and
parameter estimation procedures implemented within SIEMToolbox are described thoroughly and the
corresponding basic features and settings of SIEMToolbox are presented to demonstrate the applications
for the derivation of measurement-based equivalent models.

Indicative results using single- and multi-signal analysis are employed to assess the performance
of the toolbox in analyzing ringdown responses. For this purpose, simulated dynamic responses
from the Kundur two-area system are employed. Finally, the SIEMToolbox parameter estimation
procedure is applied to various static and dynamic model structures to evaluate their performance in
modelling real and reactive power dynamic responses of ADNs, using real measurements acquired
from a laboratory-scale ADN.
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