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Abstract: The recent developments in combining point forecasts of day-ahead electricity prices
across calibration windows have provided an extremely simple, yet a very efficient tool for improving
predictive accuracy. Here, we consider two novel extensions of this concept to probabilistic forecasting:
one based on Quantile Regression Averaging (QRA) applied to a set of point forecasts obtained for
different calibration windows, the other on a technique dubbed Quantile Regression Machine (QRM),
which first averages these point predictions, then applies quantile regression to the combined forecast.
Once computed, we combine the probabilistic forecasts across calibration windows by averaging
probabilities of the corresponding predictive distributions. Our results show that QRM is not only
computationally more efficient, but also yields significantly more accurate distributional predictions,
as measured by the aggregate pinball score and the test of conditional predictive ability. Moreover,
combining probabilistic forecasts brings further significant accuracy gains.

Keywords: electricity price forecasting; predictive distribution; combining forecasts; average
probability forecast; calibration window; autoregression; pinball score; conditional predictive ability

1. Introduction

After 25 years of intensive research, the electricity price forecasting (EPF) literature includes
hundreds of publications, focused both on point [1,2] and probabilistic [3,4] predictions. However,
very few studies try to find the optimal length of the calibration window or even consider calibration
windows of different lengths. Instead, the typical approach has been to select ad-hoc a ‘long enough’
window, ranging from as few as 10 days to as much as five years. Only recently has this issue
been tackled more systematically, initially by Hubicka et al. [5] and then in a follow up article by
Marcjasz et al. [6]; note, that the latter paper eventually appeared in print earlier than the original study.

Hubicka et al. [5] proposed a novel concept in energy forecasting that combined day-ahead
predictions across different calibration windows ranging from 28 to 728 days. Using data from the
Global Energy Forecasting Competition 2014, they showed that such averaging across calibration windows
yielded better results than selecting ex-ante only one ‘optimal’ window length. They concluded that a
mix of a few short- and a few long-term windows led to the best predictions. Marcjasz et al. [6] extended
their analysis to other datasets and larger models. More importantly, they introduced a well-performing
weighting scheme for averaging forecasts. Overall, their results confirmed earlier findings, but they
advised to use slightly longer windows at the shorter end, especially when considering models
with more explanatory variables (inputs). On the other hand, they concluded that including 3-
instead of 2-year windows did not bring significant benefits. Marcjasz et al. recommended the
WAW(56:28:112, 714:7:728) averaging scheme, i.e., past performance weighted combination of forecasts
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from six windows: 56-, 84-, 112-, 714-, 721- and 728-day long; we use Matlab notation to describe
the sets of windows, e.g., (7:364) refers to all windows from 7 to 364 days, (14:7:105) to 14 window
lengths: 14, 21, ..., 105 days, while (7, 364) to 7- and 364-day windows. In their empirical study, this
averaging scheme performed very well and in most cases was not significantly outperformed by any
other forecast.

Despite the innovative content, the above mentioned papers are limited to point predictions. To
address this gap, here we consider two novel extensions of the averaging across calibration windows
concept to probabilistic forecasting: one based on Quantile Regression Averaging (QRA) [7] and
one using the Quantile Regression Machine (QRM) [8]. As the underlying statistical technique
both use quantile regression [9], which has recently become the workhorse of probabilistic energy
forecasting [10–14]. Moreover, both apply it to a pool of point forecasts obtained for calibration
windows of different lengths and yield predictions for the 99 percentiles of the next day’s price
distribution for each hour. The difference between them lies in the choice of the regressors—QRA uses
the point forecasts themselves, while QRM first averages them, then applies quantile regression to the
combined forecast. Once computed, we combine the probabilistic forecasts across calibration windows
by averaging probabilities of the corresponding predictive distributions, as in [15]. Although the latter
works well in our study, the literature on combining predictive distributions offers alternatives [15–18]
which could be considered as well.

Furthermore, since we want to focus on predictive distributions, we do not propose our own
approach to point forecasting. Instead we select a well performing model and take its point forecasts
as inputs to the QRA and QRM procedures. Our starting point is the study of Marcjasz et al. [6] and
the autoregressive expert model they call ARX2, fitted to asinh-transformed day-ahead prices from
two major power markets (Nord Pool and the PJM Interconnection) using one of the six suggested
calibration window lengths for point forecasting (i.e., T0 = 56, 84, 112, 714, 721 or 728 days). Next, we
apply either QRA or QRM to these six series of point forecasts in a calibration window for probabilistic
predictions of length T = 14, 15, ..., 363 or 364 days. It is important to emphasize that the calibration
windows for point (T0) and probabilistic (T) forecasts are two different objects—they may be of different
length, are non-overlapping (the ‘point’ window directly precedes the ‘probabilistic’ one) and only the
latter is evaluated in our study.

The remainder of the paper is structured as follows. In Section 2 we briefly describe the datasets.
In Section 3 we first discuss the forecasting scheme, then recall the point forecasting setup of [6], in
particular the asinh transformation and the ARX2 model, and finally introduce our methodology for
computing probabilistic predictions. In Section 4 we evaluate the obtained predictive distributions
in terms of the Aggregate Pinball Score (APS) and test the conditional predictive ability using the
approach of Giacomini and White [19]. Finally in Section 5 we wrap up the results and conclude.

2. Datasets

To evaluate our models we use datasets from two major power markets: the hydro-dominated and
exhibiting strong seasonal variations Nord Pool (Northern Europe) and the world’s largest competitive
wholesale electricity market—the PJM Interconnection (Northeastern United States), with a balanced
coal–gas–nuclear generation mix. Like in [6], the Nord Pool dataset comprises hourly system prices
in EUR/MWh and day-ahead consumption prognosis for four Nordic countries (Denmark, Finland,
Norway and Sweden), see Figure 1, while the PJM dataset—hourly prices and day-ahead load forecasts
for the Commonwealth Edison (COMED) zone, see Figure 2. Note, however, that in our study
both datasets start 364 days later, because—following the advice of Marcjasz et al. [6]—the longest
calibration windows for point forecasts we consider are 728 days long. Consequently, the Nord Pool
dataset spans 1674 days from 31 December 2013 to 31 July 2018 and the PJM dataset spans 1820 days
from 9 April 2013 to 2 April 2018. Given that the longest calibration window for point predictions
is T0 = 728 days and for probabilistic forecasts T = 364 days, the out-of-sample test periods for
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evaluating probabilistic forecasts are: 27 December 2016 to 31 July 2018 (582 days) for Nord Pool and
5 April 2016 to 2 April 2018 (728 days) for PJM.

Figure 1. Nord Pool (NP) hourly system prices (top) and hourly consumption prognosis (bottom) from
31 December 2013 to 31 July 2018. The first dashed line marks the beginning (29 December 2015) of the
initial 364-day calibration window for probabilistic forecasts, the second—the beginning (27 December
2016) of the 582-day long out-of-sample test period.

Figure 2. PJM hourly system prices (top) and hourly load forecasts (bottom) in the Commonwealth
Edison (COMED) zone from 9 April 2013 to 2 April 2018. The first dashed line marks the beginning
(7 April 2015) of the initial 364-day calibration window for probabilistic forecasts, the second—the
beginning (5 April 2016) of the 728-day long out-of-sample test period.
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3. Methodology

3.1. The Forecasting Scheme

In our empirical study, we use a rolling window scheme. Every day we compute 24 predictive
distributions for each of the 24 hours of the next day, then move the calibration windows forward by
one day and repeat the exercise. The calibration windows for probabilistic predictions range between
T = 14 and 364 days, i.e., overall we consider 351 different window lengths. On the other hand, to
obtain each predictive distribution we always use exactly six calibration windows for point forecasts:
T0 = 56, 84, 112, 714, 721 and 728 days.

Let us now illustrate this procedure using the Nord Pool dataset. To obtain predictive distributions
for 27 December 2016 (denoted by an asterisk ‘∗’ in Figure 3) using the longest calibration window
for probabilistic forecasts (T = 364 days; the light red shaded bar in the top part of Figure 3) we
apply the QRA and QRM approaches to point forecasts obtained for the period from 29 December
2015 to 26 December 2016, i.e., the initial 364-day calibration window for probabilistic forecasts, see
Figure 1. Of course, before we can do this, we have to compute the point forecasts for 29 December
2015 to 26 December 2016 by fitting the ARX2 model to data in one of the six point forecasting
calibration windows (blue shaded bars in the top part of Figure 3) directly preceding 29 December
2015, 30 December 2015, ..., 26 December 2016. For instance, for T0 = 728 we use data in the initial
728-day window (i.e., 31 December 2013 to 28 December 2015; light blue bar), while for T0 = 56 in a
56-day window from 11 November 2015 to 28 December 2015 (dark blue bar).

Figure 3. Illustration of our forecasting scheme. The target day for which the predictive distributions
are computed is denoted by an asterisk ‘∗’. The calibration windows for probabilistic forecasts (red
shaded bars; the darker the shade the shorter the window) end on the previous day. Here three
windows are plotted: the longest considered (T = 364 days; top), an intermediate (T = 182 days;
middle) and the shortest considered (T = 14 days; bottom). They are directly preceded by six
calibration windows for point forecasts (blue shaded bars; the darker the shade the shorter the window)
of T0 = 56, 84, 112, 714, 721 and 728 days.

Similarly, to obtain predictive distributions for 27 December 2016 using the shortest calibration
window for probabilistic forecasts (T = 14 days; the dark red shaded bar in the bottom part of Figure 3)
we apply the QRA and QRM approaches to point forecasts obtained for the 14-day period from
13 to 26 December 2016. Again, before we can do this, we have to compute the point forecasts for
13 December 2016 to 26 December 2016 by fitting the ARX2 model to data in one of the six point
forecasting calibration windows (blue shaded bars in the bottom part of Figure 3) directly preceding
13 December 2016, 14 December 2016, ..., 26 December 2016.
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3.2. Computing Point Forecasts

Our point forecasting setup directly mimics that of Marcjasz et al. [6]. In particular, our modeling
is conducted within a ’multivariate’ framework, where we explicitly use the ’day × hour’ matrix-like
structure with Pd,h representing the electricity price for day d and hour h. We calibrate our model
to transformed data, i.e., Xd,h = f (Pd,h), where f (·) is the so-called variance stabilizing transformation
(VST) [20]. In our case f (·) is the area hyperbolic sine:

Xd,h = asinh(pd,h) ≡ log
(

pd,h +
√

p2
d,h + 1

)
, (1)

where pd,h = 1
b (Pd,h − a) are ‘normalized’ prices, a is the median of Pd,h in the (point forecasting)

calibration window and b is the sample median absolute deviation (MAD) around the sample median
adjusted by a factor for asymptotically normal consistency to the standard deviation. This factor is

1
z0.75
≈ 1.4826 where z0.75 is the 75% quantile of the normal distribution. After computing the forecasts,

we apply the inverse transformation, the hyperbolic sine, i.e., pd,h = sinh(Xd,h), in order to obtain the
price predictions:

P̂d,h = b sinh(X̂d,h) + a. (2)

For computing point forecasts we use the well-performing expertDoW,nl model of Ziel and Weron [21],
only expanded to include one exogenous variable (consumption or load forecast; see the bottom panels in
Figures 1 and 2). Within this model, as in [6] denoted here by ARX2, the VST-transformed price on day d
and hour h is given by:

Xd,h = βh,1Xd−1,h + βh,2Xd−2,h + βh,3Xd−7,h︸ ︷︷ ︸
autoregressive effects

+ βh,4Xd−1,min + βh,5Xd−1,max︸ ︷︷ ︸
non-linear effects

+ βh,6Xd−1,24︸ ︷︷ ︸
midnight price

+ βh,7Cd,h︸ ︷︷ ︸
load forecast

+
7

∑
i=1

βh,7+iDi︸ ︷︷ ︸
weekday dummies

+εd,h. (3)

where Xd−1,min and Xd−1,max are the minimum and the maximum of the previous day’s 24 hourly
prices, Xd−1,24 is the previous day’s price at midnight (included in the model to take advantage of
the influence it has on the prices for early morning hours [11,22]), Cd,h is the known on day d− 1 and
VST-transformed consumption or load forecast for day d and hour h, and finally D1, ..., D7 are weekday
dummies which capture the short-term seasonality. As in [6], the model parameters, i.e., βh,1, ..., βh,14,
are estimated using Ordinary Least Squares (OLS), independently for each hour h = 1, ..., 24.

3.3. Computing Probabilistic Forecasts

In this paper, we introduce two extensions of the averaging across calibration windows concept to
probabilistic forecasting. The first one is based on Quantile Regression Averaging (QRA) of Nowotarski
and Weron [7], which has been found to perform very well in several test cases, including electricity
price [3,11,23,24], load [25–27] and wind power forecasting [28]. Recall, that QRA involves applying
quantile regression [9] to a pool of point forecasts. More precisely, the q-th quantile of the predicted
variable (here: the electricity price Pd,h) is represented by a linear combination of predictor variables:

Qq(Pd,h) = Yd,hwq, (4)

where wq is a vector of weights for quantile q, estimated by minimizing the so-called pinball score for
each quantile, see Section 4. In our case, the predictor (or explanatory) variables are the point forecasts
obtained for the six considered calibration windows:

Yd,h =
[
1 P̂d,h(56, T) P̂d,h(84, T) P̂d,h(112, T) P̂d,h(714, T) P̂d,h(721, T) P̂d,h(728, T)

]
, (5)
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where 1 denotes a T× 1 vector of ones (i.e., the intercept) and P̂d,h(·, T) a T× 1 vector of point forecasts,
obtained for the ARX2 model using one of the six calibration windows (i.e., T0 = 56, 84, 112, 714, 721
or 728 days).

The second approach, after Marcjasz et al. [8] dubbed Quantile Regression Machine (QRM), first
averages point predictions across the six calibration windows to yield Pd,h(T), then applies quantile
regression (4) to the combined forecast:

Yd,h =
[
1 Pd,h(T)

]
. (6)

Note, that Pd,h(T) is of the same length as the six individual forecasts P̂d,h(·, T), hence the ‘argument’
T. The term Quantile Regression Machine is a compilation of ‘quantile regression’ and ‘committee
machine’, since in [8] the authors considered committees of neural networks. Here, we use only
regression models, but their weighted average across calibration windows reminds of the output of
a committee machine. To reduce the complexity of our study we limit ourselves to the averaging
scheme for point forecasts recommended by Marcjasz et al. [6], i.e., WAW(56:28:112, 714:7:728), which
assigns weights based on yesterday’s performance of the ARX2 model in each calibration window,
see Equation (5) in [6]. Regarding notation, recall from Section 3.1 that the calibration windows for
probabilistic predictions range between T = 14 and 364 days. We use QRA(T) to denote a QRA-type
and QRM(T) to denote a QRM-type probabilistic forecast obtained for a window of length T.

Finally, note that both for QRA and QRM, for each day d and hour h we forecast 99 percentiles,
i.e., q = 0.01, 0.02, ..., 0.99, which approximate the entire predictive distribution relatively well.
However, due to numerical inefficiency of quantile regression (4) the neighboring percentiles may be
overlapping, leading to a phenomenon known as quantile crossing [29]. Hence, following Maciejowska
and Nowotarski [11], the 99 quantiles are sorted to obtain monotonic quantile curves, independently
for each day and hour.

3.4. Averaging Probabilistic Forecasts Across Calibration Windows

Given a set of probabilistic forecasts for calibration windows of T = 14, 15, ..., 364 days, we can
combine all or some of them in one of two commonly used ways—by averaging probabilities or
quantiles. The average quantile forecast, i.e., a horizontal average of the corresponding predictive
distributions, is always more concentrated than the average probability forecast, i.e., a vertical average.
While this feature is an advantage in many forecasting applications [15], it is not so in EPF [8,30].
Hence, in this study we only consider the average probability forecast defined as:

1
n

n

∑
i=1

F̂i(x), (7)

where F̂i(x) is the i-th distributional forecast, actually a set of 99 percentiles obtained by setting
q = 0.01, 0.02, ..., 0.99 in Equation (4), and n is the number of combined predictive distributions. We use
this averaging scheme for both the QRA- and QRM-type probabilistic forecasts and respectively denote
the combined forecasts by QRA(T ) and QRM(T ), where T is the vector of calibration windows used.

4. Results

We evaluate the probabilistic forecasts in terms of the Pinball Score, a so-called proper scoring rule
and a special case of an asymmetric piecewise linear loss function [3,31]:

PS
(

Q̂q(Pd,h), Pd,h, q
)
=

(1− q)
(

Q̂q(Pd,h)− Pd,h

)
for Pd,h < Q̂q(Pd,h),

q
(

Pd,h − Q̂q(Pd,h)
)

for Pd,h ≥ Q̂q(Pd,h),
(8)
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where Q̂q(Pd,h) is the forecast of the q-th quantile of Pd,h obtained using Equation (4), Pd,h is the
observed price and q is the quantile. The lower the score is, the more accurate are the probabilistic
forecasts, i.e., the more concentrated are the predictive distributions. Note, that Equation (8) measures
the predictive accuracy for only one particular quantile. However, it can be averaged across all
percentiles (i.e., q = 0.01, 0.02, ..., 0.99) and all hours in the whole out-of-sample test period to yield the
Aggregate Pinball Score (APS). Note, that computing the APS is equivalent to computing the quantile
representation of the Continuous Ranked Probability Score (CRPS) [32,33], i.e., it is a discretization of the
CRPS, which replaces an integral over all quantiles q ∈ [0, 1] by a simpler to compute sum over 99
percentiles [3].

4.1. QRA vs. QRM

Let us first compare the two approaches to computing probabilistic forecasts described in
Section 3.3. In Figure 4 we plot the APS across all 99 percentiles and all hours in the 582-day (for
Nord Pool) and 728-day (for PJM) out-of-sample test periods, see Figures 1 and 2. Clearly, for each
dataset and each T, QRM(T) yields more accurate probabilistic forecasts than QRA(T), with the results
converging towards each other for larger windows. The latter may be due to too few observations
for QRA to perform well for the shorter calibration windows, as it has 3.5 times more parameters to
estimate than QRM. Given that computing predictive distributions via QRM is nearly three times
faster than via QRA, we recommend the former approach. Note also, that initially we have considered
calibration windows as short as 7 days. However, probabilistic forecasts for windows of less than 14
days perform poorly. For this reason they are not discussed in this paper.

Figure 4. Aggregate Pinball Scores (APS) for the Nord Pool (top) and PJM (bottom) datasets as a
function of T = 14, 15, . . . , 364 days.
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4.2. Averaging Probabilistic Forecasts across Calibration Windows

Now, let us turn to the core part of this empirical study. Analogously to [5,6], we examine several
different combinations of calibration windows for probabilistic EPF. The results are illustrated in
Figure 5 (for Nord Pool) and Figure 6 (for PJM). We can observe that for both datasets QRA(14:7:364),
i.e., the combination across all window lengths with a step of 7 days depicted in both Figures by green
triangles, is a top performer among QRA-type predictions. QRM(14:7:364) also yields good forecasts,
that are more accurate than QRM(T) for all T, but is in turn outperformed by more sparse sets of
windows. In particular, QRA(14:7:28,308:28:364) denoted by black stars and QRA(14:28:70,308:28:364)
denoted by dark red squares outperform all other combinations. In addition, they are computationally
efficient—they require computing probabilistic forecasts for only six calibration windows. This reminds
of the results for point forecasts [5,6], where also combinations of three short and three long windows
were top performers.

Figure 5. Aggregate pinball scores (APS) for probabilistic QRA (top) and QRM (bottom) forecasts for
the Nord Pool dataset. Filled circles refer to individual probabilistic calibration window lengths and
lines with symbols indicate window lengths selected for averaging forecasts.
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Figure 6. Aggregate pinball scores (APS) for probabilistic QRA (top) and QRM (bottom) forecasts for
the PJM dataset. Filled circles refer to individual probabilistic calibration window lengths and lines
with symbols indicate window lengths selected for averaging forecasts.

4.3. The CPA Test and Statistical Significance

The analyzed so far Aggregate Pinball Scores (APS) can be used to provide a ranking, but
do not allow drawing statistically significant conclusions on the outperformance of the forecasts
of one window set by those of another. Therefore, we use the Giacomini and White [19] test for
conditional predictive ability (CPA), which can be regarded as a generalization of the commonly used
Diebold-Mariano test for unconditional predictive ability. Since only the CPA test accounts for parameter
estimation uncertainty, it is the preferred option. Here, one statistic for each pair of window sets is
computed based on the 24-dimensional vector of Pinball Scores for each day:

∆X,Y,d = ‖PSX,d‖ − ‖PSY,d‖, (9)

where ‖PST ,d‖ = ∑24
h=1 |PSd,h| for window set T . For each pair of window sets and each dataset we

compute the p-value of the CPA test with null H0 : φ = 0 in the regression [19]:

∆X,Y,d = φ′Xd−1 + εd, (10)



Energies 2019, 12, 2561 10 of 12

where Xd−1 contains elements from the information set on day d− 1, i.e., a constant and lags of ∆X,Y,d.
In Figure 7 we illustrate the obtained p-values using ‘chessboards’, analogously as in [20,21,30,34]

for the Diebold-Mariano test, i.e., we use a heat map to indicate the range of the p-values—the closer
they are to zero (→ dark green) the more significant is the difference between the forecasts of a
window set on the X-axis (better) and the forecasts of a window set on the Y-axis (worse). Evidently,
the CPA test results confirm and emphasize the observations made in Section 4.2. In particular,
QRM(14:7:28,308:28:364) and QRM(14:28:70,308:28:364) significantly outperform all other window
sets; additionally for Nord Pool data QRM(14:7:28,308:28:364) is significantly more accurate than
QRM(14:28:70,308:28:364). Comparing the averaging schemes, it is worth noting that in no case does
QRA significantly outperform the corresponding QRM scheme. On the other hand, the opposite can
be observed for several cases for both datasets. This result reinforces our recommendation of using the
QRM scheme for probabilistic EPF, regardless of the number of predictions combined.

Figure 7. Results of the conditional predictive ability (CPA) test [19] for forecasts of selected models for
the Nord Pool (left) and PJM (right) data. We use a heat map to indicate the range of the p-values—the
closer they are to zero (→ dark green) the more significant is the difference between the forecasts of a
model on the X-axis (better) and the forecasts of a model on the Y-axis (worse).

5. Conclusions

In this paper, we take the averaging across calibration windows concept to a new level. Motivated by
the results of Hubicka et al. [5] and Marcjasz et al. [6] for point forecasts, we consider two extensions
of this approach to probabilistic forecasting: one based on Quantile Regression Averaging (QRA) [7],
the other on the Quantile Regression Machine (QRM) [8]. Both methods apply quantile regression to
a pool of point forecasts in order to obtain predictions for the 99 percentiles of the next day’s price
distribution. The difference between them lies in the choice of the regressors—QRA uses the point
forecasts themselves, while QRM the combined point forecast.

Somewhat surprisingly, it turns out that it is not only more computationally efficient, but also
better in terms of the Pinball Score to first average point predictions and then apply quantile regression
to the combined forecast, than to use quantile regression directly on the individual point forecasts.
In other words, a more general approach (QRA) is outperformed by a two-step technique (QRM).
We believe that this outcome is due to two factors: the simpler model structure with fewer parameters
to estimate and the more accurate point forecasts used as inputs. As Uniejewski et al. [30] have recently
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shown, more accurate point forecasts directly translate into better probabilistic forecasts computed
via quantile regression. In addition, averaging point forecasts for a few adequately chosen calibration
window lengths leads to decreasing the MAE by about 5% compared to the best point forecast obtained
for a single window, even selected ex-post [5,6].

Regarding the selection of calibration windows for combining forecasts, similarly to the results
for point predictions, the best performing combinations are those averaging a small number of
short- and long-term windows. In particular, QRM(14:7:28,308:28:364) significantly outperforms all
other considered window sets and is recommended for averaging probabilistic forecasts. We should
emphasize that in this study we are using only one, relatively simple way of combining probabilistic
forecasts, i.e., the average probability forecast, but the literature on combining predictive distributions
offers interesting alternatives [15–18]. They could be tested in this context as well. Moreover, the
proposed methodology can be easily extended to other areas of energy forecasting (e.g., load, solar,
wind) or other types of markets (e.g., intraday). Finally, the economic benefits from using more accurate
probabilistic electricity price predictions could be evaluated, as is becoming more common in the point
forecasting literature [35,36].
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