
energies

Article

S-GoSV: Framework for Generating Secure IEC 61850
GOOSE and Sample Value Messages

Shaik Mullapathi Farooq 1, S.M. Suhail Hussain 2,* and Taha Selim Ustun 2

1 Department of Computer Science and Engineering, YSR Engineering College, Yogi Vemana University,
Kadapa 516360, Andhra Pradesh, India

2 Fukushima Renewable Energy Institute, AIST (FREA), Koriyama 963-0215, Japan
* Correspondence: suhail.hussain@aist.go.jp; Tel.: +81-804-373-5146

Received: 10 June 2019; Accepted: 29 June 2019; Published: 1 July 2019
����������
�������

Abstract: Standardized communication plays an important role in substation automation system
(SAS). IEC 61850 is a de-facto standard in SAS. It facilitates smooth communication between different
devices located in the substation by achieving interoperability. Generic Object-Oriented Substation
Event (GOOSE) and Sample Value (SV) messages developed according to IEC 61850 enable efficient
monitoring and operation control of SAS. IEC 61850 is very popular due to its flexible and robust
modeling. As the number of critical infrastructures that employed IEC 61850 increases, it is important
to study cybersecurity aspects as well. To this end, this paper develops a software framework, S-GoSV
(Secure GOOSE and SV), that generates custom GOOSE and Sample Value messages. Furthermore,
security features are added to protect them from different security attacks within a substation.
IEC 62351-6 specifies digital signatures to achieve node authentication and messages integrity.
Therefore, S-GoSV implements RSASSA-PKCS1-v1_5 digital signature algorithm based on RFC 2313.
Performance studies show that digital signature algorithms based on RSA signing and verification
take long times and do not conform to timing requirements stipulated by IEC 61850 for power
system communication. To address this, Message Authentication Code (MAC) based digital signature
algorithm, Keyed Hash-Message Authentication Code- Secure Hash Algorithm (HMAC-SHA256),
is additionally implemented in S-GoSV framework for securing GOOSE messages.

Keywords: security in Substation communication system; Generic Object-Oriented Substation Event
(GOOSE); Sample Values; IEC 62351-6 standard

1. Introduction

Legacy power systems are transforming into smart grids which are designed to operate in a more
reliable and resilient fashion. Existing Supervisory Control and Data Acquisition (SCADA) systems
do not have the capability to implement these features [1]. Substations play a key role in smart
grid revolution. IEC 61850 is a de-facto standard for substation automation [2]. It offers different
protocol services such Generic Object-Oriented Substation Event (GOOSE), Sample Value (SV) and
Manufacturing Message Service (MMS) [2]. It enables interoperability among substation devices
of different vendors with standard modeling. It also offers many services that include seamless
communication, defining data sets, defining logical nodes for substation communication equipment [3].

IEC 61850 standard was initially developed for substation automation. Due to its widespread
popularity and success, it was extended to other components in power grids such as fault current
limiters [4], Distributed Energy Resources (DERs) [5], Electric Vehicles (EVs) [6] and smart meters [7].
In these new implementations, IEC 61850 GOOSE and SV are utilized to exchange different data sets
between DERs, EVs and other components. Some researchers have developed open access tools for
generating GOOSE and SV messages, which are quite helpful in conducting different studies [8–10].

Energies 2019, 12, 2536; doi:10.3390/en12132536 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-7779-8140
https://orcid.org/0000-0002-2413-8421
http://www.mdpi.com/1996-1073/12/13/2536?type=check_update&version=1
http://dx.doi.org/10.3390/en12132536
http://www.mdpi.com/journal/energies

Energies 2019, 12, 2536 2 of 13

However, the reported tools only use datasets based on IEC 61850-9-2 LE SV format (only include
three-phase current and voltages values) or GOOSE formats. Addressing this knowledge gap; in this
paper, a C based framework ‘GoSV’ [11] is developed for generating custom GOOSE and SV messages
which can be used to send customized data sets in GOOSE and SV formats.

Cyber security is a rising concern for substation communication networks [12–14] and phasor
measurement units [15] as reported in the literature recently. Authors in [12], proposed Anomaly
Detection System (ADS) for the substations to protect simultaneous intrusions into multiple substations
which may cause severe cascading events that have catastrophic consequences. Authors in [14] reviewed
cyber security challenges and potential threats in IEC 61850-substation network and summarized
security measures. They argue that among different IEC 61850 services such as GOOSE, SV and
MMS, GOOSE message service is of paramount importance as it carries time critical information
related to power system operation. If GOOSE message service is compromised, then it may cause
severe loss to power system. To address these concerns, IEC 62351-6 specifies security mechanisms
for GOOSE message service [16]. The security requirements such as authentication and integrity are
very important in IEC 61850 substation networks and IEC 62351-6 recommends digital signatures to
mitigate cyber-attacks. Furthermore, the said standard specifies RSA digital signature algorithm for
signing and verifying the GOOSE messages. The timing performance of the specified digital signature
is evaluated and reported in [17,18]. Authors in [19] specify that the actual digital signature algorithm
explicitly specified by IEC 62351-6 to secure GOOSE is RSA-Probabilistic Signature Scheme based
on Signature Scheme with Appendix (RSASSA-PSS) based on RFC 3447 [20], which should be also
compatible with RFC 2313 [21].

In order to investigate cybersecurity considerations in power system communication networks,
this paper extends the GoSV framework with security implementations as Secure-GoSV (S-GoSV) [22]
using openSSL libraries. In S-GoSV framework RSASSA-PKCS1-v1_5 digital signature algorithm is
implemented to secure IEC 61850 GOOSE messages. However, investigations show that performance of
RSASSA-PKCS1_v1-5 digital signature algorithm is not suitable for time critical GOOSE messages [19].
Therefore, authors have proposed the use of fast computing Message Authentication Code (MAC)
based digital signature algorithm, Hash based Message Authentication Code- Secure Hash Algorithm
(HMAC-SHA-256) [23]. HMAC-SHA-256 based implementations are also included in the S-GoSV
framework for studying their performance.

The rest of the paper is organized as follows, Section 2 discusses GOOSE and SV message structures
according to IEC 61850-8-1 and IEC 61850-9-2 standards, respectively. It also shows implementation
details of GoSV software framework that generates custom GOOSE and Sample Values. Section 3 briefly
discusses S-GoSV software that implements RSASSA-PKCS1-v1_5 digital algorithm specified by IEC
62351-6. Section 4 describes the implementation details of RSASSA-PKCS1-v1_5 digital algorithm and
HMAC-SHA256 on GOOSE messages. Section 5 demonstrates the results with Wireshark captures.
Section 5 draws the conclusions.

2. GoSV Framework

The GoSV framework is developed for generating and publishing customized GOOSE and SV
messages. The crucial part of this framework is to accurately construct Ethernet frame according to
IEC 61850-9-2 (Sample Values) and IEC 61850-8-1 (GOOSE) formats. Figure 1 shows the ethernet frame
and its fields. The Ethernet frame format starts with destination and source MAC address followed by
802.1q and 802.1p (VLAN and priority tag) optional fields. The next field is ‘ethertype’ which defines
the Ethertype Protocol Data unit (PDU) in the frame. The value of the ‘ethertype’ field for GOOSE
and SV messages are 0x88-0xB8 and 0x88-0xBA, respectively. All the fields of ‘Ethertype PDU’ are
encoded according to ASN.1 BER as specified in ISO/IEC 8825-1. All the fields are in triplet format of
Tag, Length and Value (TLV). Again, the value can contain a new set of triplets in itself as shown in
Figure 2. ‘Ethertype PDU’ consists of ‘APPID’, ‘Length’, ‘Reserved1’, ‘Reserved2’ followed by either
Sample Values or GOOSE message fields. Ethernet frame ends with Frame Check Sequence (FCS)

Energies 2019, 12, 2536 3 of 13

field. The ‘APPID’ field of 2 bytes contains the tag of ‘Ethertype PDU’. For ‘Ethertype SV PDU’ the
‘APPID’ value can be 0x4000 to 0x7FFF. The length field of 2 bytes contains the value of the total length
of the Ethertype SV or GOOSE PDU and it should be less than 1501 bytes. The ‘reserved1’ field of the
Ethertype SV or GOOSE PDU are reserved for security related information when the SV or GOOSE is
sent with IEC 62351-6 security considerations. The ‘reserved2’ field is of 2 bytes to store 16-bit Cyclic
Redundancy Check (CRC) value. Figures 3 and 4 gives the description of set of fields that can be
interpreted as T-L-V format.

Energies 2018, 11, x FOR PEER REVIEW 3 of 14

(FCS) field. The ‘APPID’ field of 2 bytes contains the tag of ‘Ethertype PDU’. For ‘Ethertype SV PDU’
the ‘APPID’ value can be 0x4000 to 0x7FFF. The length field of 2 bytes contains the value of the total
length of the Ethertype SV or GOOSE PDU and it should be less than 1501 bytes. The ‘reserved1’ field
of the Ethertype SV or GOOSE PDU are reserved for security related information when the SV or
GOOSE is sent with IEC 62351-6 security considerations. The ‘reserved2’ field is of 2 bytes to store
16-bit Cyclic Redundancy Check (CRC) value. Figures 3 and 4 gives the description of set of fields
that can be interpreted as T-L-V format.

Destination
MAC Address FCSSource

MAC Address
Ether Type

= 0x88B8/88BA GOOSE/SV PDU

APPID Length APDUReserved1 Reserved2

Figure 1. Ethernet frame.

Tag Length Value

. . .

Tag Length Value Tag Length Value

Tag Length Value Tag Length Value

. . .

. . .
Figure 2. Basic Encoding rule followed by Tag, Length and Value (TLV).

ValuesavPDU
Tag 0x60

savPDU
Length

noASDU
Tag 0x80

noASDU
Length Value

Seq. ASDU
Tag 0xA2

Seq. ASDU
Length Value

svID
Tag 0x80

svID
Length Value

smpCnt
Tag 0x82

smpCnt
Length Value

confRev
Tag 0x83

confRev
Length Value

smpSynch
Tag 0x85

smpSynch
Length Value

Seq Data
Tag 0x87

Seq Data
Length Value

Data

ASDU Tag
0x30

ASDU
Length Value

Figure 3. Description of IEC 61850-9-2 Sample Values payload fields.

The SV APDU starts with ‘savPdu’ field with a tag of 0x60 followed by its length. The ‘noASDU’
field (number of ASDU) has a tag 0x80 followed by its length and value. The ‘Sequence of ASDU’
field (Sequence of ASDU) begins with a tag 0xA2 followed by its length and value. The ‘ASDU’ field
(Application Service Data Unit) has a tag 0x30 followed by its length and value. Each ASDU consists
of the following fields: ‘svID’ (sample value ID), ‘smp_Cnt’ (sampling count), ‘confRev’ (count of
configuration changes), ‘smpSynch’ (sample synchronization), ‘Sequence of Data’ (sequence of data)
and ‘data’ (the actual dataset). The ‘svID’ field begins with a tag 0x80 followed by its length and
value. The ‘smp_Cnt’ field has tag 0x82 followed by its length and value. The ‘confRev’ field has a

Figure 1. Ethernet frame.

Energies 2018, 11, x FOR PEER REVIEW 3 of 14

(FCS) field. The ‘APPID’ field of 2 bytes contains the tag of ‘Ethertype PDU’. For ‘Ethertype SV PDU’
the ‘APPID’ value can be 0x4000 to 0x7FFF. The length field of 2 bytes contains the value of the total
length of the Ethertype SV or GOOSE PDU and it should be less than 1501 bytes. The ‘reserved1’ field
of the Ethertype SV or GOOSE PDU are reserved for security related information when the SV or
GOOSE is sent with IEC 62351-6 security considerations. The ‘reserved2’ field is of 2 bytes to store
16-bit Cyclic Redundancy Check (CRC) value. Figures 3 and 4 gives the description of set of fields
that can be interpreted as T-L-V format.

Destination
MAC Address FCSSource

MAC Address
Ether Type

= 0x88B8/88BA GOOSE/SV PDU

APPID Length APDUReserved1 Reserved2

Figure 1. Ethernet frame.

Tag Length Value

. . .

Tag Length Value Tag Length Value

Tag Length Value Tag Length Value

. . .

. . .
Figure 2. Basic Encoding rule followed by Tag, Length and Value (TLV).

ValuesavPDU
Tag 0x60

savPDU
Length

noASDU
Tag 0x80

noASDU
Length Value

Seq. ASDU
Tag 0xA2

Seq. ASDU
Length Value

svID
Tag 0x80

svID
Length Value

smpCnt
Tag 0x82

smpCnt
Length Value

confRev
Tag 0x83

confRev
Length Value

smpSynch
Tag 0x85

smpSynch
Length Value

Seq Data
Tag 0x87

Seq Data
Length Value

Data

ASDU Tag
0x30

ASDU
Length Value

Figure 3. Description of IEC 61850-9-2 Sample Values payload fields.

The SV APDU starts with ‘savPdu’ field with a tag of 0x60 followed by its length. The ‘noASDU’
field (number of ASDU) has a tag 0x80 followed by its length and value. The ‘Sequence of ASDU’
field (Sequence of ASDU) begins with a tag 0xA2 followed by its length and value. The ‘ASDU’ field
(Application Service Data Unit) has a tag 0x30 followed by its length and value. Each ASDU consists
of the following fields: ‘svID’ (sample value ID), ‘smp_Cnt’ (sampling count), ‘confRev’ (count of
configuration changes), ‘smpSynch’ (sample synchronization), ‘Sequence of Data’ (sequence of data)
and ‘data’ (the actual dataset). The ‘svID’ field begins with a tag 0x80 followed by its length and
value. The ‘smp_Cnt’ field has tag 0x82 followed by its length and value. The ‘confRev’ field has a

Figure 2. Basic Encoding rule followed by Tag, Length and Value (TLV).

Energies 2018, 11, x FOR PEER REVIEW 3 of 14

(FCS) field. The ‘APPID’ field of 2 bytes contains the tag of ‘Ethertype PDU’. For ‘Ethertype SV PDU’
the ‘APPID’ value can be 0x4000 to 0x7FFF. The length field of 2 bytes contains the value of the total
length of the Ethertype SV or GOOSE PDU and it should be less than 1501 bytes. The ‘reserved1’ field
of the Ethertype SV or GOOSE PDU are reserved for security related information when the SV or
GOOSE is sent with IEC 62351-6 security considerations. The ‘reserved2’ field is of 2 bytes to store
16-bit Cyclic Redundancy Check (CRC) value. Figures 3 and 4 gives the description of set of fields
that can be interpreted as T-L-V format.

Destination
MAC Address FCSSource

MAC Address
Ether Type

= 0x88B8/88BA GOOSE/SV PDU

APPID Length APDUReserved1 Reserved2

Figure 1. Ethernet frame.

Tag Length Value

. . .

Tag Length Value Tag Length Value

Tag Length Value Tag Length Value

. . .

. . .
Figure 2. Basic Encoding rule followed by Tag, Length and Value (TLV).

ValuesavPDU
Tag 0x60

savPDU
Length

noASDU
Tag 0x80

noASDU
Length Value

Seq. ASDU
Tag 0xA2

Seq. ASDU
Length Value

svID
Tag 0x80

svID
Length Value

smpCnt
Tag 0x82

smpCnt
Length Value

confRev
Tag 0x83

confRev
Length Value

smpSynch
Tag 0x85

smpSynch
Length Value

Seq Data
Tag 0x87

Seq Data
Length Value

Data

ASDU Tag
0x30

ASDU
Length Value

Figure 3. Description of IEC 61850-9-2 Sample Values payload fields.

The SV APDU starts with ‘savPdu’ field with a tag of 0x60 followed by its length. The ‘noASDU’
field (number of ASDU) has a tag 0x80 followed by its length and value. The ‘Sequence of ASDU’
field (Sequence of ASDU) begins with a tag 0xA2 followed by its length and value. The ‘ASDU’ field
(Application Service Data Unit) has a tag 0x30 followed by its length and value. Each ASDU consists
of the following fields: ‘svID’ (sample value ID), ‘smp_Cnt’ (sampling count), ‘confRev’ (count of
configuration changes), ‘smpSynch’ (sample synchronization), ‘Sequence of Data’ (sequence of data)
and ‘data’ (the actual dataset). The ‘svID’ field begins with a tag 0x80 followed by its length and
value. The ‘smp_Cnt’ field has tag 0x82 followed by its length and value. The ‘confRev’ field has a

Figure 3. Description of IEC 61850-9-2 Sample Values payload fields.

The SV APDU starts with ‘savPdu’ field with a tag of 0x60 followed by its length. The ‘noASDU’ field
(number of ASDU) has a tag 0x80 followed by its length and value. The ‘Sequence of ASDU’ field (Sequence
of ASDU) begins with a tag 0xA2 followed by its length and value. The ‘ASDU’ field (Application Service
Data Unit) has a tag 0x30 followed by its length and value. Each ASDU consists of the following fields: ‘svID’
(sample value ID), ‘smp_Cnt’ (sampling count), ‘confRev’ (count of configuration changes), ‘smpSynch’
(sample synchronization), ‘Sequence of Data’ (sequence of data) and ‘data’ (the actual dataset). The ‘svID’
field begins with a tag 0x80 followed by its length and value. The ‘smp_Cnt’ field has tag 0x82 followed by
its length and value. The ‘confRev’ field has a tag 0x83 followed by its length and value. The ‘smpSynch’
field begins with tag of 0x85 followed by its length and value. The ‘Sequence of Data’ field begins with tag
of 0x87 followed by its length and value. The final field is the actual data set. Figure 3 describes the Tag,
length, value triplets of every field of SV message.

Energies 2019, 12, 2536 4 of 13

Energies 2018, 11, x FOR PEER REVIEW 4 of 14

tag 0x83 followed by its length and value. The ‘smpSynch’ field begins with tag of 0x85 followed by
its length and value. The ‘Sequence of Data’ field begins with tag of 0x87 followed by its length and
value. The final field is the actual data set. Figure 3 describes the Tag, length, value triplets of every
field of SV message.

Figure 4. TLV format of pay load fields of GOOSE and Sample Values.

Similarly, PDU of GOOSE consists of following fields as gocbRef, ‘timeAllowedtoLive’, ‘datSet’,
‘goID’, ‘t’, ‘stNum’, ‘sqNum’, ‘test’, ‘confRev’, ‘ndsCom’, ‘numDatSetEntries’, ‘allData’ as shown in
Figure 4. The frame format of GOOSE message along with description of its fields is given in Table 1.

The GoSV software framework is implemented in C programming language using Ethernet
libraries available in ether.h, sys/socket.h and sys/ioctl.h header files. The implementation can be
accomplished at layer 2 of Open Systems Interconnect (OSI) reference model. Figure 5 describes the
implementation details. First it is needed to configure the network device at the sending end of the
GOOSE and Sample Values. It includes the following steps: The packet interface is used to create a
raw socket on the device. Linux supports ioctls (input-output controls) to configure network devices.
For configuring network device, it is needed to set the structure called ifreq (Interface request) with
the name and index of the interface using ioctls. Structure ifreq facilitates low level access to Linux
network devices. Device independent physical layer structure called sockaddr_ll is used to set the
destination MAC address of the packet. A buffer with the max size of 2048 is taken to construct the
ethernet frame. Construction of payload field for GOOSE/SV protocol is considered by taking
standard fields in the form of cascading tag, length and value. Authors have uploaded the developed
version of GoSV [11] in the GitHub repository.

Figure 4. TLV format of pay load fields of GOOSE and Sample Values.

Similarly, PDU of GOOSE consists of following fields as gocbRef, ‘timeAllowedtoLive’, ‘datSet’,
‘goID’, ‘t’, ‘stNum’, ‘sqNum’, ‘test’, ‘confRev’, ‘ndsCom’, ‘numDatSetEntries’, ‘allData’ as shown in
Figure 4. The frame format of GOOSE message along with description of its fields is given in Table 1.

The GoSV software framework is implemented in C programming language using Ethernet
libraries available in ether.h, sys/socket.h and sys/ioctl.h header files. The implementation can be
accomplished at layer 2 of Open Systems Interconnect (OSI) reference model. Figure 5 describes the
implementation details. First it is needed to configure the network device at the sending end of the
GOOSE and Sample Values. It includes the following steps: The packet interface is used to create
a raw socket on the device. Linux supports ioctls (input-output controls) to configure network devices.
For configuring network device, it is needed to set the structure called ifreq (Interface request) with
the name and index of the interface using ioctls. Structure ifreq facilitates low level access to Linux
network devices. Device independent physical layer structure called sockaddr_ll is used to set the
destination MAC address of the packet. A buffer with the max size of 2048 is taken to construct the
ethernet frame. Construction of payload field for GOOSE/SV protocol is considered by taking standard
fields in the form of cascading tag, length and value. Authors have uploaded the developed version of
GoSV [11] in the GitHub repository.Energies 2018, 11, x FOR PEER REVIEW 5 of 14

Creation of frame socket

Construct Ethernet frame

Initialize interface
requese ifreq structure

Construct Ethernet header
with Ether type set to

GOOSE/Sample Value
protocol

Construct payload field
GOOSE/SV protocol
according to standard

Set destination MAC
address using sockaddr_ll

GoSV
SenderSend frame in to LAN

Figure 5. Frame generation process.

Table 1. GOOSE payload fields.

Field Name
Hex

Value/Valu
e in Bytes

Size (in
Bytes) Description

goosePDU Tag 0x6181 2
GOOSE protocol data

unit goosePDU
Length

 145 2

goosePDU
Value field

gocbRef_Tag 0x80 1 Reference to the
associated GoCB that is
controlling the GOOSE

message

gocbRef_length 26 1

gocbRef_value 26

timeAllowedtoLive_Tag 0x81 1
The time a receiver

waits before receiving a
re-transmitted

timeAllowedtoLive_Lengt
h 3 1

timeAllowedtoLive_value 3
Dataset_Tag 0x82 1

Name of the Data Set Dataset_length 24 1
Dataset_value 24

goID_tag 0x83 1
ID of publishing IED goID_length 11 1

goID_value 11
Time_tag 0x84 1

Time stamp indicating
a new GOOSE event

Time_length 8 1
Time_value 8
st_Num_tag 0x85 1 Status Number—

counter that increments
with every GOOSE

event

st_Num_length 1 1

st_Num_value 1

sq_Num_tag 0x86 1
Sequence Number—

counter that increments
with every repeated

GOOSE message

sq_Num_length 1 1

sq_Num_value 1

Test_tag 0x87 1

Figure 5. Frame generation process.

Energies 2019, 12, 2536 5 of 13

Table 1. GOOSE payload fields.

Field Name Hex Value/Value
in Bytes

Size
(in Bytes) Description

goosePDU Tag 0x6181 2 GOOSE protocol data unit
goosePDU Length 145 2

goosePDU
Value field

gocbRef_Tag 0x80 1 Reference to the associated
GoCB that is controlling the

GOOSE message
gocbRef_length 26 1
gocbRef_value 26

timeAllowedtoLive_Tag 0x81 1 The time a receiver waits
before receiving
a re-transmitted

timeAllowedtoLive_Length 3 1
timeAllowedtoLive_value 3

Dataset_Tag 0x82 1
Name of the Data SetDataset_length 24 1

Dataset_value 24

goID_tag 0x83 1
ID of publishing IEDgoID_length 11 1

goID_value 11

Time_tag 0x84 1
Time stamp indicating a new

GOOSE event
Time_length 8 1
Time_value 8

st_Num_tag 0x85 1 Status Number—counter that
increments with every

GOOSE event
st_Num_length 1 1
st_Num_value 1

sq_Num_tag 0x86 1 Sequence Number—counter
that increments with every
repeated GOOSE message

sq_Num_length 1 1
sq_Num_value 1

Test_tag 0x87 1 Specifies if a message is/is not
intended for testingTest_length 1 1

Test_value 1

confRev_tag 0x88 1 Number of times Data Set
has changedconfRev_length 1 1

confRev_value 1

ndsCom_tag 0x89 1
Needs commissioning fieldndsCom_length 1 1

ndsCom_value 1

numDatSetEntries_tag 0x8A 1
Number of data elements in

‘allData’ field
numDatSetEntries_length 1 1
numDatSetEntries_value 1

All_data_tag 0xAB 1 Actual data being sent (bool,
integer, float, etc.)All_data_length 32 1

All_data_value 32

3. Secure GoSV Framework

Security is a growing concern in power system communication networks. Compromising it
may lead to plethora of security attacks such as Data integrity attack, replay attack, Man in The
Middle (MITM) attack, Denial of Service (DoS) attack etc. These attacks may cause catastrophic
damages to power grid. IEC 62351-6 specifies authentication and integrity as the security requirements
and recommends using of digital signatures to protect IEC 61850 GOOSE or SV messages from
cyber-attacks. Further, the IEC 62351-6 standard recommends RSASSA-PKCS1-v1_5 to Secure GOOSE
and SV. However, the RSA based digital signature algorithms exhibit higher computational delays
and do not meet the strict timing requirement of 3 ms for GOOSE messages [19]. The computational
times required for generating digital signatures using RSASSA-PKCS1-v1_5 are given in the Table 2.
Accordingly, Keyed Hash based Message Authentication Code (HMAC) based digital are proposed in
literature for securing GOOSE messages [23].

Energies 2019, 12, 2536 6 of 13

In this paper, authors developed S-GoSV software framework that implements both RSASSA-
PKCS1-v1_5 digital signature and HMAC algorithms. Authors considered securing Sample Value
messages as a future work.

Table 2. Computational time for RSASSA-PKCS1-v1_5 digital signature algorithm.

DS Algorithm Key Size
(bits)

DS Signing
Time (ms)

DS Verification
Time (ms) Processor Reference

RSASSA-PKCS1-v1_5
1024 0.942 0.283 Intel i5-3210M

CPU @2.50GHz
[19]

2048 3.56 0.75

3.1. RSASSA-PKCS1-v1_5 Digital Signature Algorithm

Development of secure S-GoSV software framework for RSASSA-PKCS1-v1_5 digital signature is
done in two steps. In the first step, the digital signature is generated using RSASSA-PKCS1-v1_5 digital
signature algorithm. The first step is implemented using python Crypto.PKCS1_v1_5 libraries. In the
second step, the generated digital signature is transmitted using GoSV software which is developed
using C language by adding extension fields.

Digital signatures for GOOSE message are generated in two major steps. First, an EMSA encoded
message (EAPDU) generated for the GOOSE message. The EMSA encoding involves generation of
hash value using SHA256 and addition of paddings [19]. Second, the generated encoded message is
converted to octet string format and then signed by digital signature algorithm RSASSA-PKCS1-v1_5.
The complete process of digital signature generation and verification for RSASSA-PKCS1-v1_5
is described in [19]. Figure 6 outlines the generation and verification of digital signature using
RSASSA-PKCS1-v1_5 algorithm. GOOSE message along with appended DS is sent to subscriber
in the network. At subscriber, a new EMSA encoded message (newEAPDU) is generated with the
received GOOSE message and the received DS is decrypted by using the public key of the publisher.
This decrypted digital signature value (EAPDU) is compared with the a new EMSA encoded value
(newEAPDU) generated at the subscriber. If both are the same, then GOOSE message is valid otherwise
it will not be accepted as a legitimate message.

Energies 2018, 11, x FOR PEER REVIEW 7 of 14

The complete process of digital signature generation and verification for RSASSA-PKCS1-v1_5 is
described in [19]. Figure 6 outlines the generation and verification of digital signature using RSASSA-
PKCS1-v1_5 algorithm. GOOSE message along with appended DS is sent to subscriber in the
network. At subscriber, a new EMSA encoded message (newEAPDU) is generated with the received
GOOSE message and the received DS is decrypted by using the public key of the publisher. This
decrypted digital signature value (EAPDU) is compared with the a new EMSA encoded value
(newEAPDU) generated at the subscriber. If both are the same, then GOOSE message is valid
otherwise it will not be accepted as a legitimate message.

EMSA-PKCS1-
v1_5 Encoding

OctetString2Int
eger conversion

gooseAPDU

RSA Encryption

EAPDU

Sender Device

x

ds

RSA Decryption

ds

Integer2OctetSt
ring conversion

EMSA-PKCS1-
v1_5 Encoding

x

EAPDU

gooseAP
DU

gooseAPDU ds

LAN

newEAPDU= ?Yes

GOOSE
Message
Accept

No

GOOSE
Message

Reject

RSA
Pub_Key

Receiver Device

RSA
Pr_Key

Figure 6. Generation and verification using of digital signature RSASSA-PKCS1-v1_5.

In order to carry this additional Digital Signature (DS) value in the ethernet frame, IEC 62351-6
standard specifies extension to be added at the end of ethernet frame as shown in the Figure 7.
Extension field consists of SEQUENCE field and authentication value. SEQUENCE field is reserved
for future security considerations other than encryption and message authentication. Authentication
value contains digital signature value generated by RSASSA-PKCS1-v1_5.

2

2

2

2

Destination
MAC Address

6 bytes

FCS
4 bytes

Source
MAC Address

6 bytes
Ether Type =

0x88BA
2 bytes

GOOSE PDU
M bytes

APPID
Length

n+8

APDU
n bytes

Extension
M-(n+8)

Reserved1

Reserved2
SEQUENCE

Authentication
Value

Figure 7. Extension field of GOOSE APDU according to IEC 62351-6.

RSASSA-PKCS1-v1_5 (Public Key Cryptography Standard #1 version 1.5) digital signature
algorithm generates digital signature in three steps, as shown in Algorithm 1 below. In the first step,
it takes GOOSE APDU as input and performs encoding using EMSA_PKCS1-v1_5 encoding scheme.
The output of the encoding scheme is Encoded APDU (EAPDU). In the second step, EAPDU is
converted into integer representation. In the final step, integer representation is encrypted with
private key of RSA algorithm that gives digital signature (ds).

Algorithm 1 RSASSA_PKCS1-v1_5_Gen_Signature (gooseAPDU)

Figure 6. Generation and verification using of digital signature RSASSA-PKCS1-v1_5.

In order to carry this additional Digital Signature (DS) value in the ethernet frame, IEC 62351-6
standard specifies extension to be added at the end of ethernet frame as shown in the Figure 7.
Extension field consists of SEQUENCE field and authentication value. SEQUENCE field is reserved
for future security considerations other than encryption and message authentication. Authentication
value contains digital signature value generated by RSASSA-PKCS1-v1_5.

Energies 2019, 12, 2536 7 of 13

Energies 2018, 11, x FOR PEER REVIEW 7 of 14

The complete process of digital signature generation and verification for RSASSA-PKCS1-v1_5 is
described in [19]. Figure 6 outlines the generation and verification of digital signature using RSASSA-
PKCS1-v1_5 algorithm. GOOSE message along with appended DS is sent to subscriber in the
network. At subscriber, a new EMSA encoded message (newEAPDU) is generated with the received
GOOSE message and the received DS is decrypted by using the public key of the publisher. This
decrypted digital signature value (EAPDU) is compared with the a new EMSA encoded value
(newEAPDU) generated at the subscriber. If both are the same, then GOOSE message is valid
otherwise it will not be accepted as a legitimate message.

EMSA-PKCS1-
v1_5 Encoding

OctetString2Int
eger conversion

gooseAPDU

RSA Encryption

EAPDU

Sender Device

x

ds

RSA Decryption

ds

Integer2OctetSt
ring conversion

EMSA-PKCS1-
v1_5 Encoding

x

EAPDU

gooseAP
DU

gooseAPDU ds

LAN

newEAPDU= ?Yes

GOOSE
Message
Accept

No

GOOSE
Message

Reject

RSA
Pub_Key

Receiver Device

RSA
Pr_Key

Figure 6. Generation and verification using of digital signature RSASSA-PKCS1-v1_5.

In order to carry this additional Digital Signature (DS) value in the ethernet frame, IEC 62351-6
standard specifies extension to be added at the end of ethernet frame as shown in the Figure 7.
Extension field consists of SEQUENCE field and authentication value. SEQUENCE field is reserved
for future security considerations other than encryption and message authentication. Authentication
value contains digital signature value generated by RSASSA-PKCS1-v1_5.

2

2

2

2

Destination
MAC Address

6 bytes

FCS
4 bytes

Source
MAC Address

6 bytes
Ether Type =

0x88BA
2 bytes

GOOSE PDU
M bytes

APPID
Length

n+8

APDU
n bytes

Extension
M-(n+8)

Reserved1

Reserved2
SEQUENCE

Authentication
Value

Figure 7. Extension field of GOOSE APDU according to IEC 62351-6.

RSASSA-PKCS1-v1_5 (Public Key Cryptography Standard #1 version 1.5) digital signature
algorithm generates digital signature in three steps, as shown in Algorithm 1 below. In the first step,
it takes GOOSE APDU as input and performs encoding using EMSA_PKCS1-v1_5 encoding scheme.
The output of the encoding scheme is Encoded APDU (EAPDU). In the second step, EAPDU is
converted into integer representation. In the final step, integer representation is encrypted with
private key of RSA algorithm that gives digital signature (ds).

Algorithm 1 RSASSA_PKCS1-v1_5_Gen_Signature (gooseAPDU)

Figure 7. Extension field of GOOSE APDU according to IEC 62351-6.

RSASSA-PKCS1-v1_5 (Public Key Cryptography Standard #1 version 1.5) digital signature
algorithm generates digital signature in three steps, as shown in Algorithm 1 below. In the first
step, it takes GOOSE APDU as input and performs encoding using EMSA_PKCS1-v1_5 encoding
scheme. The output of the encoding scheme is Encoded APDU (EAPDU). In the second step, EAPDU
is converted into integer representation. In the final step, integer representation is encrypted with
private key of RSA algorithm that gives digital signature (ds).

Algorithm 1. RSASSA_PKCS1-v1_5_Gen_Signature (gooseAPDU)

1 : (Pub_Key, Pr_Key) ← Gen_Keys()
2 : EAPDU← EMSA_PKCS1_v1_5_Encode(gooseAPDU)

3 : x ← OctetString2Integer(EAPDU)

4 : ds← RSAEncPr_Key(x)
5 : return ds

Algorithm 2. RSASSA_PKCS1-v1_5_Signature_Verify (gooseAPDU, ds)

1 : (Pub_Key, Pr_Key) ← Gen_Keys()
2 : x← RSADecPub_Key(ds)
3 : EAPDU← Integer2OctetString(x)
4 : newEAPDU← EMSA_PKCS1_v1_5_Encode(gooseAPDU)

5 : i f (EAPDU = newEAPDU)

6 : then
7 : received GOOSE message valid
8 : else
9 : received GOOSE messge is invalid
10 : return False

At the publisher device, Algorithm 2 takes input a GOOSE APDU (gooseAPDU) and gives encoded
code (EAPDU) using EMSA_PKCS1-v1_5 encoding algorithm. The output of encoding scheme is
converted into integer representation (x) which is further signed with RSA private key (Pr_Key) that
generates digital signature (ds). At the subscriber device, RSASSA_PKCS1-v1_5_Signature_verify
algorithm verifies the generated signature (ds). The received digital signature (ds) is decrypted with
RSA public key (Pub_Key) that gives integer representation x. Further, integer representation (x) value
is converted into octet string that gives Encoded APDU (EAPDU). A new Encoded APDU (newEAPDU)
is generated by taking received GOOSE APDU (gooseAPDU) as input to EMSA Encoding scheme.
Newly generated EAPDU and received EAPDU is compared, if both are same then received GOOSE
APDU (gooseAPDU) is valid otherwise it is invalid. Figure 6 illustrates the signature generation and
verification process based on RSASSA_PKCS1-v1_5 digital signature algorithm.

Energies 2019, 12, 2536 8 of 13

3.2. HMAC

Keyed Hash based Message Authentication Code (HMAC) is used for data origin authentication
and integrity verification mechanisms in the network communications. It can be combined with either
of the three different Secure Hash Algorithms: SHA256, SHA384 and SHA512. Secure Hash algorithms
are cryptographic hash functions that generate hash values. HMAC combined with either of the
above Secure Hash algorithms can be employed to generate digital signature instead of asymmetric
RSASSA-PKCS1-v1_5 specified by IEC 62351-6. In this paper, among the above variants we have chosen
HMAC with SHA256 algorithm for digital signature calculation. The main goal of these variants is to
ensure the authenticity of data and it is not modified during its transmission in the network. HMAC
implementation requires a pre-shared key shared by both publisher and subscriber. The security of the
HMAC is ensured by the secure distribution and unpredictability of the associated secret symmetric
key. The size of input data is arbitrary and produces a fixed size output. For HMAC-SHA256 where
key size is 256 bits, it produces 32 bytes of digital signature.

In S-GoSV framework the HMAC algorithm is implemented using openSSL/hmac C libraries.
The openSSL/hmac libraries are used to generate the MAC value (i.e., digital signature), using the
pre-shared key, which is appended to GOOSE message and sent to subscriber. At the subscriber,
again the MAC value is calculated for the received GOOSE message using the pre-shared key. The newly
generated MAC value at the subscriber is compared with the received MAC value. If they do not
match the GOOSE message is rejected. Figure 8 shows the process of securing GOOSE messages with
HMAC algorithm.Energies 2018, 11, x FOR PEER REVIEW 9 of 14

Ethernet
Header GOOSE PDU Ethernet

Header

GOOSE APDU
fields Extension

Protection IED

MAC Algorithm

LAN
Breaker IED

Ethernet
Header

GOOSE
PDU

Ethernet
Header

MAC
value

MAC Algorithm

Shared Key

= ?

PDU Accept

Yes

PDU Reject

Shared key

Hash value No

GOOSE Message

Figure 8. HMAC integration to GOOSE messages for secure communication.

4. Implementation Results

4.1. GoSV

Initially, GoSV software framework is implemented that generates custom GOOSE and Sample
Values using C library. A testbed consists of three laptop computers connected in a Local Area
Network (LAN) environment as shown in the Figure 9. GoSV software program running in a laptop
computer constructs custom GOOSE and Sample Values according to TLV formats described in the
Figures 3 and 4 and send them in to LAN. Figures 10 and 11 shows the screenshots of GoSV software
program sending custom GOOSE and Sample Value frames respectively. In order to test the validity
of messages generated by GoSV, Infotech Avenue SAV receiver [24] software is run at the destination
node which runs Windows OS. The stream was successfully detected as shown in the Figure 12 where
the input stream from GoSV is listed as a legitimate SV message. Further to test the legitimacy of the
generated GOOSE and SV messages, Libiec61850’s SV subscriber [10] module is run at the receiving
node. Libiec61850 SV subscriber run in Linux platform. The packets are successfully received as SV
messages and unpacked as defined in IEC 61850 standard. Figure 12 shows how libiec61850 SV
subscriber receives SV messages generated by GoSV software. In addition to this, Wireshark network
sniffer software tool identifies GoSV frames as IEC SV and IEC GOOSE messages and all the required
fields are successfully decoded as shown in the Figures 13 and 14.

Figure 9. LAN set up to test the developed software ‘GoSV’.

Figure 8. HMAC integration to GOOSE messages for secure communication.

4. Implementation Results

4.1. GoSV

Initially, GoSV software framework is implemented that generates custom GOOSE and Sample
Values using C library. A testbed consists of three laptop computers connected in a Local Area
Network (LAN) environment as shown in the Figure 9. GoSV software program running in a laptop
computer constructs custom GOOSE and Sample Values according to TLV formats described in the
Figures 3 and 4 and send them in to LAN. Figures 10 and 11 shows the screenshots of GoSV software
program sending custom GOOSE and Sample Value frames respectively. In order to test the validity of
messages generated by GoSV, Infotech Avenue SAV receiver [24] software is run at the destination
node which runs Windows OS. The stream was successfully detected as shown in the Figure 12 where
the input stream from GoSV is listed as a legitimate SV message. Further to test the legitimacy of the
generated GOOSE and SV messages, Libiec61850’s SV subscriber [10] module is run at the receiving
node. Libiec61850 SV subscriber run in Linux platform. The packets are successfully received as
SV messages and unpacked as defined in IEC 61850 standard. Figure 12 shows how libiec61850 SV
subscriber receives SV messages generated by GoSV software. In addition to this, Wireshark network

Energies 2019, 12, 2536 9 of 13

sniffer software tool identifies GoSV frames as IEC SV and IEC GOOSE messages and all the required
fields are successfully decoded as shown in the Figures 13 and 14.

Energies 2018, 11, x FOR PEER REVIEW 9 of 14

Ethernet
Header GOOSE PDU Ethernet

Header

GOOSE APDU
fields Extension

Protection IED

MAC Algorithm

LAN
Breaker IED

Ethernet
Header

GOOSE
PDU

Ethernet
Header

MAC
value

MAC Algorithm

Shared Key

= ?

PDU Accept

Yes

PDU Reject

Shared key

Hash value No

GOOSE Message

Figure 8. HMAC integration to GOOSE messages for secure communication.

4. Implementation Results

4.1. GoSV

Initially, GoSV software framework is implemented that generates custom GOOSE and Sample
Values using C library. A testbed consists of three laptop computers connected in a Local Area
Network (LAN) environment as shown in the Figure 9. GoSV software program running in a laptop
computer constructs custom GOOSE and Sample Values according to TLV formats described in the
Figures 3 and 4 and send them in to LAN. Figures 10 and 11 shows the screenshots of GoSV software
program sending custom GOOSE and Sample Value frames respectively. In order to test the validity
of messages generated by GoSV, Infotech Avenue SAV receiver [24] software is run at the destination
node which runs Windows OS. The stream was successfully detected as shown in the Figure 12 where
the input stream from GoSV is listed as a legitimate SV message. Further to test the legitimacy of the
generated GOOSE and SV messages, Libiec61850’s SV subscriber [10] module is run at the receiving
node. Libiec61850 SV subscriber run in Linux platform. The packets are successfully received as SV
messages and unpacked as defined in IEC 61850 standard. Figure 12 shows how libiec61850 SV
subscriber receives SV messages generated by GoSV software. In addition to this, Wireshark network
sniffer software tool identifies GoSV frames as IEC SV and IEC GOOSE messages and all the required
fields are successfully decoded as shown in the Figures 13 and 14.

Figure 9. LAN set up to test the developed software ‘GoSV’. Figure 9. LAN set up to test the developed software ‘GoSV’.Energies 2018, 11, x FOR PEER REVIEW 10 of 14

Figure 10. GoSV software program sending custom GOOSE frames.

Figure 11. GoSV software program sending custom SV frames.

Figure 12. Infotech Avenue Receiver detecting the stream of GoSV software framework.

Figure 10. GoSV software program sending custom GOOSE frames.

Energies 2018, 11, x FOR PEER REVIEW 10 of 14

Figure 10. GoSV software program sending custom GOOSE frames.

Figure 11. GoSV software program sending custom SV frames.

Figure 12. Infotech Avenue Receiver detecting the stream of GoSV software framework.

Figure 11. GoSV software program sending custom SV frames.

Energies 2019, 12, 2536 10 of 13

Energies 2018, 11, x FOR PEER REVIEW 10 of 14

Figure 10. GoSV software program sending custom GOOSE frames.

Figure 11. GoSV software program sending custom SV frames.

Figure 12. Infotech Avenue Receiver detecting the stream of GoSV software framework. Figure 12. Infotech Avenue Receiver detecting the stream of GoSV software framework.Energies 2018, 11, x FOR PEER REVIEW 11 of 14

Figure 13. Wireshark capture of GOOSE frame values.

Figure 14. Wireshark capture of SV frame values.

4.2. Secure-GoSV

As security of GOOSE messages is of prime importance which transmits time critical
information, compromising it causes devastating consequences in the grid. Authors of this paper
further extended the implementation of GoSV software framework to protect GOOSE messages using
RSASSA-PKCS1-v1_5 digital signature algorithm as specified by IEC 62351-6 using openSSL library.
Protecting Sample Value messages can be further implemented in the future works.

Figure 15 shows the Wireshark capture of implementation of RSASSA-PKCS1-v1_5 digital
signature algorithm. Reserved1 and Reserved2 fields of GOOSE APDU fields are used when security
mechanism is applied. In order to carry additional value of digital signature, an extension field which
consists of SEQUENCE, Authentication value in tag-length-value (TLV) format is constructed in the
program. Figure 15 shows tag value for SEQUENCE field is 0x30 and length is 0x24. Authentication
field tag value is 0xA4 and length is 0x22. Finally, digital signature tag value is 0x85, length value is
0x80 followed by 128 bytes of generated digital signature value by RSASSA-PKCS1-v1_5 digital
signature algorithm. Similarly, Figure 16 shows the Wireshark capture of implementation of HMAC
algorithm for securing GOOSE message.

Figure 13. Wireshark capture of GOOSE frame values.

Energies 2018, 11, x FOR PEER REVIEW 11 of 14

Figure 13. Wireshark capture of GOOSE frame values.

Figure 14. Wireshark capture of SV frame values.

4.2. Secure-GoSV

As security of GOOSE messages is of prime importance which transmits time critical
information, compromising it causes devastating consequences in the grid. Authors of this paper
further extended the implementation of GoSV software framework to protect GOOSE messages using
RSASSA-PKCS1-v1_5 digital signature algorithm as specified by IEC 62351-6 using openSSL library.
Protecting Sample Value messages can be further implemented in the future works.

Figure 15 shows the Wireshark capture of implementation of RSASSA-PKCS1-v1_5 digital
signature algorithm. Reserved1 and Reserved2 fields of GOOSE APDU fields are used when security
mechanism is applied. In order to carry additional value of digital signature, an extension field which
consists of SEQUENCE, Authentication value in tag-length-value (TLV) format is constructed in the
program. Figure 15 shows tag value for SEQUENCE field is 0x30 and length is 0x24. Authentication
field tag value is 0xA4 and length is 0x22. Finally, digital signature tag value is 0x85, length value is
0x80 followed by 128 bytes of generated digital signature value by RSASSA-PKCS1-v1_5 digital
signature algorithm. Similarly, Figure 16 shows the Wireshark capture of implementation of HMAC
algorithm for securing GOOSE message.

Figure 14. Wireshark capture of SV frame values.

4.2. Secure-GoSV

As security of GOOSE messages is of prime importance which transmits time critical information,
compromising it causes devastating consequences in the grid. Authors of this paper further extended the
implementation of GoSV software framework to protect GOOSE messages using RSASSA-PKCS1-v1_5

Energies 2019, 12, 2536 11 of 13

digital signature algorithm as specified by IEC 62351-6 using openSSL library. Protecting Sample Value
messages can be further implemented in the future works.

Figure 15 shows the Wireshark capture of implementation of RSASSA-PKCS1-v1_5 digital
signature algorithm. Reserved1 and Reserved2 fields of GOOSE APDU fields are used when security
mechanism is applied. In order to carry additional value of digital signature, an extension field which
consists of SEQUENCE, Authentication value in tag-length-value (TLV) format is constructed in the
program. Figure 15 shows tag value for SEQUENCE field is 0x30 and length is 0x24. Authentication
field tag value is 0xA4 and length is 0x22. Finally, digital signature tag value is 0x85, length value
is 0x80 followed by 128 bytes of generated digital signature value by RSASSA-PKCS1-v1_5 digital
signature algorithm. Similarly, Figure 16 shows the Wireshark capture of implementation of HMAC
algorithm for securing GOOSE message.

Energies 2018, 11, x FOR PEER REVIEW 12 of 14

Figure 15. Wireshark capture of GOOSE frame with the extension of RSASSA-PKCS1-v1_5 digital
signature.

Figure 16. Wireshark capture of GOOSE frame with the extension of HMAC-SHA256 digital
signature.

5. Conclusions

IEC 61850 standard is receiving more attention as it is poised to become the power system
communication standard of the future. Much of the research focuses on customizing IEC 61850
information models as well as message structures to accommodate new smart grid equipment.
Current software available for GOOSE and SV messages do not have the capability to customize their
contents and properties, such as contained data and sampling rate. However, performance studies
necessitate the existence of a tool that can construct and publish custom GOOSE and SV messages.
GoSV software is developed to fill this gap. Lab tests show that messages published by GoSV strictly
conform to IEC 61850 format as they are successfully identified by several other software such as
Infotech Avenue receiver software which runs on Windows OS platform and Libiec61850 Subscriber
module which runs on Linux. Furthermore, Wireshark network sniffer software tool also successfully

Figure 15. Wireshark capture of GOOSE frame with the extension of RSASSA-PKCS1-v1_5
digital signature.

Energies 2018, 11, x FOR PEER REVIEW 12 of 14

Figure 15. Wireshark capture of GOOSE frame with the extension of RSASSA-PKCS1-v1_5 digital
signature.

Figure 16. Wireshark capture of GOOSE frame with the extension of HMAC-SHA256 digital
signature.

5. Conclusions

IEC 61850 standard is receiving more attention as it is poised to become the power system
communication standard of the future. Much of the research focuses on customizing IEC 61850
information models as well as message structures to accommodate new smart grid equipment.
Current software available for GOOSE and SV messages do not have the capability to customize their
contents and properties, such as contained data and sampling rate. However, performance studies
necessitate the existence of a tool that can construct and publish custom GOOSE and SV messages.
GoSV software is developed to fill this gap. Lab tests show that messages published by GoSV strictly
conform to IEC 61850 format as they are successfully identified by several other software such as
Infotech Avenue receiver software which runs on Windows OS platform and Libiec61850 Subscriber
module which runs on Linux. Furthermore, Wireshark network sniffer software tool also successfully

Figure 16. Wireshark capture of GOOSE frame with the extension of HMAC-SHA256 digital signature.

Energies 2019, 12, 2536 12 of 13

5. Conclusions

IEC 61850 standard is receiving more attention as it is poised to become the power system
communication standard of the future. Much of the research focuses on customizing IEC 61850
information models as well as message structures to accommodate new smart grid equipment.
Current software available for GOOSE and SV messages do not have the capability to customize
their contents and properties, such as contained data and sampling rate. However, performance
studies necessitate the existence of a tool that can construct and publish custom GOOSE and SV
messages. GoSV software is developed to fill this gap. Lab tests show that messages published by
GoSV strictly conform to IEC 61850 format as they are successfully identified by several other software
such as Infotech Avenue receiver software which runs on Windows OS platform and Libiec61850
Subscriber module which runs on Linux. Furthermore, Wireshark network sniffer software tool
also successfully decodes all the fields of generated custom GoSV frames. In addition to publishing
messages, security requirements for GOOSE messages is implemented based on IEC 62351-6 which
specifies digital signatures to achieve message authentication and integrity. GoSV software is extended
as S-GoSV to implement RSASSA-PKCS1-v1_5 digital signature based on IEC 62351-6 recommendation.
After running performance studies with S-GoSV, it is found that RSA based digital signatures do not
meet the timing requirements of power system communication and an alternative is required. MAC
based digital signature algorithm HMAC-SHA256 is implemented for GOOSE messages. For future
work, it is possible to secure Sample Value messages in the substation communication network.

Author Contributions: All authors contributed equally.

Funding: This work was supported by Research and Innovation Fund 2018.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ali, I.; Hussain, S.M.S.; Tak, A.; Ustun, T.S. Communication modeling for differential protection in
IEC-61850-based substations. IEEE Trans. Ind. Appl. 2018, 54, 135–142. [CrossRef]

2. Communication Networks and Systems for Power Utility Automation, 2.0.; Standard IEC 61850; IEC:
Geneva, Switzerland, 2013.

3. Aftab, M.A.; Roostaee, S.; Hussain, S.M.S.; Ali, I.; Thomas, M.; Mehfuz, S. Performance Evaluation of
IEC 61850 GOOSE based inter substation communication for accelerated distance protection scheme.
IET Gener. Transm. Distrib. 2018, 12, 4089–4098. [CrossRef]

4. Ustun, T.S.; Ozansoy, C.; Zayegh, A. A central microgrid protection system for networks with fault current
limiters. In Proceedings of the 2011 10th International Conference on Environment and Electrical Engineering,
Rome, Italy, 8–10 May 2011; pp. 1–4.

5. Ali, I.; Thomas, M.S.; Gupta, S.; Hussain, S.M.S. Information modeling for Distributed Energy Resource
integration in IEC 61850 based substations. In Proceedings of the 2015 Annual IEEE India Conference
(INDICON), New Delhi, India, 17–19 December 2015; pp. 1–6.

6. Hussain, S.M.S.; Ustun, T.S.; Nsonga, P.; Ali, I. IEEE 1609 WAVE and IEC 61850 Standard Communication
Based Integrated EV Charging Management in Smart Grids. IEEE Trans. Veh. Technol. 2018, 67, 7690–7697.
[CrossRef]

7. Hussain, S.M.S.; Tak, A.; Ustun, T.S.; Ali, I. Communication Modeling of Solar Home System and Smart
Meter in Smart Grids. IEEE Access 2018, 6, 16985–16996. [CrossRef]

8. Hegazi, O.; Hammad, E.; Farraj, A.; Kundur, D. IEC-61850 GOOSE traffic modeling and generation.
In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP),
Montreal, QC, Canada, 14–16 November 2017; pp. 1100–1104.

9. Lopes, Y.; Muchaluat-Saade, D.C.; Fernandes, N.C.; Fortes, M.Z. Geese: A traffic generator for performance
and security evaluation of IEC 61850 networks. In Proceedings of the 2015 IEEE 24th International Symposium
on Industrial Electronics (ISIE), Buzios, Brazil, 3–5 June 2015; pp. 687–692.

10. LibIEC61850. Available online: http://libiec61850.com/libiec61850/ (accessed on 1 July 2019).
11. GoSv. Available online: https://github.com/61850security/GoSV (accessed on 1 July 2019).

http://dx.doi.org/10.1109/TIA.2017.2740301
http://dx.doi.org/10.1049/iet-gtd.2018.5481
http://dx.doi.org/10.1109/TVT.2018.2838018
http://dx.doi.org/10.1109/ACCESS.2018.2800279
http://libiec61850.com/libiec61850/
https://github.com/61850security/GoSV

Energies 2019, 12, 2536 13 of 13

12. Hong, J.H.; Liu, C.-C.; Govindarasu, M. Integrated anomaly detection for cyber security of the substations.
IEEE Trans. Smart Grid. 2014, 5, 1643–1653. [CrossRef]

13. Cai, J.; Zheng, Y.; Zhou, Z. Review of cyber-security challenges and measures in smart substation.
In Proceedings of the 2016 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE),
Chengdu, China, 19–22 October 2016; pp. 65–69.

14. Chattopadhyay, A.; Ukil, A.; Jap, D.; Bhasin, S. Toward threat of implementation attacks on substation
security: Case study on fault detection and isolation. IEEE Trans. Ind. Inform. 2018, 14, 2442–2451. [CrossRef]

15. Farooq, S.M.; Hussain, S.M.S.; Kiran, S.; Ustun, T.S. Certificate based authentication mechanism for PMU
communication networks based on IEC 61850-90-5. Electronics 2018, 7, 370. [CrossRef]

16. Power Systems Management and Associated Information Exchange—Data and Communications Security, Part 6:
Security for IEC 61850, IEC/TS 62351-6:2007(E); IEC: Geneva, Switzerland, 2007.

17. Hohlbaum, F.; Braendle, M.; Fernando, A. Cyber security practical considerations for implementing IEC
62351. In Proceedings of the PAC World Conference, Dublin, Ireland, 28–90 June 2010; pp. 21–24.

18. Ishchenko, D.; Nuqui, R. Secure communication of intelligent electronic devices in digital substations.
In Proceedings of the IEEE PES Transmission and Distribution Conference & Exposition, Denver, CO, USA,
16–19 April 2018; p. 115.

19. Farooq, S.M.; Hussain, S.M.S.; Ustun, T.S. Performance Evaluation and Analysis of IEC 62351-6 Probabilistic
Signature Scheme for Securing GOOSE Messages. IEEE Access 2019, 7, 32343–32351. [CrossRef]

20. Jonsson, J.; Kaliski, B. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version
2.1; Document RFC 3447; IETF: Fremont, CA, USA, 2003.

21. Jonsson, J.; Kaliski, B. Public-Key Cryptography Standards (PKCS) #1: RSA Encryption Version 1.5; Document
RFC 2313; IETF: Fremont, CA, USA, 1998.

22. S-GoSV. Available online: https://github.com/61850security/S-GoSV-part-1 (accessed on 1 July 2019).
23. Hussain, S.M.S.; Farooq, S.M.; Ustun, T.S. Analysis and Implementation of Message Authentication Code

(MAC) Algorithms for GOOSE Message Security. IEEE Access 2019, in press. [CrossRef]
24. SAV Sender and Receiver—INFO TECH. Available online: https://goo.gl/8yLw9A (accessed on 26 June 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSG.2013.2294473
http://dx.doi.org/10.1109/TII.2017.2770096
http://dx.doi.org/10.3390/electronics7120370
http://dx.doi.org/10.1109/ACCESS.2019.2902571
https://github.com/61850security/S-GoSV-part-1
http://dx.doi.org/10.1109/ACCESS.2019.2923728
https://goo.gl/8yLw9A
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	GoSV Framework
	Secure GoSV Framework
	RSASSA-PKCS1-v1_5 Digital Signature Algorithm
	HMAC

	Implementation Results
	GoSV
	Secure-GoSV

	Conclusions
	References

