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Abstract: Currently, in most countries, the electricity sector is liberalized, and electricity is traded in
deregulated electricity markets. In these markets, electricity demand is determined the day before
the physical delivery through (semi-)hourly concurrent auctions. Hence, accurate forecasts are
essential for efficient and effective management of power systems. The electricity demand and
prices, however, exhibit specific features, including non-constant mean and variance, calendar effects,
multiple periodicities, high volatility, jumps, and so on, which complicate the forecasting problem.
In this work, we compare different modeling techniques able to capture the specific dynamics of
the demand time series. To this end, the electricity demand time series is divided into two major
components: deterministic and stochastic. Both components are estimated using different regression
and time series methods with parametric and nonparametric estimation techniques. Specifically,
we use linear regression-based models (local polynomial regression models based on different types of
kernel functions; tri-cubic, Gaussian, and Epanechnikov), spline function-based models (smoothing
splines, regression splines), and traditional time series models (autoregressive moving average,
nonparametric autoregressive, and vector autoregressive). Within the deterministic part, special
attention is paid to the estimation of the yearly cycle as it was previously ignored by many authors.
This work considers electricity demand data from the Nordic electricity market for the period covering
1 January 2013–31 December 2016. To assess the one-day-ahead out-of-sample forecasting accuracy,
Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE) are calculated. The results suggest that the proposed component-wise estimation method
is extremely effective at forecasting electricity demand. Further, vector autoregressive modeling
combined with spline function-based regression gives superior performance compared with the rest.

Keywords: Nordic electricity market; electricity demand; component estimation method; univariate
and multivariate time series analysis; modeling and forecasting

1. Introduction

Liberalization of the energy sector, changes in climate policies, and the upgrade of renewable
energy resources have completely changed the structure of the previous strictly-controlled energy
sector. Today, most energy markets have been liberalized and privatized with the purpose of gaining
consistent and inexpensive facilities for power trades. Within the energy sector, the liberalization
of the electricity market has also introduced new challenges. In particular, electricity demand and
price forecasting have become extremely important issues for producers, energy suppliers, system
operators, and other market participants. In many electricity markets, electricity demand is fixed a day
before the physical delivery by concurrent (semi-)hourly auctions. Further, electricity cannot be stored
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in an efficient manner, and the end-user demand must be satisfied instantaneously; thus, accurate
forecast for electricity demand is crucial for effective power system management [1,2].

The electricity demand forecast can be broadly divided into three time horizons: (a) short-term,
(b) medium-term, and (c) long-term load forecasting. Long-Term Load Forecast (LTLF) includes
horizons from a few months to several years ahead. LTLF is generally used for planning and investment
profitability analysis, determining upcoming sites, or acquiring fuel sources for production plants [3].
Medium-Term Load Forecast (MTLF) normally considers horizons from a few days to months ahead
and is usually preferred for risk management, balance sheet calculations, and derivatives pricing [4].
Finally, Short-Term Load Forecast (STLF) generally includes horizons from a few minutes up to a few
days ahead. In practice, the most attention in electricity load forecasting has been paid to STLF since it
is an essential tool for the daily market operations [5].

However, electricity demand forecasting is a difficult task due to the features demand time series
exhibit. These features include non-constant mean and variance, calendar effects, multiple periodicities,
high volatility, jumps, etc. For example, the yearly, weekly, and daily periodicities can be seen from
Figure 1. The weekly phase is comprised of comparatively lower variation in the data. The load curves
are comparatively different on different days of the week, and the demand varies throughout the
day. The demand is high on weekdays as compared to weekends. Moreover, electricity demand is
also affected by calendar effects (bank/bridging holidays) and by seasons. In general, the demand
is considerably lower during bank holidays and bridging holidays (a day among two non-working
days). From the figure, high volatility in electricity demand can also be observed in almost all load
periods. In addition, different environmental, geographical, and meteorological factors have a direct
effect on electricity demand. Further, as electricity is a secondary source of energy, which is retrieved
by converting prime energy sources like fossil fuels, natural gas, solar, wind power, etc. [6], the cost
related to each source is different. Thus, a consistent electricity supply mechanism for different levels
of demand with short periods of high and rather longer periods of moderate demand is necessary.

Figure 1. Yearly seasonality for the period 01-01-2012–31-12-2015 (top left), weekly periodicity
for the period 01-01-2013–14-01-2013 (top right), box plot of hourly electricity load for the period
01-01-2013–31-12-2016 (bottom right), daily load curves for the period 01-01-2013–31-01-2013,
weekdays (solid lines), Saturdays (dashed lines), Sundays (dotted lines), and bank holidays at the
bottom (solid) representing 1 January (bottom left).
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To account for the different features of the demand series, in the last two decades, researchers
suggested different methods and models to forecast electricity demand [7–11]. For example, the work
in [12] proposed a semi-parametric component-based model consisting of a non-parametric (smoothing
spline) and a parametric (autoregressive moving average model) component. Exponential smoothing
techniques are also widely used in forecasting electricity demand [13,14]. Multiple equations time series
models, e.g., the Double Seasonal Autoregressive Moving Average (DSARIMA) model, the Double
Holt–Winters (D-HW) model, and Multiple Equations Time Series (MET) approaches are also used
for short-term load forecasting [15,16]. Regression methods are easy to implement and have been
widely used for electricity demand forecasting in the past. For example, the work in [17] used
parametric regression models to forecast electricity demand for the Turkish electricity market.
Some authors included exogenous variables in the time series models to improve the forecasting
performance [18–20]. Several researchers compared the classical time series models and computational
intelligence models [21–23]. For example, the work in [24] compared the Seasonal Autoregressive
Moving Average (SARIMA) and Adaptive Network-based Fuzzy Inference System (ANFIS) models.
For short-term load forecasting, the work in [25] introduced a new hybrid model that combines
SARIMA and the Back Propagation Neural Network (BPNN) model. Some authors suggested the use
of functional data analysis to predict electricity demand [26–28]. The main idea behind this approach
is to consider the daily demand profile as a single functional object; thus, functional approaches can be
applied to electricity load series. Other approaches used for demand forecasting can be seen in [29–33].
Apart from the forecasting models, Distributed Energy Resources (DERs) that are directly connected
to a local distribution system and can be used for electricity producing or as controllable loads are
also discussed in the literature [34,35]. DERs include solar panels, combined heat and power plants,
electricity storage, small natural gas-fueled generators, and electric water heaters.

The main objective of this work is to compare different modeling techniques for electricity
demand forecasting. The main attention is paid to the yearly cycle, which in many cases is ignored.
The authors suggest to estimate jointly the effect of the long-term trend and yearly cycle using one
component [36,37]. In practice, however, the yearly component shows regular cycles, while the
long-term component highlights the trend structure of the data. Thus, these two components must
be modeled separately [26]. Further, in our case, some pilot analyses suggested that modeling
these two components separately can significantly improve the forecasting results. Thus, the main
contribution of this paper is the thorough investigation of the impact of yearly component estimation on
one-day-ahead out-of-sample electricity demand forecasting. Within the framework of the components
estimation method, we compare models in terms of forecasting ability considering both univariate and
multivariate, as well as parametric and non-parametric models. Moreover, for the considered models,
the significance analysis of the difference in predication accuracy is also conducted.

The rest of the article is organized as follows: Section 2 contains a description of the proposed
modeling framework and of the considered models. Section 3 provides an application of the proposed
modeling framework. Section 4 contains a summary and conclusions.

2. Component-Wise Estimation: General Modeling Framework

The main objective of this study is to forecast one-day-ahead electricity demand using different
forecasting models and methods. To this end, let log(Dt,j) be the series of the log demand for the tth

day and the jth hour. Following [28,33], the dynamics of the log demand, log(Dt,j), can be modeled as:

log
(

Dt,j
)
= Ft,j + Rt,j (1)

That is, the log(Dt,j) is divided into two major components: a deterministic component Ft,j and
a stochastic component Rt,j. The deterministic component, Ft,j, is comprised of the long-run trend,
annual, seasonal, and weekly cycles, and calendar effects and is modeled as:

Ft,j = lt,j + at,j + st,j + wt,j + bt,j (2)
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where lt,j represents the long-run (trend component), at,j represents the annual cycles, st,j represents
the seasonal cycles, wt,j is the weekly cycles, and bt,j represents the bank holidays. On the
other hand, Rt,j is a (residual) stochastic component that describes the short-run dependence of
demand series. Concerning the estimation of the deterministic component, apart from the yearly
component at,j, the remaining components are estimated using parametric regression. For the
estimation of at,j, six different methods including the sinusoidal function-based regression techniques,
three local polynomial regression models, and two regression spline function-based models are
used. All the components in Equation (2) are estimated using the back fitting algorithm. In the
case of stochastic component Rt,j, four different methods, namely the Autoregressive Model
(AR), the Non-Parametric Autoregressive model (NPAR), the Autoregressive Moving Average
Model (ARMA), and the Vector-Autoregressive model (VAR) are used. Combining the models for
deterministic and stochastic components estimations leads us to comparing twenty four (6F × 4R =)

24 different combinations. Note that in the case of univariate models, each load period is modeled
separately to account for the intra-daily periodicity [38].

2.1. Modeling the Deterministic Component

This section will explain the estimation of the deterministic component. The long-run (trend)
component lt,j, which is a function of time t, is estimated using Ordinary Least Squares (OLS).
Dummy variables are used for seasonal periodicities, weekly periodicities, and for bank holidays,

i.e., st =
4
∑

i=1
αi Ii,t, with Ii,t = 1 if t refers to the ith season of the year and zero otherwise,

wt =
7
∑

i=1
βi Ii,t, with Ii,t = 1 if t refers to the ith day of the week and zero otherwise, and bt =

2
∑

i=1
γIi,t,

with Ii,t = 1 if t refers to a bank holiday or zero otherwise. The coefficients α’s, β’s, and γ’s
are estimated by OLS. On the other hand, the annual component at,j, which is a function of the
series (1, 2, 3, . . . , 365, 1, 2, 3, . . . , 365, . . .), is estimated by six different methods that include Sinusoidal
function-based Regression (SR), local polynomial regression models with three different kernels,
namely: tri-cubic ((L1), Gaussian (L2), and Epanechnikov (L3), Regression Splines (RS), and Smoothing
Splines (SS).

2.1.1. Sinusoidal Function Regression Model

Sinusoidal function Regression (SR) is widely used in the literature to capture the periodicity of
a periodic component [39–44]. In this method, we consider that the annual cycle can be estimated
using q sine and cosine functions given as:

at =
q

∑
i=1

(α1,i sin wat + α2,i cos wat) , (3)

where w = 2π
365.25 . The unknown parameters α1,i and α2,i (i = 1, . . . , q) are estimated by OLS.

2.1.2. Local Polynomial Regression

Local polynomial regression is a flexible non-parametric technique that approximates at at a point
a0 by a low-order polynomial (say, q), fit using only points in some neighborhood of a0.

ât =
q

∑
j=1

α̂j(at − a0)
j. (4)
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Parameters α̂j are estimated by Weighted Least Squares (WLS) by minimizing:

N

∑
t=1

(at − ât)
2Kδ(a)(at − a0), (5)

where Kδ(a)(at − a0) is a weighting kernel function, which depends on the smoothing parameter δ,
also known as the bandwidth. It controls the size of the neighborhood around a0 [45] and, thus,
of the locality of the approximation. In this work, the value of the bandwidth is selected by using the
cross-validation technique. Three different weighting kernel functions, namely the tri-cubic kernel (L1),
the Epanechnikov (L2), and Gaussian kernels (L3) are used. It is worth mentioning that these types of
local kernel-based regression techniques have been extensively used in the literature [31,39,40,44,46].

2.1.3. Regression Spline Models

Spline Regression (RS) is a popular non-parametric regression technique, which approximates at

by means of piecewise polynomials of order p, estimated in the subintervals delimited by a sequence
of m points called knots. Any spline function Z(a) of order p can be described as a linear combination
of functions Zj(a) called basis functions and is expressed in the following way:

Z(a) =
m+p+1

∑
j=1

αjZj(a).

The unknown parameters αj are estimated by the OLS. The most important choice is the number
of knots and their location because they define the smoothness of the approximation. Again, we chose it
by the cross-validation approach. In the literature, many authors considered this approach for long-run
component prediction [11,12,26]. The annual cycle component for regression splines is estimated as,

ât = Ẑ(a)

2.1.4. Smoothing Splines

To overcome the requirement for fixing the number of knots, spline functions can alternatively
be estimated by using the penalized least squares condition to minimize the sum of squares. Hence,
the expression to minimize becomes:

N

∑
j=1

(at − Z(a))2 + λ
∫

(Z′′(a))2dt (6)

where (Z′′(a)) is the second derivative of Z(a). The first term accounts for the degree of fitting,
while the second one penalizes the roughness of the function through the smoothing parameter λ.
The selection of smoothing parameter is an important task, which in this work is done using the
cross-validation approach. Smoothing Splines (SS) have been previously used by some authors to
estimate the long-run dynamics of the series, e.g., [11,47,48].

To see the performance of all six models defined above for the estimation of the annual component
at,j, the observed log demand and the estimated annual components are depicted in Figure 2. From the
figure, we can see that all six models for at,j were capable of capturing the annual seasonality, as the
annual cycles can be seen clearly from the figure.

Finally, it is worth mentioning that one-day-ahead forecast for the deterministic component is
straightforward as the elements of Ft,j are deterministic functions of time or calendar conditions,
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which are known at any time. Once all these components are estimated, the residual (stochastic)
component Rt,j is obtained as:

Rt,j = log(Dt,j)− (l̂t,j + ât,j + ŝt,j + ŵt,j + b̂t,j) (7)
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Figure 2. Observed log(Dt,21) with superimposed estimated at,j using: (first row) Sinusoidal Regression
(SR) (left), Local regression (L1) (middle), L2 (right), and (second row) L3 (left), Regression Splines
(RS) (middle), and Smoothing Splines (SS) (right).

2.2. Modeling the Stochastic Component

Once the stochastic (residual) component is obtained, different types of parametric and
non-parametric time series models can be considered. In our case, from the univariate class, we consider
parametric AutoRegressive (AR), Non-Parametric AutoRegressive (NPAR), and Autoregressive
Moving Average (ARMA). On the other hand, the Vector AutoRegressive (VAR) model is used to
compare the performance of the multivariate model with the univariate models.

2.2.1. Autoregressive Model

A linear parametric Autoregressive (AR) model defines the short-run dynamics of Rt,j taking into
account a linear combination of the past r observations of Rt,j and is given by:

Rt,j = c + β1Rt−1,j + β2Rt−2,j + .... + βrRt−r,j + εt (8)
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where c is the intercept, βi (i = 1, 2, . . . , r) are the parameters of the AR(r) model, and εt is a white
noise process. In our case, the parameters are estimated using the maximum likelihood estimation
method. After some pilot analysis on different load periods, we concluded that the lags 1, 2, and 7
were significant in most cases and hence were used to estimate the model.

2.2.2. Non-Parametric Autoregressive Model

The additive non-parametric counterpart of AR is an additive model (NPAR), where the relation
between Rt,j, and its lagged values do not have a particular parametric form, allowing, potentially,
for any type of non-linearity and given by:

Rt,j = g1(Rt−1,j) + g2(Rt−2,j) + . . . + gr(Rt−r,j) + εt,j (9)

where gi are smoothing functions describing the relation between each past values and Rt,j. In our
case, functions gi are represented by cubic regression splines. As in the parametric case, we used the
lags 1, 2, and 7 to estimate NPAR. To avoid the so-called “curse of dimensionality”, we used the back
fitting algorithm to estimate the model [49].

2.2.3. Autoregressive Moving Average Model

The Autoregressive Moving Average (ARMA) model not only includes the lagged values of the
series, but also considers the past error terms in the model. In our case, the stochastic component
Rt,j is modeled as a linear combination of the past r observations, as well as the lagged error
terms. Mathematically,

Rt,j = c + β1Rt−1,j + β2Rt−2,j + .... + βrRt−r,j + εt,j + φ1εt−1,j + φ2εt−2,j + .... + φεt−s,j (10)

where c is the intercept, βi (i = 1, 2, . . . , r) and φj (j = 1, 2, . . . , s) are parameters of the AR and MA
components, respectively, and εt ∼ N (0, σ2

ε ). In this case, some pilot analyses suggest that the lags
1, 2, and 7 are significant for the AR part, while only the lag 1 for the MA part, thus a constrained
ARMA(7,1) where β3 = · · · = β6 = 0 is fitted to Rt,j using the maximum likelihood estimation method.

2.2.4. Vector Autoregressive Model

In the Vector Autoregressive (VAR) model, both the response and the predictors are vectors, and
hence, they contain information on the whole daily load profile. This allows one to account for possible
interdependence among demand levels at different load periods. In our context, the daily stochastic
component Rt is modeled as a linear combination of the past r observations of Rt, i.e.,

Rt = G1Rt−1 + G2Rt−2 + · · ·+ GrRt−r + εt (11)

where Rt = {Rt,1, . . . , Rt,24}, Gj (j = 1, 2, · · · , r) are coefficient matrices and εt = (εt,1, . . . , εt,24) is
a vector of the disturbance term, such that εt ∼ N (0, Σε). Estimation of the parameters is done using
the maximum likelihood estimation method.

Finally, once estimation of both, deterministic and stochastic, components is done, the final
day-ahead electricity demand forecast is obtained as:

D̂t+1,j = exp
(

l̂t+1,j + ât+1,j + ŝt+1,j + ŵt+1,j + b̂t+1,j + R̂t+1,j

)
= exp

(
F̂t+1,j + R̂t+1,j

)
(12)

For the stochastic component Rt,j and the final model error εt,j, examples of the Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF) are plotted in Figure 3 and 4. Note that
in the case of εt,j, both ACF and PACF refer to the models when VAR is used as a stochastic model.
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The reason for plotting the residual obtained after applying the VAR model to Rt,j is the superior
forecasting performance of the multivariate model (see Table 1). Overall, the residuals εt,j of each
model have been whitened. In some cases, residuals still show some significant correlation, but with
an absolute value so small that it is useless for prediction.

Figure 3. ACF and Partial Autocorrelation Function (PACF) plots for Rt,21 (first row), ACF and PACF
plots for εt,21 obtained with L1-VAR (second row), L2-VAR (third row), and L3-VAR (fourth row).
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Figure 4. ACF and PACF plots for εt,21 obtained with SR-VAR (first row), RS-VAR (second row),
and SS-VAR (third row).

Table 1. Descriptive statistics for one-day-ahead out-of-sample forecasting: The column represents
the estimation of the yearly component through Sinusoidal Regression (SR), Local regression (L1),
Local regression (L2), Local regression (L3), Regression Spline (RS), and Smoothing Spline (SS). The row
represents the estimation of the stochastic component thorough Autoregressive (AR), Non-Parametric
Autoregressive (NPAR), Autoregressive Moving Average (ARMA), and Vector Autoregressive (VAR).

ERRORS MODELS SR L1 L2 L3 RS SS

MAPE

AR 2.503 2.466 2.413 2.412 2.411 2.412
NPAR 2.510 2.434 2.413 2.411 2.399 2.395
ARMA 2.514 2.435 2.413 2.418 2.405 2.396

VAR 2.143 2.109 1.997 1.995 1.994 1.995

MAE

AR 1081.184 1069.125 1044.341 1044.686 1044.177 1044.611
NPAR 1086.336 1056.392 1045.753 1046.899 1041.275 1039.804
ARMA 1084.869 1055.017 1048.107 1045.881 1042.705 1038.553

VAR 922.405 907.187 856.497 856.135 856.082 856.088

RMSE

AR 1486.580 1493.652 1450.551 1454.510 1450.676 1453.358
NPAR 1476.394 1450.813 1436.108 1439.677 1434.670 1433.172
ARMA 1468.908 1443.367 1431.686 1431.296 1427.437 1422.794

VAR 1219.608 1211.225 1146.302 1146.002 1145.979 1146.014
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3. Out-of-Sample Forecasting

This work considers the electricity demand data for the Nord Pool electricity market. The data
cover the period from 1 January 2013–31 December 2016 (35,064 hourly demand levels for 1461 days).
A few missing observations in the load series were replaced by averages of the neighboring
observations. The whole dataset was divided into two parts: 1 January 2013-31 December 2015
(26,280 data points, covering 1095 days) for model estimation and 1 January 2016–31 December 2016
(8784 data points, covering 366 days) for one-day-ahead out-of-sample forecasting.

In the first step, the deterministic component was estimated separately for each load period as
described in Section 2.1. An example of estimated deterministic components, as well as of Rt,j is
plotted in Figure 5. In the figure, along with the log demand at the top left, the long trend, yearly,
seasonal, and weekly components are plotted on top right, middle left, middle right, and bottom left,
respectively. Note that the elements of the deterministic components capture different dynamics of the
log demand. An example of the series Rt,21 is plotted at the bottom right in Figure 5. In the second
step, the previously-defined models for stochastic component were applied to the residual series Rt,j.
In both steps, models were estimated and one-day-ahead forecasts were obtained for 366 days using
the rolling window technique. Final demand forecasts were obtained using Equation (12).
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Figure 5. log(Dt,21) (top left), l̂t,21 (top right), ât,21 (middle left), ŝt,21 (middle right), ŵt,21 (bottom left),
and Rt,21 (bottom right).
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To evaluate the forecasting performance of the final models obtained from different combinations
of deterministic and stochastic components, three accuracy measures, namely Mean Absolute
Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) were
computed as:

MAPE = mean

(
|Dt,j − D̂t,j|

Dt,j

)
× 100

MAE = mean
(
|Dt,j − D̂t,j|

)
RMSE =

√
mean(Dt,j − D̂t,j)2 ,

where Dt,j and D̂t,j are the observed and the forecasted demand for the tth day (t = 1, 2, . . ., 366) and
the jth (j = 1, 2, . . . , 24) load period.

As within the deterministic component, this work used six different estimation methods for at,j,
whereas the estimation of other elements was the same; six different combinations were obtained.
On the other hand, four different models were used to model the stochastic component. Hence,
the estimation of both, deterministic and stochastic, components led us to compare twenty four
different models. For these twenty four models, one-day-ahead out-of-sample forecast results are listed
in Table 1. From the table, it is evident that the multivariate VAR model combined with any estimation
technique used for at,j led to a better forecast compared to the univariate models. The best forecasting
model was obtained by combining VAR and RS, which produced 1.994, 856.082, and 1145.979 for
MAPE, MAE, and RMSE, respectively. VAR combined with SS or with L3 produced the second best
results. Within the univariate models, NPAR combined with the spline-based regression models
performed better than the other two parametric counterparts. Finally, any stochastic model combined
with SR or with L1 led to the worst forecast in their respective classes (univariate and multivariate).
Considering only MAPE, a graphical representation of the results for the twenty four combination
is given in Figure 6. From the figure, we can easily see that multivariate models performed better
than the univariate models. To assess the significance of the difference among accuracy measures
listed in Table 1 for different combinations, we performed the Diebold and Mariano (DM) [50] test of
equal forecast accuracy. The DM test is a widely-used statistical test for comparing forecasts obtained
from different models. To understand it, consider two forecasts, ŷ1t and ŷ2t, that are available for
the time series yt for t = 1, . . . , T. The associated forecast errors are ε1t = yt − ŷ1t and ε2t = yt − ŷ2t.
Let the loss associated with forecast error {εit}2

i=1 by L(εit). For example, time t absolute loss would
be L(εit) = |εit|. The loss differential between Forecasts 1 and 2 for time t is then ηt = L(ε1t)− L(ε2t).
The null hypothesis of equal forecast accuracy for two forecast is E[ηt] = 0. The DM test requires that
the loss differential be covariance stationary, i.e.,

E[ηt] = µ, ∀ t

cov(ηt − ηt−τ) = γ(τ), ∀ t

var(ηt) = ση , 0 < ση < ∞

Under these assumptions, the DM test of equal forecast accuracy is:

DM =
η̄

σ̂η̄

d−→ N(0, 1)

where η̄ = 1
T ∑T

t=1 ηt is the sample mean loss differential and σ̂η̄ is a consistent standard error estimate
of ηt.

The results for the DM test are listed in Table 2 and Table 3. The elements of these tables are
p-values of the Diebold and Mariano test where the null hypothesis assumes no difference in the
accuracy of predictors in the column and row against the alternative hypothesis that the predictor in
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the column is more accurate than the predictor in the row. From Table 2, it is clear that the multivariate
VAR models outperform their univariate counterparts. When looking at the results of VAR using
different methods of estimation for at,j in Table 3, it can be seen that, except for SR-VAR and L1-VAR,
the remaining four combinations had the same predictive ability. In the case of SR-VAR and L1-VAR,
the remaining four combinations performed statistically better.
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Figure 6. One-day-ahead out-of-sample MAPE for electricity demand using SR, L1, L2, L3, RS, SS, AR,
NPAR, ARMA, and VAR.

Table 2. p-values for the Diebold and Mariano test. H0: the forecasting accuracy for the model in the
row and the model in the column is the same; H1: the forecasting accuracy of the model in the column
is greater than that of the model in the row.

MODELS RS-AR RS-NPAR RS-ARMA RS-VAR

RS-AR - 0.33 0.40 < 0.01
RS-NPAR 0.67 - 0.75 < 0.01
RS-ARMA 0.60 0.25 - < 0.01

RS-VAR 0.99 0.99 0.99 -
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Table 3. p-values for the Diebold and Mariano test. H0: the forecasting accuracy for the model in the
row and the model in the column is the same; H1: the forecasting accuracy of the model in the column
is greater than that of the model in the row.

Models SR-VAR L1-VAR L2-VAR L3-VAR RS-VAR SS-VAR

SR-VAR - .28 < 0.01 < 0.01 < 0.01 < 0.01
L1-VAR 0.72 - < 0.01 < 0.01 0.01 < 0.01
L2-VAR 0.99 0.99 - 0.93 0.85 0.83
L3-VAR 0.99 0.99 0.07 - 0.47 0.45
RS-VAR 0.99 0.99 0.15 0.53 - 0.48
SS-VAR 0.99 0.99 0.17 0.55 0.52 -

The day-specific MAPE, MAE, and RMSE are tabulated in Table 4. From this table, we can see
that day-specific MAPE was relatively higher on Monday and Sunday and smaller on other weekdays.
As the VAR model performed better previously, the day-specific MAPE values for this model were
considerably lower compared to univariate models, except on Wednesday, Thursday, and Friday.
For these three days, both the univariate and multivariate models produced lower errors. The same
findings can be seen by looking at day-specific MAE and day-specific RMSE. The day-specific MAPE
values are also depicted in Figure 7. The figure clearly indicates that the MAPE value was lower in the
middle of the week and was higher on Monday and Sunday.

Days

M
A
P
E

AR

NPAR

ARIMA

VAR

Mon Tue Wed Thu Fri Sat Sun

2.
0

2.
5

3.
0

3.
5

Figure 7. Day-specific MAPEs for all stochastic component models: AR, NPAR, ARMA, and VAR.
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Table 4. Electricity demand: hourly day-specific MAPE, MAE, and RMSE.

ERRORS MODELS Monday Tuesday Wednesday Thursday Friday Saturday Sunday

MAPE

AR 3.33 2.18 1.99 1.82 1.83 2.24 3.49
NPAR 3.46 2.14 1.96 1.79 1.83 2.26 3.35
ARMA 3.44 2.12 1.96 1.81 1.82 2.24 3.42

VAR 2.33 1.71 1.94 1.72 1.73 1.93 2.60

MAE

AR 1728.10 1002.69 755.78 633.24 634.54 905.95 1649.36
NPAR 1811.31 973.38 740.55 618.19 638.20 921.64 1585.79
ARMA 1798.48 969.16 743.45 626.00 631.97 912.87 1615.01

VAR 1225.76 799.34 739.52 592.69 601.85 791.00 1250.86

RMSE

AR 2194.77 1288.65 980.01 774.78 798.23 1176.36 2142.07
NPAR 2252.48 1253.27 950.24 764.92 795.33 1187.31 2038.49
ARMA 2232.41 1248.31 952.02 775.92 789.30 1181.01 2028.24

VAR 1601.44 999.26 963.13 733.99 747.15 981.53 1619.33

To conclude this section, the hourly RMSE and forecasted demand for the best four combinations
including one for each stochastic model is plotted in Figure 8. From the figure (left), note that hourly
RMSE are considerably lower at the low load periods, while they are high at peak load periods. Further,
note the best forecasting performance of the SR-VAR model compared to the competing stochastic
models. For these models, the observed and the forecasted demand are also plotted in Figure 8 (right).
The forecasted demand was following the actual demand very well, especially when VAR was used
as a stochastic model. Thus, we can conclude that the multivariate model VAR outperformed the
univariate counterparts.
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Figure 8. (left) Hourly RMSE for: RS-AR (solid), RS-NPAR (dashed), RS-ARMA (dotted), and RS-VAR
(dotted-dashed). (Right) Observed demand (solid) and forecasted demand for: RS-AR (dashed),
RS-NPAR (dotted), RS-ARMA (dotted-dashed), and RS-VAR (long dash).

4. Conclusions

The main aim of this work was to model and forecast electricity demand using the component
estimation method. For this purpose, the log demand was divided into two components: deterministic
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and stochastic. The elements of the deterministic component consisted of a long trend, multiple
periodicities due to annual, seasonal, and weekly regular cycles, and bank holidays. Special attention
was paid to the estimation of the yearly seasonality as it was previously ignored by many
authors. The estimation of yearly components was based on six different estimation methods,
whereas other elements of the deterministic component were estimated using ordinary least squares.
In particular, for the estimation of annual periodicity, this work used the sinusoidal function-based
model (SR), the local polynomial regression models with three different kernels: tri-cubic (L1),
Gaussian (L2), and Epanechnikov (L3), Regression Splines (RS), and Smoothing Splines (SS). For the
stochastic component, we used four univariate and multivariate models, namely the Autoregressive
Model (AR), the Non-Parametric Autoregressive Model (NPAR), the Autoregressive Moving Average
model (ARMA), and the Vector Autoregressive model (VAR). The estimation of both, deterministic
and stochastic, components led us to compare twenty four different combinations of these models.
To see the predictive performance of different models, demand data from the Nord Pool electricity
market were used, and one-day-ahead out-of-sample forecasts were obtained for a complete year.
The forecasting accuracy of the models was assessed through the MAPE, MAE, and RMSE. To assess
the significance of the differences in the predictive performance of the models, the Diebold and
Mariano test was performed. Results suggested that the component-wise estimation method was
extremely effective for modeling and forecasting electricity demand. The best results were produced by
combining RS and the VAR model, which led to the lowest error values. Further, all the combinations
of the multivariate model VAR completely outperformed the univariate counterparts, suggesting the
superiority of multivariate models. Within the combination of VAR, however, the results were not
statistically different for all models.
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