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Abstract: Contributed by the low cost, the simulation method is considered an attractive option for
the optimization and design of the supersonic combustor. Unfortunately, accurate and satisfactory
modeling is time-consuming and cost-consuming because of the complex processes and various
working conditions. To address this issue, a mathematical modeling for the combustor on the basis of
the clustering algorithm, machine learning algorithm, and model migration strategy is developed
in this paper. A general framework for the migration strategy of the combustor model is proposed
among the similar combustors, and the base model, which is developed by training the machine
learning model with data from the existing combustion processes, is amended to fit the unexampled
combustor using the model migration strategy with a few data. The simulation results validate the
effectiveness of the development strategy, and the migrated model is proved to be suitable for the
new combustor in higher accuracy with less time and calculation.

Keywords: model migration strategy; process similarity; scramjet combustors

1. Introduction

Contributed by the key factors of higher speed and no requirement to carry oxygen, scramjets
are considered as a promising propulsion for cruise missiles [1–6]. As one of the ramjet airbreathing
engines [7], the scramjet is made of an inlet, combustor, and nozzle. Among these components,
the combustor has a key effect on the working characteristics, including the transient response, fuel
efficiency, and levels of emissions [8]. With the continued development of aircraft, there is an increasing
need for precision in the propulsion performance of the scramjets, which can be achieved by optimizing
the supersonic combustors’ processes [9]. Since experiments are cost-intensive, simulation methods
are popularly adopted to model the process of the supersonic combustor.

Currently, modeling of the supersonic combustor is mainly based on the following three types:
the experience design method, the method combining CFD with experience, and the method combining
CFD with verification experiments [10,11]. Many CFD researchers have adopted the method based
on Navier–Stokes equations to analyze the scramjet combustor in detail. Early in the systematic
development of scramjets, Billig [12] developed a quasi-one-dimensional model of scramjet combustors
based on pressure–area variation. Such a model can give only a rough approximation of the actual
flow and combustion processes. A two-dimensional flow model with coaxial injection of hydrogen
parallel to the air flow was considered by Tsujikawa and Northam, who also analyzed the effect
of active cooling with slush hydrogen, which is a key aspect of their model [13]. Subsequently,
aiming at the investigation on combustor mode transition in the combustor, Xiao [14] adopted a fully
coupled form of species conservation equations and Reynolds averaged Navier–Stokes equations as a
governing equation set for a chemically reacting supersonic viscous flow. A quasi-one-dimensional,
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inviscid chemical equilibrium model, which was capable of rapidly analyzing the combustor without
requiring predefined geometries, was developed by Vanyai [15] to simulate scramjet engines defined by
predetermined combustion processes. These methods are accurate in a certain range; however, they are
also time-consuming and subject to limitations of turbulence modeling. It is therefore meaningful to
develop a method that can quickly predict the overall performance of a scramjet combustor.

At present, researchers have pursued several empirical models to simulate the process of the
combustor. These models assume the combustor as a black-box, and just focus on the relationship
between the input and output parameters without taking the physical mechanism into consideration.
As for the applications of the control, optimization, and analysis of the combustors, these empirical
modeling methods have an attractive prospect [16–21]. However, a large number of data samples is
the premise of accurate and reliable data-driven models [22]. Unfortunately, it is time-consuming and
of high cost to obtain experimental data samples from the new combustor. Therefore, developing
a precise empirical model with less data and calculation is an attractive problem which is worthy
of solving.

One way to remedy the problem mentioned above is the model migration strategy developed by
Gao and Lu [23–26]. The key methodology of the model migration strategy is to revise the base model
obtained from the existing processes to fit the new process as long as there are similarities between
the existing and new processes. Moreover, a series of model migration strategies for different types
of similarity have also been investigated by Gao and Lu [23–25]. The key aim of these strategies is
to model the new process with less experimental data and get rid of the repetitive training, and the
validity has been verified by the injection process [26–28].

As far as supersonic combustors are concerned, although they have different structures and sizes
for adjusting to different operation conditions, there is the same underlying physic mechanism in the
combustors. That also means the input–output mapping relationship among the combustors remains
the same or similar [22]. Therefore, in this paper, the model migration strategy is used to simulate
the supersonic combustor, and a new rapid simulation method to predict the performances of the
combustor on basis of the model migration strategy is proposed. This approach first uses data from
the existing combustors to develop a base model, modifies the base model to meet these requirements
of the new combustor, and predicts the differences between the real process of the new combustor
and the base model through the meaningful information extracted from the existing combustors and a
little data obtained from the new combustor. In this method, both overall and local migrations play
crucial roles in revising the base model to fit the new combustor. Specifically, some performances of
the combustor, namely, the total pressure and the total pressure recovery coefficient, are predicted in
the simulation case, and the performances of the real mechanical process of the new combustor are
adopted for comparison with the proposed method.

Generally speaking, the modeling method that we built is similar to a migration learning
algorithm. A similar study applied to scramjet engines has been conducted for a multi-objective
design optimization [11]; this method still requires a CFD model. In contrast, in our model migration
method process, a CFD model is not necessary. The common CFD model focuses on solving these
governing equations, which is often more difficult and time-consuming. We do not need to be clear
about the reason why specific changes occur in the process, and it is sufficient only to record the
attribute value. Many steps of model migration are trained by data points to approximately simulate
this relationship. Moreover, when the CFD model is difficult to build, it is often modeled by a large
amount of data. With the migration modeling method, the amount of data required for data-based
modeling can be reduced, which is the significance of our method. The more complex the process is,
the more difficult CFD modeling is, and the more data are required for data-based modeling. In this
case, the optimization effect of the application of our migration modeling method is more obvious.
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2. Process Representation of Supersonic Combustors

Although the structure of supersonic combustors is simple and similar, their internal operation
mechanisms are complex. Therefore, there are numerous parameters in the process of operation of a
supersonic combustor. This paper divides these parameters into three categories:

(1) Configuration parameters: The combustion chamber is basically composed of an air intake,
a nozzle, a combustion chamber, and an ignition device. The sizes of these components, including
the blockage ratio, overall length, and cross-section area, influence the performance of the
combustor. The parameters that affect the combustor according to the configuration of the
supersonic combustor itself are named the configuration parameters. The intrinsic properties of
the material of the combustor are also assumed to be configuration parameters.

(2) Inlet parameters: The inlet parameters, such as the equivalence ratio, the total inlet temperature,
the flow Maher number, and the inlet total pressure, are the main properties of the inflow fluid
when it begins to enter the combustor. The intrinsic properties of the fluid are also defined as
inlet parameters.

(3) Outlet parameters: The outlet parameters are the main characteristics of the outflow fluid leaving
the combustor. The outlet parameters include the total temperature, Maher number, total pressure
of outlet, static pressure, and the static temperature. The outlet parameters are determined after
the configuration and inlet parameters are determined.

Regardless of how complicated the process of the combustor is, its properties can be classified
into the above three parameters. Therefore, every combustor, P, can be characterized through a series
of process properties and the relations among these properties, as shown in Equation (1) [23]:

P = R(X, Y). (1)

Here, X is the input variables which could reflect the nature of the combustor, such as the
configuration and the inlet parameters; Y is the output variables, including the outlet parameters;
and R denotes the relationships between X and Y governed by the physic mechanism of the
combustor. Generally, R can be obtained by many modeling methods besides hybrid, data-driven,
and first-principles approaches. In this paper, we assume the combustor as a black-box with the
ignorance of the internal physics principles, and only take the input–output mapping relationship into
consideration. Hence, this paper unitizes the BP (back propagation) neural network to simulate the
relationship instead of seeking the specific functions.

Taking the combustor modeling as an instance, any combustors could be characterized through a
series of process attributes, including the chamber type, the blockage ratio, the inlet total pressure,
the inlet total temperature, the inflow Mach number, the outlet total pressure, the outlet total
temperature, and the outflow Mach number. The selected types of the process attributes vary with
different modeling needs.

For a particular combustor molding process that operates with an annular chamber, an inflow
Mach number of 2, an inlet total pressure of 800 K, an inlet total temperature of 1000 Pa, an outflow
Mach number of 3, an outlet total pressure of 3200 Pa, and an outlet total temperature of 1500 K can be
described as follows:

P = R(X, Y)
= R([Annular chamber, 1.4, 2, 800K, 1000Pa], [3, 1500K, 3200Pa])
= R(Annular chamber, 1.4, 2, 800K, 1000Pa, 3, 1500K, 3200Pa)

(2)

3. Model Migration Strategy for Supersonic Combustors

The basic requirement for model migration is process similarity. When the response curves of
different processes witness similar behavior while there are varied magnitudes under the identical
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operating range of an input variable, these processes are assumed to be trend similar. Trend similarity
is a type of process similarity [24]. For different supersonic combustors, despite the differences in sizes
and inlet parameters, the variation trend of the output parameters is similar because the underling
physics principles remain the same. Therefore, the combustor has a trend similarity and satisfies the
prerequisite of model migration.

Assuming that the data of the existing combustor can be obtained and that of the new combustor
can be accessible, we could develop the new combustor model according to the following steps:
development of the base model; performing preliminary experiments of the new combustor; overall
migration; local migration; and validity of the new model.

3.1. Development of the Base Model

Based on the above process representation method of the combustor, every existing combustor
can be represented as (xi, yi)

l
i=1, where xi is the input parameter, yi stands for the corresponding output

value, and l represents the amount of training data. These data sets can form a sample as follows:

E =
{
(x1

i , y1
i )

l1

i=1, (x2
i , y2

i )
l2

i=1, · · · (xn
i , yn

i )
ln
i=1

}
(3)

where n is the amount of data sets.
Although each data set is different, the underling physics principles remain the same. Thus,

we assume the combustor as a black-box with the ignorance of the internal physics principles, and
only take the input–output mapping relationship into consideration. This black box model is mainly
developed using the bagging algorithm [29–31] and the BP neural network [29].

We can get a base model F of the new combustor by the following steps: select m training data
sets from the training sample D randomly; train the data sets to obtain a model named fi in accordance
with the BP neural network; put the training data sets back to the sample D; repeat the above steps K
times to obtain K base models:

{
f1, f2, · · · , fk

}
; and obtain the weighted average of these base models

according to Equation (4) and output the weighted average model F.

F =
1
K

K∑
k=1

fk (4)

The foundation of the base model F is the machine learning algorithm. According to the
characteristics of machine learning, we know that if the sum of the data set is larger, then the accuracy
of the base model will be higher. However, a large calculation burden would be added to the
development of the ensemble members if the data pairs contain too much training data. Furthermore,
the methodology of improving the accuracy by increasing the training data samples is invalid when
the existing combustor is limited, and the data cannot be obtained in large quantities. In this paper,
the focus of the modeling method is the migration strategy rather than the data modeling, and the
migration strategy does not require high accuracy for the base model, as long as it can inherit some of
the characteristics of the existing combustor and maintain similar trends. In fact, a base model trained
by approximately 20 sets of data can meet the requirements of the migration strategy [24], as verified
in the following simulation.

3.2. Preliminary Experiments of the New Combustor

Although the base model can reflect the general characteristics between the existing combustor
and the new combustor, it is difficult to maintain the unique features of the new combustor. Therefore,
it is necessary to conduct some sparse experiments to obtain the main features of the new process and
take these features into consideration during the modeling process. For reflecting the characteristics of
the new process, the preliminary experiments need to be designed at key and influential data-points.
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The cluster estimation method could divide the data samples into cluster centers for describing
the regions with high data density and each cluster center is considered as the representation of this
local region [32,33]. For maintaining the key influence of every factor and nonlinear features of the
output space at the same time, the cluster estimation method is adopted for designing experiments of
the new combustor. With this cluster method, the process behavior of the existing combustors could
be described at little cost. As stated previously, every existing combustor can be represented by a
data set (xi, yi)

l
i=1. Next, we combine the input data xi with the corresponding y-value to form N

input–output data pairs D (xi; yi), where xi denotes the input, y stands for the output, and D denotes
the augmented data vector. Every input–output data pair can be regarded as a data point star. The gap
among these data point pairs should be consistent with the resolution of parameters so as to ensure
these cluster centers could describe the features of the existing combustors in a precise way. Therefore,
the characteristics of the new combustor could be captured if we conduct experiments at the same
cluster center points. Every data point Di is considered as a potential cluster center according to
the cluster estimation method, and then the measure of each possible center could be calculated by
Equation (5) [24,34]:

Ai =
N∑

j=1
exp

(
−

4
r2 ‖Di −D j‖

2
)

=
N∑

j=1
exp

(
−

4
r2

((
xi − x j

)2
+

(
yi − y j

)2
))

i ∈ [1, N]
(5)

where r denotes the effective radius of a cluster center, defining a neighborhood, N represents the
number of data points surrounding the potential center, and Ai stands for the potential of the ith
particular data point. Assuming that the potential is hardly affected by these data points which are
outside the radius, the measurement of that for a particular data point would be characterized as
a function of the gap to the remaining points. When it is neighboring to the candidate data point,
this data point would have significant influence on the potential. As the radius of every region of
the input–output space is set to be same, the cluster center would have the equal effective ranges on
every region.

Adopting the fitting radius of every region, we could get the corresponding amount and position
of the cluster center. Additionally, the dimension where the input parameters effectively contribute
to the output parameter would have a larger amount of cluster centers for the larger density. Every
cluster center can be considered as a typical representation data point maintaining the key features of
the existing combustors. Hence, conducting preliminary experiments concluding these cluster centers
could contain the main characteristic behavior of the new combustor.

3.3. Overall Migration

The base model can be presented in the form as follows:

Ybase = f (Xbase) (6)

where Xbase and Ybase are the input and output, and f is the function relationship between the input
and output of the base model.

Comparing the data obtained from the preliminary experiments with the data obtained from the
base model, we find that disagreement exists between the types of data. Moreover, shift and scale
occur in both the output and input data. The amendment model is then obtained through both the
slope/bias correction of the input and that of the output space according to Equation (7) [22–24]:

Yamendment = C0 × f (C1 ×Xbase + B1) + B0 (7)

where C1 and B1 denote the re-scaling and shifting in input space, respectively, and C0 and B0 represent
the re-scale and shift in output space, respectively. In other words, C0 and C1 are the ratio coefficients,
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and B0 and B1 are the offset coefficients. The aforementioned coefficients are estimated through the
optimization of Equations (8) and (9) and the training data obtained from the new combustor [22–24]:

argminJ(C0, B0, C1, B1) = εεT (8)

s.t εi = yi − (C0 × f (C1 ×Xi + B1) + B0) (9)

where y stands for the data of the new combustor obtained in the preliminary experiments, εi is the
predicted error between the experimental and theoretical values, and C0 and C1 are the ratio coefficients,
and B0 and B1 are the offset coefficients.

3.4. Local Migration

Even though the amendment model has the higher precision than the base model [23–26],
some disagreements remain in the amendment model because of the nonlinearity of the process of
combustors. Therefore, the local model migration approach is used to re-amend the deviation between
the amendment model and the new combustor. This approach groups the input space into a series
of local deviation compensation models while amending the deviation according to the degrees of
deviation in each local interval of the original amendment model. These local deviation compensation
models constitute the global deviation compensation model through the fusion algorithm, and the
global deviation compensation model is then used to re-amend the amendment model to finally obtain
a re-amendment model. As the local model migration method takes full consideration of features of
the marginal points, it can compensate for the nonlinear deviation [34].

Figure 1 gives a diagram of the local model migration method, and the specific steps [34] are
as follows:

(1) Divide the input space into N equal parts, and each part forms a local region. Although the larger
the N value, the higher the overall accuracy, it will be accompanied by an increasing burden of
the calculation. Therefore, the amount of the local regions had better be moderate (typical 10–30).

(2) Take each local region as a separate sample, and then use the clustering algorithm to generate
cluster centers. However, a smaller cluster radius is selected for a deeper level of clustering
in the computation of the probability of every data point into the cluster center, as shown in
Equation (10) [34]:

Ai =
N∑

j=1
exp{−(

4‖Di,1−D j,1‖
2

r2
F,1

+
4‖Di,2−D j,2‖

2

r2
F,2

+ . . .
4‖Di,m+1−D j,m+1‖

2

r2
F,m+1

)}

=
N∑

j=1
exp(−

m+1∑
k=1

4‖Di,k−D j,k‖
2

r2
F,k

)
(10)

where rF is the new cluster radius, which is smaller than the previous radius. Moreover, to consider
the influence of the edge points and ensure that the new cluster centers are far from the existing
cluster centers, Equation (10) is further revised as follows [34]:

Ai ← Ai −

K∑
k=1

Ake
−4‖Di−Dk‖

2

r2
F +

M∑
m=1

λmAme
−4‖Di−Dm‖2

r2
F (11)

where K stands for the number of existing cluster centers, M denotes the number of edge points,
Ak and Am are the values of probabilities calculated by the Equation (10), and λm denotes the
predicted error. The follow-up experiments are approximately the same as that shown in the
previous Section 3.2. Next, we can obtain some experimental data. These experimental data
consist of the corresponding experimental samples.

(3) Train the coefficients of each region through the experimental data and the predicted value of
the amendment model. The calculating process is the same as that shown in Section 3.3.
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Moreover, the coefficients of each region obtained by Equations (8) and (9) are defined
as Gi =

{
Ci

0, Bi
0, Ci

1, Bi
01

}
Gi =

{
Ci

0, Bi
0, Ci

1, Bi
01

}
, i = 1, 2, . . . , m and m stands for the amount of

local regions.
(4) Calculate the membership degree of each experimental sample to each local space. Thus, the global

coefficient, G, is obtained by the weighted average of the membership degree according to the
following formula:

G =
∑m

i=1
wi ·Gi/

∑m

i=1
wi (12)

where wi is the membership degree between the local space and the experimental data sample.
(5) Re-amend the amendment model with the global coefficient, and then output the re-amendment

model calculated by Equation (7).
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3.5. Test and Verify the Re-Amendment Model

The re-amendment model established through the overall migration and local migration requires
a verification experiment to be performed. We can compare the prediction value with the actual value
to validate the precision of the model by using some of the new process data that have not previously
been used. If the verification fails, then repeat these previous steps. If the accuracy of the model meets
the requirements, then this model is adequate for use.

4. Simulation and Verification

To validate this modeling method, we adopted a case study and compared the prediction values
of the developed model with that of a mechanism model.

Limited to our present experimental conditions, the experimental data of the combustor were
difficult to obtain, and the cost of the experiments was relatively high. Therefore, we adopted a
mechanism model, which has been used by many authors including Billing, Ferri, and Curran, to generate
simulation data as the experimental data in the model migration strategy. Meanwhile, the mechanism
model can provide simulation validation for the re-amendment model of the new combustor.

The structural representation of existing combustors and the new combustor is shown in Figure 2.
The outlet/inlet cross-sectional area ratios of existing combustors were selected to be 1.5, 2.4, and
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3.0, and that of the new combustor was 2.0. In this case study, the existing combustors and the new
combustor were different merely in two attributes (the outlet/inlet cross-sectional area and the fuel
equivalent ratio of the inflow fluid); the other input attributes, such as the Maher number, static
temperature, and static pressure, were assumed to be the same. The outlet/inlet cross-sectional area
and the fuel equivalent ratio of the inflow fluid were regarded as the input variables. The total pressure
of the outflow fluid and the total pressure recovery coefficient were chosen to be the output variables.

In our simulation case, every existing combustor had 200 data pairs and the mechanism model
generated 200 data pairs for the new combustor. Overall, 12.5% of the total dataset of the existing
combustors was randomly adopted to train the base model; just one data pair obtained from the new
combustor was used in the overall migration, 20 data pairs of the new combustor were used in the
local migration, and the remaining data pairs of the new combustor was used for validation. The loss
function was mean square deviation while the network architecture was the BP (back propagation)
neural network. Additionally, the simulation software was MATLAB.
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4.1. Export the Total Pressure of the Outflow Fluid

In this simulation process, the total pressure of the outflow fluid is taken as the output variable.
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(b) simulation of the new combustor.

First, 25 data pairs were randomly sampled from three existing combustors through the bagging
algorithm [23–26]. Next, the base model was obtained through training the black-box model with these
data pairs. The cluster estimation method grouped the existing data set into several cluster centers.
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The preliminary experiments of the new combustor were designed with the guidance of the cluster
centers. Finally, we obtained the amendment model using the overall migration and the re-amendment
model using the local migration.

Figure 3a shows the three existing combustors. The prediction results from the base model,
the amendment model, and the re-amendment model were compared with the mechanism model
in Figure 3b. As shown in Figure 3b, it is obvious that there are large differences between the base
model and the mechanism model, but the two models have a similar trend. Compared with the base
model, the amendment model has a higher precision. However, there are many offset points in the
amendment model. The re-amendment model is closest to the mechanism model and has minimum
offset points. This result proved that the re-amendment model can achieve very accurate prediction
performance and can be used as the final model.

According to the characteristics of machine learning, we know that if the sum of the data set is
larger, then the accuracy of the base model is higher. To examine the effect of the amount of the existing
data set on the migration modeling process, we took the same simulation steps but used more of the
data sets obtained from the existing combustors. Figure 4a shows the three existing combustors, and
the simulation results are given in Figure 4b.

Comparing the simulation results in Figure 4b with those in Figure 3b, we find that using more
data can reduce the shifting between the base model and the mechanism model but increase the
number of edge points. Although using more data sets improves the prediction performance of the
base model, the re-amendment model has similar prediction accuracy to that of the re-amendment
developed in Figure 3b. However, it is more difficult to correct the edge points than it is to correct
the shifting. Therefore, it is more economical to develop a base model with 25 sets of the existing
combustor data.
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4.2. Export the Total Pressure Recovery Coefficient

The total pressure recovery coefficient was taken as the output variable in this simulation process.
Figure 5a shows the existing combustors, and Figure 5b shows the simulation results. By analyzing the
results, we find that the re-amendment model is in good agreement with the mechanism model.
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4.3. Discussion 

By using the total pressure of the inflow fluid and the total pressure recovery coefficient as the 
input variables for the simulation, the results proved the reliability of the model migration strategy 
of the combustor, which is also less computation-intensive. Moreover, both the linear and nonlinear 
processes are valid. Furthermore, by comparing the performance of the models developed with 25 
data sets with that of the models developed with 50 data sets, we found that it is more economical to 
develop a base model with approximately 25 sets of existing combustor data. 

In summary, the model migration strategy developed in this paper can be well applied to model 
combustion processes and provides a more optimized case for the future design of the supersonic 
combustors. Last, but not least, the application is not limited to these parameters. Regarding more 
complex processes, they can also be written as data points in a higher dimension coordinate system. 
As the proposed modeling method only processes data points, the method remains valid for more 
complex processes. With this modeling method, the amount of data required for data-based modeling 
can be reduced, which is the significance of the paper. However, when the amount of data is too small 
to meet the minimum requirement of this modeling method, the methodology would be invalid. 

5. Conclusions 

Proposing a precise model for the combustor is a tough and high-costing but meaningful project. 
Therefore, this paper outlined a model migration strategy that makes full use of the data obtained 
from existing combustors and needs a few experiments. A systematic modeling method, containing 
the development of a base model, preliminary experiments of the new combustor, overall migration 
and local migration, was developed. For the simulation case in which the new combustor was a shift 
and re-scale of the existing combustors, the re-amendment model was developed by the model 
migration strategy, using less data than that required for developing a traditional data-based model. 
The results verify this proposed modeling method is valid. 
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4.3. Discussion

By using the total pressure of the inflow fluid and the total pressure recovery coefficient as the
input variables for the simulation, the results proved the reliability of the model migration strategy
of the combustor, which is also less computation-intensive. Moreover, both the linear and nonlinear
processes are valid. Furthermore, by comparing the performance of the models developed with 25 data
sets with that of the models developed with 50 data sets, we found that it is more economical to develop
a base model with approximately 25 sets of existing combustor data.

In summary, the model migration strategy developed in this paper can be well applied to model
combustion processes and provides a more optimized case for the future design of the supersonic
combustors. Last, but not least, the application is not limited to these parameters. Regarding more
complex processes, they can also be written as data points in a higher dimension coordinate system.
As the proposed modeling method only processes data points, the method remains valid for more
complex processes. With this modeling method, the amount of data required for data-based modeling
can be reduced, which is the significance of the paper. However, when the amount of data is too small
to meet the minimum requirement of this modeling method, the methodology would be invalid.

5. Conclusions

Proposing a precise model for the combustor is a tough and high-costing but meaningful project.
Therefore, this paper outlined a model migration strategy that makes full use of the data obtained from
existing combustors and needs a few experiments. A systematic modeling method, containing the
development of a base model, preliminary experiments of the new combustor, overall migration and
local migration, was developed. For the simulation case in which the new combustor was a shift and
re-scale of the existing combustors, the re-amendment model was developed by the model migration
strategy, using less data than that required for developing a traditional data-based model. The results
verify this proposed modeling method is valid.
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