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Abstract: A balanced voltage distribution for each break is required for normal operation of a
multi-break vacuum circuit breaker (VCB) This paper presented a novel 363 kV/5000 A/63 kA
sextuple-break VCB with a series-parallel structure. To determine the static voltage distribution
of each break, a 3D finite element method (FEM) model was established to calculate the voltage
distribution and the electric field of each break at the fully open state. Our results showed that the
applied voltage was unevenly distributed at each break, and that the first break shared the most
voltage, about 86.3%. The maximum electric field of the first break was 18.9 kV/mm, which contributed
to the reduction of the breaking capacity. The distributed and stray capacitance parameters of the
proposed structure were calculated based on the FEM model. According to the distributed capacitance
parameters, the equivalent circuit simulation model of the static voltage distribution of this 363 kV
VCB was established in PSCAD. Subsequently, the influence of the grading capacitor on the voltage
distribution of each break was investigated, and the best value of the grading capacitors for the
363 kV sextuple-break VCB was confirmed to be 10 nF. Finally, the breaking tests of a single-phase
unit was conducted both in a minor loop and a major loop. The 363 kV VCB prototype broke both the
63 kA and the 80 kA short circuit currents successfully, which confirmed the validity of the voltage
sharing design.

Keywords: vacuum circuit breaker; multi-break; voltage distribution; FEM; stray capacitance;
grading capacitor

1. Introduction

Modern power systems have a high requirement for switching appliances, which are essential
for the safe and reliable operation of power systems. As an important part of electrical switchgear,
the vacuum switch plays an important role in controlling and protecting electrical power systems [1].
Vacuum interrupters have the advantages of environmental friendliness, fine extinction capability, and
long lifespan [2]. Vacuum circuit breakers (VCBs) are widely applied in 40.5 kV and lower voltage
power systems, while for 126 kV and higher voltage power systems SF6 circuit breakers are mainly
used. However, modern power systems have larger loads, which have higher requirements of power
quality and safety. Hence, short circuit currents should be interrupted instantly to reduce losses [3].
To date, the commonly used SF6 circuit breakers in 330 kV and 500 kV AC power systems have a long
remove fault time of approximately 50 ms [4]. During this period, the fault current reaches its peak
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several times [5]. According to the dielectric strength, SF6 behaves better than VCBs; hence, VCBs
have higher dielectric strength restoration after the current is turned to zero, in comparison with other
types of circuit breakers. Nowadays, VCBs with controlled switching technology, such as permanent
magnetic mechanisms, spring type mechanisms, and electromagnetic repulsion mechanisms, are able
to achieve fast interruption during a rising slope within 2–7 ms [6–9]. However, single-break VCBs are
limited to 126 kV due to the saturation effect of the vacuum gap and the overheating problem [10].

There are two ways to develop high-voltage VCBs: higher-voltage single-break VCBs and
multi-break VCBs. Due to the saturation characteristic of the vacuum gap, single VCBs are limited
to 126 kV. Conversely, multi-break VCBs, which are several vacuum interrupters connected in series,
can eliminate the saturation effect and increase the breaking capacity [10]. Hence, the multi-break VCB
has drawn more attention [11–15]. The total interruption time of VCBs with an ultra-fast electromagnetic
repulsion mechanism and a fault current detection system can be reduced to 10–20 ms [13]. Based on
this technology, several features of double- and triple-break VCBs have been investigated, including
the open velocity, voltage distribution, and synchronization of each VCB; additionally, a breaking
test has been conducted on prototypes [13,16,17]. Vertical series connected structures of double-
and triple-break VCBs have been investigated with the purpose of analyzing their static voltage
distribution. According to these results, the stray capacitance and post-arc characteristic of uneven
voltage distribution limit the breaker capacity and the grading capacitors can improve the balance of
voltage distribution and breaking capacity.

However, multi-break VCBs are still limited to under 126 kV. Compared with 126 kV VCBs,
higher-voltage VCBs are quite different in structure due to their insulation requirements. Therefore,
to extend normal VCBs to 363 kV power systems, two key points should be taken into consideration:
(i) the uneven voltage distribution of each break and (ii) the synchronized switching of each break.
The voltage distribution of each break can be improved by installing a grading capacitor at each
break in parallel to balance the voltage distribution equally [18,19]. As for synchronized switching,
a phase-controlled algorithm is always used to detect the fault current changing rate to determine the
open time for each break, which ensures the synchronization of the multiple breaks. Furthermore,
stray capacitances of multi-break VCBs are mainly decided by the number of breaks, topology, structure,
and dimensions. Therefore, for a new 363 kV multi-break VCB, it is necessary to investigate the voltage
distribution and stray capacitance in order to design a suitable grading capacitor.

This paper is an extension of our previous work published in ICHVE2018 [20]. Our goal was to
determine the value of the grading capacitor for a novel 363 kV sextuple-break VCB taking into account
its gas-insulated scheme and series-parallel layout. In order to obtain the static voltage distribution
and distributed capacitances of the VCB, a three-dimensional finite element model based on the actual
dimension parameters of the single-phase unit was established. An equivalent capacitance network
model in PSCAD was also set up to analyze the influence of the grading capacitor on the voltage
distribution of each break. Finally, a breaking test was conducted to verify the performance of the
grading capacitors.

2. Structure of the 363 kV Circuit Breaker

This section gives the topological structure, dimensions, and parameters of the proposed
sextuple-break 363 kV VCB.

2.1. Determination of the Number of Breaks

The vacuum gap is able to withstand a strong electric field and voltage level, and its breakdown
voltage is directly proportional to its open distance. However, the large vacuum gap exhibits a
saturation phenomenon. The voltage level of VCBs varies greatly, ranging from 3.6 to 72 kV. For a
363 kV VCB, in an open state it must be able to sustain the nominal voltage and the surge voltage.
If low-voltage VCBs such as 12 kV VCBs are adopted, many breaks are needed, which would lead
to the need for more complex structures and greater costs. The most widely used commercial VCBs
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are 40.5 kV VCBs, and these are considered to be the best choice. However, the rated current of a
40.5 kV VCB is 2500 A, so a parallel structure of two branches is needed for a rated current of 5000 A
and a rated breaking current of 63 kA. To allow for sufficient breaking capacity and sufficient margin,
sextuple-break with two branches of parallel structure was adopted. Consequently, the physical
structure of the proposed 363 kV VCB was formed by 1240.5 kV VCBs in a series-parallel structure
with grading capacitors and inductors (see Figure 1). Series inductors were used to share the current
for each phase and grading capacitors were used to share the voltage for each break.
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Figure 1. Topology of a 363 kV sextuple-break vacuum circuit breaker (VCB). Notes: QF means VCB;
C means grading capacitor.

2.2. Structure Design

When designing the structure of a high-voltage multi-break VCB, insulation, size, maintenance,
and total cost are the key factors for consideration. A gas-insulated high-voltage apparatus, such as
a gas-insulated switchgear, has the advantage of being compact and maintenance-free with a long
mechanical life, while other outdoor apparatuses requires tall structures to satisfy their requirement
for insulation against ground. Hence, the gas-insulated apparatus was the best choice. The prototype
design and connection structure are shown in Figure 2. The VCBs were totally enclosed in the aluminum
tank filled with 0.4 MPa SF6 with inlet busbar and outlet busbar. The 40.5 kV VCBs were also connected
to terminals and other VCBs by a concentric cylindrical busbar. The dimensions and parameters of the
363 kV VCB and 40.5 kV VCB are shown in Tables 1 and 2, respectively.

Table 1. Dimension of the 363 kV VCB.

Parameter Name Value

Tank radius 410 mm
Tank height 2047 mm

Busbar external radius 80 mm
Upper and lower terminal radius 156 mm

Transfer flange radius 245 mm

Table 2. Parameters of the 40.5 kV VCB.

Part Name Size

Moving contact Radius = 25 mm, length = 190 mm
Static contact Radius = 25 mm, length = 105 mm

Contact Radius = 40 mm, thickness = 30 mm, round radius = 4 mm
Ceramic envelope Radius = 35.5 mm, thickness = 8.5 mm
Ceramic envelope External radius = 240 mm, internal radius = 200 mm, height = 378 mm

The vacuum interrupter worked with a fast short circuit current prediction algorithm and a phase
control system. The moving contact was driven by an ultrafast electromagnetic repulsion mechanism,
so the opening time (500 µs) and opening velocity (up to 5 m/s) could be achieved [6,15]. It adopted a
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fiber-controlled system to synchronize the VCBs. The open dispersibility (i.e., the time delay of the
operation of all VCBs) of these VCBs was shorter than 0.1 ms, and the closed dispersibility was shorter
than 0.2 ms. Thus, combined with the above components, a quick current interruption within a short
arcing time (3 ms) was achieved. Compared to typical high-voltage circuit breakers 30-60 ms, the total
interruption time was reduced to 10–20 ms.
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Figure 2. Single phase structure of the 363 kV VCB.

3. Finite Element Method (FEM) Model and Voltage Distribution Calculation

As the 363 kV sextuple-break VCB has a complex structure, analytical methods cannot be used to
calculate its voltage distribution. As a consequence, taking into account its symmetry, an FEM model
of the single unit was established, and a numerical calculation was performed. In establishing the
FEM model, some components were simplified as follows: (1) the end shield, bellows, and contacts
were simplified to a metal cylinder; (2) the control system, actuator, disc spring, screw holes, and bolts
were removed. The entire opening distance was 20 mm. In the FEM model, the relative permittivity
of the insulators was set at 4.95, SF6 at 1.002, and epoxy at 4. The applied voltage was 300 kV on the
surface of the static rod of the first break and its connected busbar. The outside tank and the moving
rod of the last break and its connected busbar were grounded. All the main shields of the vacuum
interrupters were set to floating potential. The voltage freedom degrees of other components were
coupled using COMSOL software. Tetrahedral mesh was adopted to deal with the irregular geometry.
The total mesh elements, as shown in Figure 3, were 39,442,046. The voltage distribution profile and
electric field distribution profile are shown in Figure 4.
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Figure 4. The static voltage and electric field distribution of the 363 kV VCB.

According to the calculation results, the voltage distribution was exceedingly uneven due to
the stray capacitance. The first break shared most of the total applied voltage, reaching 259 kV and
accounting for 86.3% of the voltage, while the sixth break shared only 0.0153 kV. The maximum electric
field of the first break was 18.5 kV/mm, which easily gave rise to arc reigniting and reduced the
interrupting capacity of the VCB. Table 3 shows the voltage of each break.

Table 3. Voltage sharing of each break.

Break Voltage Voltage Distribution Ratio (%)

V1 256 kV 86.3%
V2 35.18 kV 11.73%
V3 5.03 kV 1.68%
V4 0.684 kV 0.23%
V5 0.0982 kV 0.032%
V6 0.0153 kV 0.00%

Note: V1 to V6 denote the first to sixth breaks.
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4. Grading Capacitor Design

When designing the grading capacitor, we needed to know the distributed capacitance and stray
capacitance of the 363 kV VCB, which can be regarded as a multi-conductor system considering the
influence of the grounded tank. Under AC voltage, the voltage distribution of a multi-conductor
system is determined by the self-capacitance and mutual capacitance of these conductors.

The commercial COMSOL software can easily obtain the distributed capacitance and extract
a capacitance matrix by defining the conductors successively. As shown in Figure 5, all of the
13 conductors were defined, where the incoming busbar, the upper terminal of the first break, and
the static contact were defined as conductor 1; the main shield, which is the floating potential, of the
first VCB as conductor 2; the lower terminal of the first break, lower busbar, and the lower terminal
of the second break as conductor 3; and so forth, and the exterior tank was grounded. Among the
conductors, conductor 13 was composed of the last connecting terminal, last busbar, and outside tank.
The capacitances between the moving contact and the static contact, and the capacitance between the
conductor and the tank made a greater difference. Therefore, other stray capacitances between the
conductors that were at a great distance from each other, such as the capacitance between the main
shields of different VCBs, were ignored.
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According to the calculated capacitance matrix, the stray capacitances to the earth were greater
than the capacitance of the break of the VCB, which makes the voltage of each break unequal, indicating
the need for a voltage sharing design. A grading capacitor was an effective and low-cost measure to
balance the voltage of each break. To analyze the influence of the grading capacitor, the equivalent
circuit model can be used. Figure 6a illustrates the equivalent capacitance network and the simulation
model with a grading capacitor in PSCAD of the 363 kV VCB, where C1 was the capacitance between
the moving contact and the static contact of the first break, and C10 was the capacitance between
conductor 1 and the tank. Cg was the grading capacitor. The capacitance between the main shield and
nearby conductors, which was very small, was attributed to the capacitance nearby to simplify the
equivalent capacitor network under the criterion that the voltage of each break equals the results of
the FEM simulation. Finally, parameters for the equivalent circuit simulation model were as follows:
C1 = C2 = C3 = C4 = C5 = C6 = 14.7 pF; C20 = C40 = C60 = 80 pF; C30 = C50 = 76 pF.
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Figure 6. The equivalent circuit model of the 363 kV VCB with a grading capacitor.

By assigning a different value to the grading capacitors, the change in the voltage of the first
break along with the grading capacitors is shown in Figure 7. Table 4 shows the voltage variation of
the first break at different grading capacitor values. The values of the grading capacitors were set
in the range of 700 to 12,000 pF. The authors of [13] indicated that grading capacitors of 1000 pF can
meet the opening requirements of a 126 kV triple-break VCB. However, for the 363 kV VCB, the first
break shared 23.3% of the applied voltage when the grading capacitor was 1000 pF. When the grading
capacitor was 6000 pF, the voltage distribution ratio of the six breaks from one to six was 18.4%, 17.5%,
16.3%, 15.9%, 15.5%, and 15.1%, respectively. The voltage distribution ratio of the first break was
3.2% higher than the sixth. Furthermore, when the grading capacitor exceeded 10,000 pF, the rate of
improvement slowed down.

Table 4. Voltage of the first break at different grading capacitor values.

Grading Capacitor (pF) Voltage of the First Break (kV)

700 89.4
900 83

1100 78
1500 72
2000 67
4000 56
6000 55
7000 55
8000 54.5

10,000 53.5
12,000 52.7
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The voltage unbalance coefficient (K) is defined as:

K = Max(
Vi −V

V
) (1)

where Vi is the voltage of the ith break and V is the average voltage of each break.
When K > 1, the voltage was unevenly distributed. When the grading capacitance equaled 6000 pF,

K = 1.1; when the grading capacitance equaled 10,000 pF, K = 1.07. In addition, the accepted standard
for selecting grading capacitors in China is that the voltage unbalanced coefficient should be below
1.1. However, according to China’s national standard GB 4787-2010 [21], the preferred minimum
for a grading capacitor is 1000 pF in consideration of the function of reducing the steepness of the
transient recovery voltage (TRV) [17]. Other researchers have adopted 400 pF grading capacitors for
double-break VCBs [19] and 1000 pF grading capacitors for 126 kV triple-break VCBs [17]. Greater
grading capacitor values lead to a decrease in the breaking capacitor value because of the post arc
current. Hence, the value of grading capacitors for the sextuple-break 363 kV VCB was set at 10 nF in
this study.

5. Breaking Test of the 363 kV VCB

The synthetic test circuit, as recommended by IEC standards, was used to impose the appropriate
stresses on the test circuit breaker (CB) during the breaking test, as shown in Figure 8. These circuits
were essential to verify the short circuit current making and breaking capabilities of the 363 kV VCB.
The supply circuit capacity of the synthetic test circuit was 480 kV/80 kA. The grading capacitors were
connected in parallel with the VCB. The test was carried out on a single phase only, and in type T100s
and T100a both for 63 kA (minor loop) and 80 kA (major loop). The first-pole-to-clear factor was 1.3.
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The prototype of the 363 kV sextuple-break VCB interrupted the short circuit current (symmetrical
and asymmetrical) successfully in a high-voltage apparatus quality supervision and inspection test
center as a preliminary research test. The key information is summarized in Table 5, and all recorded
waveforms of the breaking current and the TRV are shown in Figures 9 and 10. In Figures 9 and 10, I is
the test current, Ih is the small zero crossing current of synthetic test circuit, Ur is the total transient
recovery voltage, Ucs is the voltage of the current source, HFUcs is the high-frequency voltage of the
current source, and HFUr is the high-frequency transient recovery voltage. The recovery voltage is less
than 258 kV and the TRV peak is less than 544 kV, which indicates that the grading capacitors of 10 nF
can meet the requirement of the voltage sharing design and breaking capacity.
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Table 5. Results of the breaking test.

Test Parameters
63 kA 80 kA

T100s T100a T100s T100a

Charging voltage 512 kV 460 kV 487 kV 471 kV
Breaking current 64 kA 63.7 kA 73.5 kA 80.2 kA

di/dt 28 A/us 24.4 A/us 35.5 A/us 35.5 A/us
Recovery voltage 258 kV 228 kV 254 kV 246 KV

TRV peak –544 kV –484 kV –542 kV –526 kV
Th 461 us 230 us 200 us 233 us

6. Summary and Conclusions

This paper presented a novel sextuple-break 363 kV VCB that can remove a short circuit fault
in an extremely short time. An FEM model based on actual dimensions was established to calculate
the static voltage distribution and the stray capacitance to determine its grading capacitor design.
At the fully open state, the voltage distribution of the proposed structure was uneven, and the first
break undertook 259 kV, accounting for 86.3% of the total applied voltage. Subsequently, an equivalent
capacitor network model was set up in PSCAD based on the parameters from the FEM model. Along
with the increase of the grading capacitor value, the voltage of the first break decreased rapidly, and
the voltage distribution of each break became more even. The best value of the grading capacitor
was 10 nF, and its corresponding voltage unbalance coefficient was 1.07. Finally, T100s and T100a
breaking tests were conducted at the short current of 63 kA and 80 kA both in a minor loop and a major
loop. The prototype 363 kV VCB passed the test at the maximum TRV of 544 kV, which demonstrated
that the performance of grading capacitors can satisfy the requirements of the voltage sharing design.
In our future work, we will focus on the sextuple-break 363 kV VCB’s dynamic opening mechanism to
gain a deeper insight into the dynamic voltage distribution of the sextuple-break 363 kV VCB and put
forward better grading measures.
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