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Abstract: A free-float bike-sharing system faces various operational challenges to maintain good
service quality while optimizing the operational cost. The primary problems include the fulfillment
of the users demand at all stations, and the replacement of faulty bikes presented in the system.
This study focuses on a free-float bike-sharing system rebalancing problem (FFBP) with faulty bikes
using battery electric vehicles (BEVs). The target inventory of bikes at each station is obtained while
minimizing the total traveling time through the presented formulation. Using CPLEX solver, the
model is demonstrated through numerical experiments considering the various vehicle and battery
capacities, and a cost–benefit analysis is performed for BEV and conventional internal combustion
engine vehicles (ICEVs) while taking the BEV manufacturing and indirect emission into account.
The results show that the annual cost incurred on an ICEV is 56.9% more as compared to the cost
of using an equivalent BEV. Since BEVs consume less energy than conventional ICEVs, the use of
BEVs for rebalancing the bike-sharing systems results in significant energy savings for an urban
transport network. Moreover, the life cycle emissions of an ICEV are 48.3% more as compared to an
equivalent BEV. Furthermore, the operational cost of a BEV significantly reduces with the increase in
battery capacity.
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1. Introduction

The health of economic growth is closely linked to the transport system. However, the current
transport systems are mainly powered by internal combustion engine vehicles (ICEVs). This not only
makes the world dependent on the global oil market but also generates the most important source of
greenhouse gas (GHG) emissions. Due to the expected shortage of oil and increased emission of toxic
gases, more and more talent and resources are being built up to meet the challenges of reducing oil
dependence, climate change, and sustainable transport systems.

The introduction of green vehicles such as battery electric vehicles (BEVs) is a good example of
using non-fossil energy. Since BEVs consume less energy than conventional fuels, this should result
in significant energy savings for urban transport. However, the routing problem formulation of an
environmentally friendly vehicle is complex. Due to technical restraints, BEVs generally have a shorter
range before being recharged [1]. Due to distance limitations, BEVs can be brought to the charging
station during daily activities. Because of this unique feature, an electric vehicle routing problem
(EVRP) is significantly different from traditional VRP.

The Bike-sharing system (BSS) is an emerging green mode of transportation and is getting
popularity all around the world. The introduction of dockless or free-floating bike sharing schemes
has solved the commuters’ last mile problem and is attracting commuters rapidly.
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However, with the rapid increase in the number of dockless bikes and uneven flow pattern in the
cities resulted in excess and shortage of bikes at different locations within the city. This imbalance
creates user dissatisfaction due to unfulfilled demand and imparts a negative impact on the company’s
services. The shortage events may be detected from the location of the user turn on the bike app but
found no bike in the near vicinity. To reduce these shortage events, the operators need to move bikes
according to the demand level in the system. The operators’ goal is to achieve the optimal number of
bikes at maximum locations with the minimum shortage events and the operational cost incurred on
the routing fleet. The bikes’ repositioning operation involves routing vehicles left the depot, pick up
or drop off bikes to achieve maximum user satisfaction at all locations and return to the depot in the
prescribed time.

This study focused on the use of BEVs instead of using conventional ICEVs deployed for the
rebalancing a FFBS. In addition, a detailed analysis is presented to investigate the benefits of using
BEVs and ICEVs.

In this study, we formulate an FFBP with BEVs. The presented formulation helps to obtain the
target inventory of bikes at all the stations while minimizing the total traveling time of the BEVs. The
vehicles can visit various stations including charging station multiple times. At each bike-sharing
station, there may be a shortage or excess of bikes that need to be relocated among various stations in
order to meet the next day target demand. Besides usable bikes inventory, the presence of faulty bikes
in the network is considered as well. The proposed formulation finds the optimal routing strategy in
which the total cost is minimized such that: (1) each station can be visited multiple times; (2) the target
demand level is obtained at all the stations; and (3) the charging station is at depot and that may be
visited more than once by the same and different BEVs, or not at all.

The major contributions of this research are as follows. First, to the best of our knowledge, this
is the first study to consider BEVs for the dockless bike-sharing rebalancing problem. Second, it
contributes to EVRP scientific literature. Since BEVs have recently become available as a delivery
model, the literature of EVRP is quite limited. Third, it compares the energy consumption of a BEV
and ICEV. Fourth, this study considers the supply and collection of usable bikes from and to the depot
in case of shortage or excess of bikes in the network, respectively. Due to the dynamic nature of the
travel patterns, the sharing-bikes’ demand varies in different days of a week. Therefore, the excess or
shortage of bikes can be managed accordingly. A large amount of literature is available on the sharing
bike rebalancing problem. However, the removal of extra bikes from the network or supply of usable
bikes from the depot is rarely considered.

The rest of this paper is organized as follows. First, the relevant literature is briefly reviewed in
Section 2. Then a general problem is defined and the model formulation is presented in Section 3. This
is followed by numerical experiments to demonstrate the validity of the model in Section 4. Lastly,
study conclusions and future research directions are drawn in Section 5.

2. Literature Review

Conrad and Figliozzi (2011) first introduced the electric vehicle routing problem (EVRP) as a
recharging vehicle routing problem (RVRP) [2]. The formulation allowed the vehicle charging only at
the customer location. Erdoğan and Miller-Hooks (2012) presented a green vehicle routing problem
(G-VRP) and proposed techniques for its solution [3]. The model minimized the traveling distance
while considering vehicles with limited fueling capacity and limited refueling infrastructure. Schneider
et al. (2014) presented an extended version of G-VRP [4], electric vehicle routing problem with time
windows (E-VRPTW) while considering BEV with limited battery capacity and traveling distances.
The model allowed the BEV to visit a charging station along the route. Felipe et al. (2014) taken into
account the real-time situation of partial recharges by relaxing the fully charged battery constraints [5].
Keskin and Çatay (2018) extended E-VRPTW for partial recharges while taking into account different
charging configurations [6].
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Goeke and Schneider (2015) optimized the routing cost using a mixed fleet of electric and diesel
vehicles [7]. Their model considered realistic energy consumption model while taking vehicle speed,
road gradients, and cargo load distribution into account. Some other studies considering a further
extension to G-VRP are Bruglieri et al. (2016) [8], Hiermann et al. (2014) [9], Montoya et al. 2017 [10],
Lin et al. (2016) [11], Desaulniers et al. (2016) [12].

The second strand of the relevant literature is routing vehicles energy consumption and GHG
emissions. Cairns (1999) focused on the environmental impact of grocery home delivery by converting
distances into emissions [13]. Kirby et al. (2000) analyzed fuel consumption and CO2 emissions
under various situations [14]. Palmer (2007) studied vehicular emissions while considering real traffic
data [15]. The first pollution routing problem is introduced by Bektaş and Laporte (2011) [16]. Pan et al.
(2019) studied LNG emissions using gradients boosted regression trees [17]. Their results showed a
different emission behavior of LNG vehicles as compared to the other types of vehicles. Zhang et al.
(2019) investigated fleets’ willingness to choose alternative fuel vehicles and proposed useful policy
recommendations [18]. Xiao et al. (2012) and Xiao et al. (2019) presented energy consumption models
for internal combustion and electric capacitated routing vehicles, respectively [19,20]. Ellingsen et al.
(2017) investigated the life cycle GHG emissions of lithium-ion traction batteries [21]. The study
showed that the battery manufacturing process is the main contributor to life cycle GHG emissions.

The third strand of the related literature is the bike-sharing systems. Researchers have focused
on two significant aspects of the bike-sharing system: operation and analysis [22]. The latter mainly
focuses on spatiotemporal bicycle usage patterns, rider behavior, and safety-related aspects [23–39].
The main focus of the operation is on the rebalancing of bicycles in the system. Rebalancing is the
relocation of sharing bikes among various stations within the network to satisfy the users’ next day
demand. In literature, two types of rebalancing strategies are well exploited, i.e., static and dynamic.
Static refers to the night time operations when the system usage is minimal. Dynamic refers to the
daytime operations when the system is in use.

Benchimol et al. (2011) and Chemla et al. (2013) first introduced a model static rebalancing
problem [40,41]. The objective of the model was to obtain a fixed target inventory of bikes at all stations
with a minimum routing cost. The time constraints were not considered in the model. Considering
a demand interval, Erdoğan et al. (2014) relaxed the model constraints instead of taking a fixed
target inventory at various stations [42]. Contardo et al. (2012) studied multi-vehicle target inventory
problems and solved a problem size up to 100 stations [43]. The comprehensive formulations for
a docked bike-sharing system were presented by Raviv et al. (2013) [44]. They presented three
models, i.e., arc indexed (AI), time indexed (TI) and sequence indexed (SI) formulations for a static
rebalancing problem. After determining the service level requirements at each bike sharing station,
Schuijbroek et al. (2013) minimized the total operational cost for a rebalancing operation taking service
levels into account [45].

In literature, the rebalancing problem studies focused on the docked bike-sharing (DBS) system
and few researchers have focused on the free-float bike-sharing rebalancing problem (FFBP). For a
free-float bike sharing system (FFBS), Pal and Zhang (2017) formulated a static rebalancing problem
and solved real-time instances [46]. Liu et al. (2018), extended time TI formulation for FFBP while
considering multiple depots and multiple visits [47]. They developed an enhanced version of chemical
reaction optimization to solve the problems.

Currently, the bike-sharing schemes are facing a serious issue of faulty bikes presented in the
system. All these studies missed taking faulty bikes into account. The faulty bikes in the system posing
a serious concern towards the sustainability of FFBP schemes. Faulty bikes are not only the wastage of
operator’s resources but also a serious safety concern for the users. Besides, these impart a negative
impression on the service quality and reduce the operator’s revenue. In the second half of the year 2017
in China, the oversupply of dockless bikes instead of optimizing the resources through energy efficient
solutions has ultimately resulted in the decline of the various services [48]. Consequently, In August
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2017, the Chinese Central Government launched the first policy, followed by many local governments’
regulations, to prohibit bike-sharing companies from bringing more bikes to the market [49,50].

Alvarez-Valdes et al. (2016) first taken faulty bikes into account while optimizing the level of
service quality at various stations [51]. Wang et al. (2018) extended sequence indexed formulation
while considering faulty bikes presented in the system [52]. The objective of the model was to optimize
the routing vehicle emissions while rebalancing a docked bike sharing system. For FFBS, Usama et al.
(2019) presented a rebalancing operation framework considering the identification and collection of
faulty bikes [53]. The authors presented the model while considering the conventional ICE vehicles.
The less energy efficiency of the traditional ICEV results in high operational cost which finally results
in the decline of the bike-sharing schemes. Therefore, for the bike-sharing systems, an energy efficient
solution is taken into account using BEVs.

In this study, the sequence index formulation is presented for the FFBS with faulty bikes using
BEVs. Table 1 summarizes the differences among some currently available studies on static shared
bike rebalancing problems and the main focus of this study.

Table 1. Summary of the characteristics of the static rebalancing problems in the literature.

Reference FFBS DBS Multiple
Vehicles

Multiple
Visits

Faulty
Bikes EI BEV EC

Benchimol et al., (2011) [40] 3

Chemla et al., (2013) [41] 3 3

Dell’Amico et al., (2014) [54] 3 3

Ho and Szeto, (2014) [55] 3

Alvarez-Valdes et al., (2016) [51] 3 3 3 3

Liu et al., (2018) [47] 3 3

Pal and Zhang (2017) [46] 3 3

Zhang et al., (2018) [56] 3 3 3

Wang and Szeto, (2018) [52] 3 3 3 3

Usama et al., (2019) [53] 3 3 3

This Study 3 3 3 3 3 3 3

EI: environmental issue; BEV: battery electric vehicle; EC: Energy consumption; DBS: Docked bike-sharing system.

3. Problem Definition and Formulation

The BEV rebalancing problem with faulty bikes is formulated based on the following assumptions.

1. The location of a faulty bike is accurate, a service vehicle will visit each faulty bike location and
shift these to various stations before the departure of rebalancing vehicle from the depot.

2. There is only one depot, O, from where all the vehicle will start and end their routes.
3. There is only one charging station that is located at the depot.
4. The battery is charged up to 90% of capacity after a vehicle left the charging station.
5. The vehicle visits the charging station before the battery state of charging (SoC) drops to 10%.
6. The traveling speed of the BEV is constant.
7. The battery discharging rate is constant.
8. There is no discharging while serving a station.
9. The depot has enough inventory of usable bikes to fulfill the shortage of the network.
10. All the faulty bikes are supposed to be at the depot after the rebalancing operation.

The proposed model can be formulated as follows. let G = (so, A) be a complete directed graph
where vertex set so is a combination of station set s = {1, 2, . . . , i, . . . , j, . . . , |s|} and the depot {O}. The
set A = {(i, j), ∀ i, j ∈ so, i , j} corresponds to all the possible arcs connecting vertices of so. Following
sets, parameters and decision variables are used to formulate the problem.
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Sets

s Set of all stations other than the depot, indexed by i = 1, . . . , |s|
O The depot, denoted by i = 0
so Set of all stations including depot so = s ∪ O.
K Set of BEVs with different loading capacity used for the rebalancing operation, K = {k1, . . . , kn}.
[di

l, di
u] Lower and upper bound of the bikes demand at station i ∈ s.

Parameters

bi
o Number of usable bikes before rebalancing operation at station i ∈ so.

fib Number of faulty bikes collected at station i ∈ so.
tij Rebalancing vehicle traveling time in minutes from the station to i to j (i, j) ∈ so.
dij Travelling distance in km from station to i to j (i, j) ∈ so.
Qk Loading carrying capacity of rebalancing truck k ∈ K.
qk Battery full charge capacity of vehicle k ∈ K.
` Loading time of a bike onto rebalancing truck k ∈ K.
µ Unloading time of a bike from rebalancing truck k ∈ K.
T Rebalancing operation working time limit in minutes.
N Number of stops of each rebalancing vehicle.
T j The longest traveling time to station j from all other stations, T j = maxti j
D j The longest traveling distance to station j from all other stations, D j = maxdi j
rk Energy consumption rate of vehicle k ∈ K.

Decision Variables

xink Binary variable = 1, if a rebalancing truck visits a station i ∈ so at its nth stop, 0 otherwise.
bi Usable bike inventory level at station i ∈ so after rebalancing operation.
yink

f Number of faulty bikes loaded onto rebalancing vehicle k ∈ K at station i ∈ so at its nth stop.

yink
b Number of usable bikes picked up or delivered by a rebalancing truck k ∈ K at station i ∈ so at its

nth stop.
Ynk

b Number of usable bikes carried by the rebalancing vehicle k ∈ K after nth stop.
Ynk

f Number of faulty bikes carried by the rebalancing vehicle k ∈ K after nth stop.
Bnk The battery charging state of a vehicle k ∈ K after nth stop.
Dnk The distance traveled by a vehicle k ∈ K after nth stop.
lnk Time of completing task at the nth stop of vehicle k ∈ K.

After defining sets, parameters and decision variables, the rebalancing truck routing problem
with faulty bikes is presented as follows.

min z =
∑
k∈K

lNk (1)

∑
i∈so

xink = 1 ∀k ∈ K, n = 1, . . . , N (2)

x0 1k = 1 ∀k ∈ K (3)

x0 Nk = 1 ∀k ∈ K (4)

x1 nk + x1 n+1 k + x1 n+2k ≤ 1 ∀n = 1, . . . , N − 2, k ∈ K (5)

xi nk + xi n+1 k ≤ 1 ∀i ∈ s, n = 2, . . . , N − 1, k ∈ K (6)

dl
i ≤ bi −

∑
n∈N

∑
k∈K

yb
i nk ≤ du

i ∀i ∈ s (7)

f b
i −

∑
n∈N

∑
k∈K

y f
ink = 0 ∀i ∈ s (8)
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−Qk·xink ≤ yb
ink ≤ Qk·xink ∀i ∈ so, n = 1, . . . , N, k ∈ K (9)

0 ≤ y f
i n k ≤ f b

i xink ∀i ∈ s, n = 1, . . . , N, k ∈ K (10)

−Qk·xink ≤ y f
i n k ≤ 0 ∀n = 1, . . . , N (11)

y f
ink = 0 ∀k ∈ K (12)

yb
ink ≥ min(0, bo

i − du
i ) ∀i ∈ s, n = 1, . . . , N, k ∈ K (13)

yb
i n k ≤ max(0, bo

i − dl
i) ∀i ∈ s, n = 1, . . . , N, k ∈ K (14)

Yb
nk = Yb

n−1 k +
∑
i∈so

yb
ink ∀n = 2, . . . , N, k ∈ K (15)

Y f
nk = Y f

n−1 k +
∑
i∈so

y f
ink ∀n = 2, . . . , N, k ∈ K (16)

Yb
1 k = yb

01 k ∀k ∈ K (17)

Yb
Nk = 0 ∀k ∈ K (18)

Y f
1k = 0 ∀k ∈ K (19)

Y f
Nk = 0 ∀k ∈ K (20)

Yb
nk + Y f

nk ≤ Qk ∀n = 1, . . . , N, k ∈ K (21)

wi ≥


|bo

i −
∑
k∈k

∑
n∈N

yb
ink − du

i | ∀i ∈ s, bo
i ≥ du

i

|bo
i −

∑
k∈k

∑
n∈N

yb
ink − dl

i| ∀i ∈ s, bo
i < du

i
∀i ∈ s (22)

lnk ≥ ln−1 k − T j(1− x jnk) +
∑

i∈so

ti j·xin−1 k+

max


∑

i∈so

(
`|yb

ink|+ µ|y f
ink|

)
,( 0.9qk−Bnk

r

)
·x0nk −

∑
i∈so

(
`|yb

ink|+ µ|y f
ink|

)

∀ j ∈ so, n = 2, . . . , N, k ∈ K (23)

l1k = `|yb
01k| ∀k ∈ K (24)

lNk ≤ T ∀k ∈ K (25)

Bnk ≤ min(0.9qk, Bn−1 k − rk(Dnk −Dn−1 k) + 0.9qkxink ∀n = 2, . . . , N, k ∈ K (26)

B1k = 0.9qk ∀k ∈ K (27)

0.1qk ≤ Bnk ≤ 0.9q ∀n = 1, . . . , N, k ∈ K (28)

Dnk ≥ Dn−1 k −D j
(
1− x jnk

)
+

∑
i∈so

di j·xi n−1 k ∀ j ∈ so, n = 2, . . . , N, k ∈ K (29)

D0 k = 0 ∀k ∈ K (30)

Yb
nk ≥ 0; Y f

nk ≥ 0 ∀n = 1, . . . , N, k ∈ K (31)

xink ∈ {0, 1} ∀i ∈ so, n ∈ 1, . . . , A, k ∈ K (32)

The objective function Equation (1) minimizes the travelling time of the BEVs. Equation (2) ensures
that a vehicle can only visit one station at any stop. Equations (3) and (4) forces the vehicles to start and
end their routes at the depot. Equations (5) and (6) prevents the vehicle to have two consecutive stops
at the depot and station, respectively. Equation (7) limits the loading and unloading of bikes within
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the station target inventory interval. Equation (8) forces the vehicles to pick up all the faulty bikes
from the stations. The Equations (9)–(11) ensure that a vehicle that visits a station can only perform
loading/unloading activities at that station subjected to the vehicle capacity. Equation (12) limits the
loading of faulty bikes onto the vehicle at the depot. Equations (13) and (14) define the lower and
upper bond of bikes loading/unloading at each stop of the vehicle, respectively. Equations (15) and (16)
define the number of usable and faulty bikes on the vehicle after the nth stop, respectively. Equations
(17)–(20) denote the vehicle’s load when it left or arrive at the depot. Equation (21) is the capacity
constraints of the vehicle. Equation (22) defines the deviation of bikes inventory after rebalancing
operation from the target inventory levels at each station. Equations (23)–(25) define the departure
time of each vehicle from every stop. Equations (26)–(28) define the battery state of charging after each
vehicle stop, and Equations (29) and (30) describe the distance travelled by the vehicle after each stop,
and (31) and (32) are the domain constraints.

Equation (23) is a nonlinear constraint because of the product of two decision variables. An
auxiliary variable ωink and a big number M is used to define the following inequalities to replace the
nonlinear term Bnk × xink in Equation (23).

ωink = Bnk × xink
0

Bnk −M(1− xink)

}
≤ ωink ≤

{
Bnk
M·xink

∀i ∈ s, n = 2, . . . , A, k ∈ K
(33)

The selection of the upper bound on the number of stops of each vehicle (N) needs to be selected
wisely. The lower bound for the number of stops of each vehicle is estimated by [52] as:

Nl = |SU |+ 2K + N+
s + N−s + nd (34)

where SU is the number of unbalanced stations including stations with faulty bikes, i.e., |SU | ={
i|i ∈ s, bo

i , di| f b
i , 0

}
. The extra two stops for each vehicle are the start and end visit to the depot.

A station needs multiple visits where the demand and supply of bikes are greater than the vehicle
capacity. These extra visits are taken into account using N+

s and N−s for demand and supply stations,
respectively.

s+ =
{
i|i ∈ s, bo

i − du
i > 0∧ bo

i − du
i + f b

i > Q
}

N+
s =

∑
i∈s+

[
bo

i−du
i + f b

i
Q

]
− |s+|;

s− =
{
i|i ∈ s, dl

i − bo
i > 0∧max(du

i − bo
i , f b

i ) > Q
}

N−s =
∑

i∈s−

[
max(dl

i−bo
i , f b

i )

Q

]
− |s−|

(35)

If the difference of excess and shortage of bikes at all the stations exceeds the vehicle capacity, the
depot needs additional visits (nd) to fulfill the demand and supply at each station.

In addition, the BEV must visit a charging station if the vehicle’s battery SoC falls below 10% of
its capacity during operation. Let nc be the number of additional visits to the charging station. The
charging station is assumed at the depot so the battery can be charged to full level when a vehicle
visits the depot during operation. Then it can be written as

nc =
∑
i∈so


Di(1 + g(x1)

[
bo

i−du
i +bi

Q

]
+ g(x2)

[
max(dl

i−bo
i , f b

i )

Q

]
q·ηk

− nd (36)
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where ηk is the energy consumption rate in distance traveled per kilowatt hour of the BEV. The functions
g(x1) and g(x2) are expressed as

g(x1) =

 1 x1 ∈ X1 ≡
{
i | i ∈ s, bo

i − du
i > 0∧ bo

i − du
i + f b

i > Q
}

0 x1 < X1
(37)

g(x2) =

 1 x2 ∈ X2 ≡
{
i | i ∈ s, dl

i − bo
i > 0∧max(du

i − bo
i , f b

i ) > Q
}

0 x2 < X2
(38)

Therefore, the lower bound on the number of stops can be computed as

Nl = |SU |+ 2K + N+
s + N−s + nd + nc (39)

3.1. BEV Energy Consumption and Battery Recharging

Following [16], the energy Eij consumed by a BEV on an arc (i, j) is computed using the
following expression.

Ei j = αi j(Wk + Li j)di j + βv2
i jdi j (40)

where ai j = a + gsinθi j + gCrcosθi j and β = 0.5CdAρ are the arc and vehicle specific constants,
respectively. The self-weight of the vehicle k is Wk and Lij is the total load on a vehicle while traversing
an arc (i, j).

Another energy consumption model for BEV presented by [20].

Ei j = 85× (2.634× 10−5v + 1.1711× 10−3 + φ·yi j)di j (41)

where Eij is the kWh energy consumed by a BEV after traveling a distance dij from station i to j with
velocity v. φ is a factor for an additional energy consumption against one unit of load, yi j on an EV.
The aerodynamic effects are ignored assuming the speed of the BEV less than 50 km/h.

The vehicle load is considered in the truck routing because the traditional truck routing problems
deal with huge customer’s demand and supply. Since the sharing bikes are light inventories and these
will not contribute to significant energy consumption. Therefore, the load on the vehicle is ignored to
simplify the problem. However, to compare BEV energy consumption with the conventional one, the
vehicle load is considered after the analysis. Furthermore, Equations (40) and (41) are used to estimate
an average consumption rate per hundred kilometers using parameter values presented in Table 2.

Table 2. Parameter values used for estimating energy consumption and emission rates.

Parameter Description Values Reference

A The frontal surface area of the vehicle (m2) 5 [16]
ρ Air density (kg/m3) 1.2041 [57]
v Vehicle speed (km/h) 40 [16]

Cd Coefficient of rolling drag 0.7 [58]
θ Road angle (degrees) 0◦ [57]
Cr Coefficient of rolling resistance 0.01 [57]
W Empty vehicle weight (tons) 3.629 [11]
g Gravitational constant (m/s2) 9.81
cf Diesel price ($/L) 1.309 [59]
ce Battery charging cost ($/kWh) 0.136 [59]

φ
Additional Energy consumed for one unit of load

on a BEV for a vehicle with capacity 200 units 1.6 × 10−6 [20]

r EV battery charging rate (kW) 22 [60]
CER CO2 emission rate (kg/L) 2.61 [61]
ρ* Full load fuel consumption rate (L/km) 0.39 [61]
ρo Empty load fuel consumption rate (L/km) 0.296 [61]
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3.2. ICEV Fuel Consumption and Emissions

Vehicle emissions are divided into two broad categories: air pollutants that can cause smog and
health problems; and greenhouse gases such as carbon dioxide and methane.

Conventional fossil-fuel powered vehicles with an internal combustion engine produce direct
emissions through the tailpipe and indirect emissions through evaporation in the fueling system and
during refueling. On the other hand, BEVs do not produce direct emissions.

The fuel cost Fc
i j of the conventional ICEV is on an arc (i, j) ∈ so is estimated as

Fc
i j = c fρ

y
ijdi j (42)

where cf is the fuel unit price, ρy
ij is the fuel consumption rate with a load y onto the conventional

vehicle, and di j is the route length from node i to j. The fuel consumption rate for a capacitated vehicle
is estimated using the following model presented by [19] as

ρ
y
ij = ρo +

ρ∗ − ρo

Qk
yi j (43)

where ρo and ρ∗ is the energy consumption rate under empty and full load conditions of a vehicle k
with capacity Qk, respectively.

The carbon dioxide (CO2) emission rate (CER) is relatively fixed for a specific type of fuel. Zhang
et al. [62] presented an emission model based on Equation (43) as

ei j = CER× ρy
ij × di j (44)

3.3. Battery Degradation

The major cost component of the BEVs is their battery packs. The per kWh cost of BEV lithium-ion
battery were up to $800 in 2012 and should remain about $300 for the next ten years [63]. The battery
capacity in BEVs fade with deterioration occurring during charging and discharging. When the
available capacity decreased by 20% of battery’s original capacity, the BEV battery is assumed to have
reached its end of life [63]. Lithium-ion batteries in BEVs should be able to supply up to 2000 charging
cycles [63].

In this study, a semi-empirical degradation model proposed by Sarasketa-Zabala et al. is adopted
to estimate capacity loss [64]. In the following model, T is the storage temperature, t is the storage time
in days, and α1, α2, β1, and β2 are the fitting parameters.

Qloss = α1· exp
(
β1

T

)
·α2· exp(β2·SoC)·t0.5 (45)

Using Equation (45) with the parameter values from [64], Pelletier et al. presented capacity loss
curves for the BEV battery packs [63]. The maximum capacity loss estimated was for a period of 5 years
is less than 20%. In this study, 20% capacity loss is considered due to battery degradation.

4. Numerical Experiments and Results

The model formulated in the previous section is validated through numerical experiments using
IBM-Ilog CPLEX 12.9 on an i5 8500 @ 3.0 GHz with 8 GB of RAM.

4.1. Data Description

The problem consists of eight shared-bike stations and one depot. The number of present and the
next day demand interval of usable bikes at each station, illustrated in Figure 1, is taken randomly and
presented Table 3. The next day demand at a station referred as the expected number of bikes to be
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hired from that station on the next day after rebalancing. The station “O” represents a depot. The bikes
“N” at the depot “O” denote the number of repaired bikes collected as faulty bikes and other usable
bikes in the previous days. The rebalancing BEVs will distribute these bikes into the system as usable
bikes at various stations.

Figure 1. The location of a depot and stations in a bike-sharing scheme.

Table 3. The number of present usable and faulty bikes, and the next day demand at each station.

Station Present
Inventory

Next Day
Demand
Interval

Minimum
Shortage of

Bikes

Maximum
Supply of

Bikes
Faulty Bikes

O N - -
1 30 [35, 44] 05 - 1
2 10 [02, 03] - 08 1
3 10 [17, 23] 07 - 0
4 35 [05, 13] - 30 3
5 40 [20, 28] - 20 0
6 25 [47, 53] 22 - 0
7 20 [26, 33] 06 - 1
8 20 [27, 33] 07 - 0

Total 190 [179, 230] 47 58 6

The faulty bikes are considered at various randomly selected locations within the network. These
faulty bikes are scattered in the study area and assigned to the nearest station. The light tri-wheeled
service vehicles might be used to collect these faulty bikes. The shortest traveling paths between each
station are retrieved using OpenStreetMap implemented in Python 3.7 using OSMnx and NetworkX
packages. The route lengths between each station are obtained from the shortest paths algorithm.
The operational speed of the rebalancing vehicle is assumed to be 40 km/h. The corresponding travel
distance matrix obtained is presented in Table 4. The capacity of the rebalancing routing BEV is set to
be 20 bikes. The loading `, and unloading time µ, of the usable and faulty bike, is set to be one minute
for each bike. The energy consumption rate of the BEV is 20 kWh/100 km which is computed using
parameters described in Table 2. The battery capacity of the BEV is set to be 16 kWh.
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Table 4. The shortest travel distances in kilometers (km) between each station retrieved from
OpenStreetMap using Python 3.7.

Station O 1 2 3 4 5 6 7 8

O 0 5 15 6 19 8 11 7 9
1 5 0 18 3 18 4 9 11 6
2 15 18 0 13 6 18 22 12 13
3 6 3 13 0 17 6 11 10 3
4 19 18 6 17 0 19 22 8 15
5 8 4 18 6 19 0 7 15 7
6 11 9 22 11 22 7 0 17 12
7 7 11 12 10 8 15 17 0 11
8 9 6 13 3 15 7 12 11 0

4.2. Results and Discussion

The total operational cost of the rebalancing operation with faulty bikes is minimized by solving
the problem defined through Equations (1)–(32). Using sets and parameters defined above, the problem
is solved using IBM-Ilog CPLEX 12.9 with default settings on an i5 8500 @ 3.0 GHz with 8 GB of RAM.
The model is run for a maximum of ten minutes and results are presented in Table 5.

Table 5. Optimal solutions for electric and conventional vehicles.

Experiment Charging
Rate (kW)

Battery
Capacity

Vehicle
Type Vehicles Trips Route Vehicle Load Stops

Vehicles
Operation
Time (min)

Distance
Travelled

(km)

Battery State of
Charging (SoC)

kWh

1 22 16 BEV 1 2 0-2-4-8-3-1-0 0-8-20-13-6-2 13 271 109 14.4-11.4-10.2-
7.2-6.6-6

0-7-4-6-5-6-0 6-1-14-8-20-4 14.4-13-11.4-7-
5.6-4.2-2

2 - - ICEV 1 1 0-7-4-8-3-2-4-
6-5-6-1-0

6-1-15-8-1-9-20-
8-20-10-10-6 12 260 102 -

In the scenario presented in Table 3, the difference of minimum shortage and maximum supply
of the network is less than the capacity of the vehicle. In addition, the sum of inventory of bikes at
all station (i.e., 190) is within the total next day demand interval with a lower limit and upper limit
of 179 and 230 bikes, respectively. Therefore, a single vehicle can achieve the target demands at all
the stations in a single trip. However, the BEV cannot complete the whole operation in a single trip
because the battery constraints as shown in Table 5. The BEV should visit the charging station when
the battery SoC falls below 10% of the battery capacity. Thus the BEV requires an extra visit to the
depot only for the charging purpose. The results show that the BEV returns to the depot after visiting
five stations (i.e., stations, 2, 4, 8, 3 and 1) on the first trip for battery recharge and then continue
its second trip. This results in longer distances and delayed operations. Whereas, the conventional
vehicle performs the same task in a single trip with less time and distance traveled. The operation time
and distance travelled of the BEV is 4.1% and 6.4% higher than the ICEV. The use of ICEV results in
some operational benefits through lesser operational time and distance travelled. However, the further
energy consumption analysis of both BEV and ICEV is required to compare the lifetime benefits of
both vehicle types. In the following sections, detailed energy consumption and cost–benefit analysis of
BEV and ICEV are presented.

Energy and Cost Consumption Comparison

The energy consumption and the corresponding routing cost of the BEV and ICEV for the optimal
rebalancing operation reported in Table 5 are presented in Tables 6 and 7, respectively. The distance
column in Tables 6 and 7 are extracted from Table 4 following the optimal routes in Table 5. The number
of bikes a vehicle carry (i.e., the vehicle load) while moving from a station i to j is taken from the
decision variable introduced in the model. The energy consumption of the BEV at each arc is computed
using Equation (41). The fuel consumption rate (FCR), and the corresponding fuel consumed by the



Energies 2019, 12, 2503 12 of 21

ICEV in Table 7 is computed using Equations (42) and (43), respectively. In addition, the tailpipe
emissions of the ICEV are estimated using Equation (44).

Table 6. Energy consumption and routing cost of the battery electric vehicle (BEV).

Station
Distance, dij (km) Load, yij (bikes) Energy Consumption, Eij (kWh) Routing Cost ($)

From, i To, j

0 2 15 0 3.00 0.41
2 4 6 8 1.27 0.17
4 8 15 20 3.41 0.46
8 3 3 13 0.65 0.09
3 1 3 6 0.62 0.08
1 0 5 2 1.01 0.14
0 7 7 6 1.46 0.20
7 4 8 1 1.61 0.22
4 6 22 14 4.82 0.66
6 5 7 8 1.48 0.20
5 6 7 20 1.59 0.22
6 0 11 4 2.26 0.31

Total 109 km - 23.2 kWh $3.2

Table 7. The fuel consumption rate, fuel cost and the emission of the conventional vehicle for the
rebalancing operation.

Station
Distance, dij (km) Load, yij (bikes) FCR (L/km) Fuel Consumption (L) Fuel Cost, Fc

ij ($) Emissions (kg)
From, i To, j

0 7 7 6 0.32 2.27 2.97 5.92
7 4 8 1 0.30 2.41 3.15 6.28
4 8 15 15 0.37 5.50 7.20 14.35
8 3 3 8 0.33 1.00 1.31 2.61
3 2 13 1 0.30 3.91 5.12 10.20
2 4 6 9 0.34 2.03 2.66 5.30
4 6 22 20 0.39 8.58 11.23 22.39
6 5 7 8 0.33 2.34 3.06 6.09
5 6 7 20 0.39 2.73 3.57 7.13
6 1 9 10 0.34 3.09 4.04 8.06
1 0 5 6 0.32 1.62 2.12 4.23

Total 102 km 35.5 L $46.4 92.6 kg

The battery degradation cost is estimated for 20% capacity loss following the model in Equation
(45). The cost of BEV battery back per kWh is taken as $400/kWh adopting [63]. To better match the
realistic situation, the rebalancing model in the previous section is formulated assuming a maximum
SoC as 90% of the battery maximum capacity. In addition, the life of the rebalancing vehicle for both
BEV and ICEV is taken as 5 years. Since the battery life of BEV is greater than 5 years. Therefore,
battery replacement is not required for a service life of 5 years.

The results in Tables 6 and 7 show that besides the zero direct emissions during operation, the
BEV consumes considerably less energy as compared to the ICEV. For the same operation, the ICEV is
14.2 times more expensive than the BEV. However, ICEVs can travel with a higher speed and climb
steep grades. However, in congested urban areas, the maximum speed is rarely attained. Besides a
high operational cost, the ICEVs are a serious risk for a sustainable transportation system because
of the high volume of GHG emissions. A small scale rebalancing operation costs 92.6 kg of GHG
emissions to the environment. For a real-sized problem with several stations, the tailpipe emissions
of the ICEV may rise to several tons for a one-day operation. Therefore, the use of ICEVs for the
large scale rebalancing operations marks a question over the bike-sharing systems as a healthy and
emission-free transportation mode.

In addition, The BEVs have a significantly higher vehicle purchase and charging infrastructure
installation cost. However, the lower operational cost may compensate for the extra initial cost. A
detail life cycle cost assessment of both the vehicles is presented in Table 8. The purchase, infrastructure
installation and other costs are adopted from the sources presented in Table 8 besides each cost. The
infrastructure installation cost includes the cost of a 50 kW charger and its installation. The operation
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cost of both the vehicles is computed using the estimated expenditures in Tables 6 and 7 for BEV and
ICEV vehicle, respectively. The emissions of the ICEV are estimated using the results in Table 7 as
well. The operational cost and emissions are estimated using vehicles miles travelled (VMT) equal to
73,000 km per year. The emissions are converted into cost adopting Jabali et al. [65].

Table 8. Life cycle cost assessment of BEVs and internal combustion engine vehicles (ICEVs).

Cost BEV ICEV Source

Purchase Cost ($) 37,900 19,100 [66]
Charging infrastructure 40,000 0 [67]

Battery degradation cost ($) 1280 0
Maintenance cost per annum ($) 7000 14,000 [67]

Battery production emissions cost ($) 83.95 0 [65,67]
Vehicle manufacturing process emissions cost ($) 82.6 73 [65,66]

Operational Cost($) per annum 2143 32,207 Table 6, Table 7 1

Cost of emissions during operation per annum ($) - 816.5 Table 6, Table 7 1

Indirect emission cost per annum ($) 396.6 [67]
1 The results are used to estimate operation and emissions cost for annual 74,000 km distance travelled.

While the BEVs have zero tailpipe emission, the battery cell production process contributes to a
significant amount of GHG emissions [21,68]. In addition, coal power plants are the main source of
electricity production in the world. Therefore, these indirect emissions are taken into account for the
cost–benefit analysis.

The service life of both the BEV and ICEV is considered as 5 years. The depreciation cost is
assumed as 5% per annum. The lifetime and per annum costs in Table 8 are used to investigate the
annual expenditures of both the vehicle types and the results are accounted in Table 9.

Table 9. The annual cost–benefit analysis of BEV and ICEV.

Cost per Annum BEV ICEV

Purchase cost $7580.00 $3820.00
Infrastructure cost $8000.00 $0.00

Battery degradation cost $256
Maintenance cost $7000.00 $14,000.00

Annual operational Cost $3650.00 $32,850.00
Direct and indirect Emission cost $396.62 $816.40

Battery emission cost $16.79 $0.00
Manufacturing emissions cost $16.51 $14.59

Depreciation cost −$3895.00 −$955.00

Total Cost per annum $21,513.91 $49,903.87

The results in Table 9 show that the annual cost incurred on an ICEV is 56.9% more as compared
to the cost incurred on an equivalent BEV deployed for the same task. Furthermore, an ICEV cause
48.3% more emissions while taking life cycle emission into account for both the vehicles. In addition,
the cost of the ICEV is 53% more than the cost of BEV even if one battery replacement (16 KWh @
$400/kWh) taken into account in the service life of BEV.

4.3. Model Application for a Large Size Network

The presented formulation gives an exact solution for the small size networks. However, the
computational time increases to several hours for a real-size problem.

The presented formulation can be applied to larger networks after merging nearest stations. For
this purpose, the whole network is divided into smaller zones. The total demand for sharing-bikes
in each zone can be estimated from the number of requests put forward by the commuters or by
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analyzing the commuters’ spatiotemporal travel patterns. After defining the smaller zones and their
corresponding present and next day demand inventories, the rebalancing operation is performed.

For this purpose, a 10 km2 study is considered with 50 bike-sharing stations in the system. There
is only one depot located at the centroid of the area. These stations are divided into 5 zones using
K-means clustering as shown in Figure 2. The Clusters inventory data are reported in Table 10. The
distance matrix in Table 11 is computed using minimum Euclidean distances from the centroid of each
cluster. A distance of 10 km is added to the length of each arc because the vehicle moves within the
cluster to pick up or deliver the required number of bikes at various stations. Using other parameters
as defined earlier, the problem is solved using CPLEX solver and the effects of changing the following
aspects on the rebalancing strategy are investigated.

1. The BEVs fleet size used for rebalancing operation
2. The battery capacity of the BEV (qk)
3. The bike carrying capacity of the BEV (Qk)
4. The effect of the presence of faulty bikes.

Energies 2019, 12, x FOR PEER REVIEW 16 of 23 

 

Table 11. Travel distances (km) from the cluster centroids. 

Zone O 1 2 3 4 5 

O 0 20.5 21.6 19.5 21.2 20.5 

1 20.5 0 25.2 24.6 21.6 21.0 

2 21.6 25.2 0 23.3 27.8 20.1 

3 19.5 24.6 23.3 0 22.1 24.5 

4 21.2 21.6 27.8 22.1 0 25.8 

5 20.5 21.0 20.1 24.5 25.8 0 

4.3.1. The BEVs Fleet Size used for Rebalancing Operation 

Table 12 shows the optimal routes of the problem under a various number of BEVs. A single 

BEV requires frequent visits to the depot for recharging besides the loading/unloading of bikes. The 

increase in the number of vehicles reduces the number of trips per vehicle. The operational cost is 

less for smaller fleet size. However, the frequent visits to the depot for recharging may result in slower 

operation. Furthermore, an extra-large fleet size results in a high operational cost but with a quick 

operation. Therefore, optimized fleet size is always a better solution while taking various bike-

sharing network situations into account. 

 

Figure 2. Bike-sharing network with 50 stations and their cluster centroids. 

 

 

 

 

 

 

Figure 2. Bike-sharing network with 50 stations and their cluster centroids.

Table 10. The number of present usable and faulty bikes, and the next day demand at each cluster.

Cluster Present
Inventory

Next Day
Demand

Bike
Deficiency Bike Excess Faulty Bikes

1 155 [210, 230] 55 0 3
2 200 [140 165] 0 35 1
3 250 [180 220] 0 30 3
4 100 [50, 65] 0 35 2
5 50 [105, 110] 55 0 4

Total 755 110 100 13
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Table 11. Travel distances (km) from the cluster centroids.

Zone O 1 2 3 4 5

O 0 20.5 21.6 19.5 21.2 20.5
1 20.5 0 25.2 24.6 21.6 21.0
2 21.6 25.2 0 23.3 27.8 20.1
3 19.5 24.6 23.3 0 22.1 24.5
4 21.2 21.6 27.8 22.1 0 25.8
5 20.5 21.0 20.1 24.5 25.8 0

4.3.1. The BEVs Fleet Size used for Rebalancing Operation

Table 12 shows the optimal routes of the problem under a various number of BEVs. A single
BEV requires frequent visits to the depot for recharging besides the loading/unloading of bikes. The
increase in the number of vehicles reduces the number of trips per vehicle. The operational cost is less
for smaller fleet size. However, the frequent visits to the depot for recharging may result in slower
operation. Furthermore, an extra-large fleet size results in a high operational cost but with a quick
operation. Therefore, optimized fleet size is always a better solution while taking various bike-sharing
network situations into account.

Table 12. The optimal solutions under different numbers of vehicles used for the rebalancing operation.

No. of
Vehicles

Battery
Capacity (kWh)

Vehicle
Capacity

(Qk)
Trips Stops

Total
Travelling

Distance (km)

Total
Travelling
Time (min)

Optimality
Gap (%)

CPU Time
(s)

1 16 20 5 18 359.9 785.5 0.01 665.8
2 16 20 8 20 380.1 816.5 0.01 171.3
3 16 20 9 21 380.1 816.15 5.05 11.17

4.3.2. The Battery Capacity of the BEV (qk)

The problem is solved for different battery capacities and the results are presented in Table 13.
The enlarged battery capacity enables a BEV to traverse longer trips. Figure 3 shows when the battery
capacity is increased from 16 kWh to 60 kWh, the total traveling cost reduces up to 17.8% and 20.4%
with one and two operating vehicles, respectively. Moreover, once a minimum number of necessary
station visits is achieved, the traveling cost does not reduce with a further increase in battery capacity.

Table 13. The optimal solutions under different Battery capacities of the BEV (qk).

No. of
Vehicles

Battery
Capacity (kWh)

Vehicle
Capacity (Q) Trips Stops

Total
Travelling

Distance (km)

Total
Travelling
Time (min)

Optimality
Gap (%)

CPU Time
(s)

1 22 20 4 17 337.9 752.85 0.01 532.7
1 32 20 3 16 316 720 0.01 285.25
1 60 20 2 15 295.8 689.7 0.01 48.69
1 90 20 2 15 295.8 689.7 0.01 45.7
2 22 20 6 18 337.9 752.85 0.01 45.7
2 32 20 6 18 337.9 752.85 0.01 314.43
2 60 20 2 16 302.4 699.6 0.01 2.25
2 90 20 2 16 302.4 699.6 0.01 1.66
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Figure 3. Percentage decrease in total traveling cost under different battery capacities.

4.3.3. The Bike Carrying Capacity of the BEV (Qk)

A large capacity vehicle can deliver and pick up a large number of bikes from a station. Therefore,
the number of visits to a station reduces when the vehicle capacity is increased. Table 14 shows that
the traveling distance reduces significantly with an increase in capacity of the vehicle. However, the
large-capacity vehicles may add extra operational charges.

Table 14. The optimal solutions under different vehicle capacities (Qk).

No. of
Vehicles

Battery
Capacity (kWh)

Vehicle
Capacity (Q) Trips Stops Travelling

Distance (km)
Traveling

Time (min)
Optimality

Gap (%)
CPU Time

(s)

1 16 15 8 26 524.2 1032.3 1.3 1200
1 16 25 5 18 355 778.5 1 1200
1 16 30 4 15 292.2 684.9 0.01 56.5
2 16 15 4 14 543.2 1060.8 1 1200

4 14
2 16 25 3 10 377.1 811.65 0.01 238.6

3 10
2 16 30 2 8 292.6 684.9 0.01 17.91

2 8

4.3.4. The Effect of the Number of Faulty Bikes

The different number of faulty bikes are considered by a 10% drop and increase in the number
of faulty bikes. The problem is solved for various percentage presence of faulty or broken bikes
within the network and the results are presented in Table 15. The results show that the solutions are
not much sensitive to the minor increase or drop in the number of faulty bikes. The total travelling
time is changed because of the loading time of the different number of bikes. If the number of faulty
bikes at a station exceeds the capacity of the vehicle, these may have a significant effect on the route
plan of the rebalancing vehicle. However, this effect will be the same for the ICEV because this is
more related to the load carrying capacity of the vehicle rather than the battery capacity constraints.
For excessive supply and deliveries, the travelling distances may be longer because of the multiple
visits to the stations. Subsequently, the BEV require extra visits to the charging station for battery
recharge. This will increase the travelling distances of the BEV as compared to the ICEV as indicated in
Table 5. Moreover, the inventory of bikes at the stations will not have a significant effect on the cost
comparison of both vehicles because the extra distances travelled by the BEV were already included in
the cost–benefit analysis.
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Table 15. The optimal solutions under different numbers of faulty bikes in the network.

No. of
Vehicles

Faulty
Bikes

Battery Capacity
(kWh) Trips Stops Total Travelling

Distance (km)
Total Travelling

Time (min)

1 13 16 5 18 359.9 785.5

1 11
(−10%) 16 5 18 359.9 781.9

1 15
(+10%) 16 5 18 359.9 789.9

5. Discussion and Conclusions

The sharing-bikes dispatching problem is a serious concern towards the sustainability of the
bike-sharing systems. Efficient rebalancing operations are the key to ensure good service quality. An
inefficient solution for sharing-bikes rebalancing results in wastage of available resources besides
a negative impact on the service quality. Therefore, many researchers have focused on optimizing
the operational cost. However, the fossil-fueled powered ICEVs were considered for the rebalancing
operation. Since BEVs consume less energy than conventional ICEVs, the use of BEVs result in
significant energy savings for an urban transport network. However, the routing problem formulation
of green vehicles is complex. The conventional formulation does not help to solve the problem with
the green vehicles because of the multiple visits to the charging stations.

In this study, we proposed a new model that considers BEVs instead of ICEVs. Using CPLEX
solver, the formulated model is demonstrated through various scenarios and the corresponding
solutions are presented. The model gives exact solutions for a small-sized problem in few seconds. In
addition, to solve larger networks, a clustering-first routing-second approach is presented.

The results show that the BEVs are much better than ICEVs for bike-sharing rebalancing
operations because:

(i) The rebalancing operation consists of short-range trips within a small network. Therefore, the
BEVs can complete the operation efficiently without excessive visits to the charging station.

(ii) In rebalancing operation, the routing vehicles visit the depot multiple times depending on the
demand within the network. The routine visits to the depot can be used to recharge the BEV.

(iii) The high efficiency of the BEVs result in significantly lower operational cost.

While the BEVs need necessary visits to the charging station which increase the total traveling
distances besides the operation time, the high energy consumption rate of the ICEVs results in a
significantly higher operational cost. The results show that the cost of an ICEV deployed for the same
operation is about 14.2 times more as compared to an equivalent BEV.

The major hurdle in adopting the BEVs is their high ownership and charging infrastructure
installation cost. For a BEV, the total cost of a charging infrastructure installation is more than the price
of the BEV itself and is more than double to the price of an ICEV. Therefore, a detailed cost–benefit
analysis of both vehicles is conducted. Besides the high initial cost of BEV, the battery production
emission, vehicle manufacturing emission and the indirect emission during electricity production are
taken into account in the analysis. The results show that the annual cost incurred on an ICEV is 56.9%
more as compared the cost incurred on an equivalent BEV deployed for the operation. In addition,
an ICEV has 48.3% more emissions as compared to an equivalent BEV besides taking high battery
production and BEV manufacturing emissions into account.

Lastly, the problem is solved in various situations. The results show that the vehicle battery
capacity has a significant effect on the routing plan. A vehicle with small battery capacity visits the
charging station after a short trip. The extra visits to the charging station not only increase operation
cost but also increase the operation time. In addition, excessive battery charging events further delay
the operation process. When the battery capacity is increased from 16 kWh to 60 kWh, the total traveling
cost reduces up to 17.8% and 20.4% with one and two operating vehicles, respectively. Likewise, the
cost of a vehicle with a capacity of 30 bikes is 44% lesser than the cost of the vehicle with a capacity
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of 15 bikes. Since the BEVs have a high initial cost. Therefore, a detailed cost analysis is required for
various capacity vehicles.

The limitations of the presented model are as follows. The travelling speed and battery
discharging rate of the BEV is considered as constant. In practice, these are not realistic assumptions.
However, the sharing-bikes are usually urban-based services, and a static scenario is assumed for
the rebalancing operation. Static rebalancing is performed during the night hours when the system
usage is negligible [52]. During night hours, the rebalancing BEV is not subjected to the aggressive
acceleration/ deceleration events because of the smooth traffic conditions. Hence, the characteristics of
the battery packs of the BEV are less likely to be affected during the static rebalancing operation as
compared to the dynamic situations. In addition, the service life of the vehicles in the cost–benefit
analysis is considered as 5 years which is less than the service life of the battery packs. In addition, the
degradation cost of the battery packs is included in the cost–benefit analysis. Besides, the cost and
energy consumption analysis presented in our paper indicates that the BEV consumes considerably
lesser energy than an ICEV. The analysis shows that the cost of the ICEV is 53% more than the cost of
BEV even if one battery replacement is considered in five-year service life of BEV. Therefore, these
assumptions have not a significant impact on the validity of the results.

In fact, taking non-linear speed and battery charging/discharging rate results in a more complex
formulation. Consequently, this will result in the non-linear constraints in the model, which are not
easy to solve. Therefore, the BEV routing problem might be extended with fewer assumptions in
future research. For example, a non-linear battery charging and discharging rates might be considered
instead of using constant rates. In addition, efficient solution techniques may be proposed to solve the
real-time instances while taking the dynamic situation into account as a part of future research as well.

The presented model gives an exact solution to the small-sized problem. However, the large
networks are solved after merging the close satiations through clustering. This may result in an entirely
different situation while solving real-time instances. Therefore, in future research, the formation can
be extended to solve the large size problem without merging into various clusters. In addition, the
solution algorithms might be developed to solve the FFBP with BEVs in a reasonable time.

Lastly, the presented formulations are based on the static demand at each station, i.e., static
repositioning. To better synchronize with the real-time scenarios, the models might be extended
considering stochastic demand, i.e., dynamic repositioning in the future research as well.
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